

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

## **Approximate Fiducial Computation and Deep Fiducial Inference**

## BACKGROUND

Generalized Fiducial Distribution

• Data Generating Function (Data Generating Equation):

 $X = f(Z, \mu)$ 

- X represents the data we observed;
- The random latent variable Z has **known** distribution  $F_0$ .
- The deterministic function f is known.
- The parameter  $\mu$  is **fixed**;
- Generalized Fiducial Distribution (GFD): A probability measure on the parameter space defined as

$$\lim_{\mu \to 0} \left| \arg\min_{\mu^*} \|x - f(Z^*, \mu^*)\| \|\min_{\mu^*} \|x - f(Z^*, \mu^*)\| \le \epsilon \right|$$

### User-friendly Formula

### Theorem ([Hannig et al., 2016])

Under mild condition, the limiting distribution above has a density

$$f(\boldsymbol{\mu}|\boldsymbol{x}) = \frac{f(\boldsymbol{x}|\boldsymbol{\mu})J(\boldsymbol{x},\boldsymbol{\mu})}{\int f(\boldsymbol{x}|\boldsymbol{\mu}') J(\boldsymbol{x},\boldsymbol{\mu}') d\boldsymbol{\mu}'}$$

where  $f(\boldsymbol{x}|\boldsymbol{\mu})$  is the likelihood function and

$$J(x,\mu) = D\left(\nabla_{\mu} f(z,\mu)|_{z=f^{-1}(x,\mu)}\right)$$

with  $D(A) = (\det A'A)^{\frac{1}{2}}$ .

Forward Solution: Standard MCMC-type sampling techniques have already been implemented [Hannig et al., 2016]. However, sometimes the generalized fiducial density can be hard to compute.

### Backward Solution

- Inverse Function If the data generating function is monotone in  $\mu$ , then there exists a unique inverse function:  $\mu = g(X, Z)$ .
- **Backward Solution** If the **exact form** of the inverse function exists, we can sample from the approximate generalized fiducial distribution through the approximate fiducial computation (AFC) algorithm;
- AFC  $\implies$  GFS  $\implies$  Generalized Fiducial Distribution (GFD).
- With GFD, one can construct most common inference procedures (point estimates, confidence intervals and so on).

## Approximate Fiducial Computation

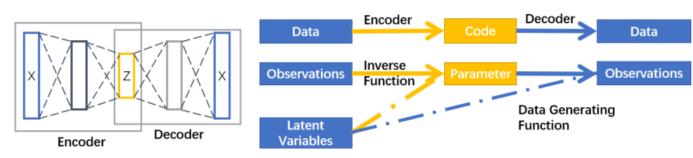
**Output:** Generalized Fiducial Samples(GFS) Initialization: itr = 0;  $GFS = \emptyset$ ; while  $(itr < max_itr)$  and (card(GFS) < N); do Sample z from  $F_0$ ;  $\hat{\mu} = g(x, z);$  $\hat{x} = f(z, \hat{\mu});$ :  $dist(x \ \hat{x}) < Threshold$  then

If 
$$dist(x, x) < Th$$
  
| Accept  $\hat{\mu}$ ;

| Reject 
$$\hat{\mu}$$
;

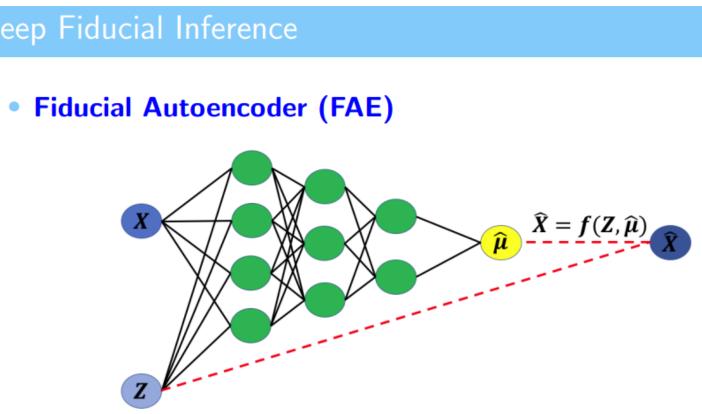
$$itr = itr + 1;$$

## **Algorithm 1:** APPROXIMATE FIDUCIAL COMPUTATION(AFC)



- encoder.

## Deep Fiducial Inference



Gang Li\* (franklee@live.unc.edu) and Jan Hannig Department of Statistics and Operations Research, UNC at Chapel Hill, NC 27599

## **METHODS**

• Punchline: The inverse function plays a similar role as the

• Fiducial Autoencoder (FAE): A convenient and efficient computation tool, FAE, is implemented to generate the fiducial distribution without knowing the exact form the density.

## • Loss Function: $L = w_1 ||x - \hat{x}||^2 + w_2 ||\mu - \hat{\mu}||^2$

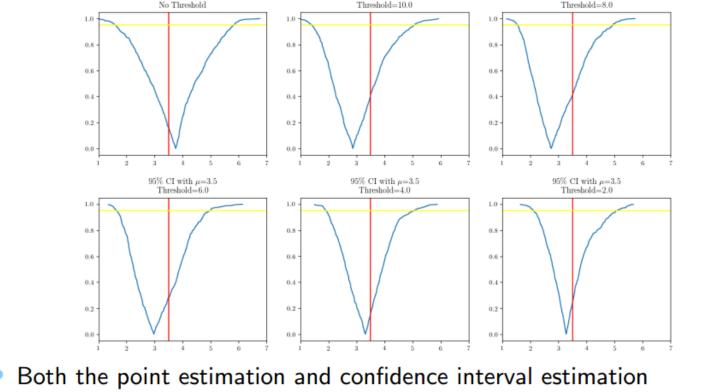
### • Convenience of DFI: Finite observations? Not a problem!

 For training the FAE and approximating the inverse function, we could **simulate infinite** pairs of X and Z.

## SIMULATION I

### AFC with Decreasing Thresholds

- $\mathbf{x} = \mu \times \mathbf{1} + \mu^{\frac{q}{2}} \times \mathbf{z}$  where  $\mathbf{x} \in \Re^m$ ,  $\mu \in \Re$ , and  $\mathbf{z} \in N_m(0, I)$ , q = 3, m=3
- With AFC: 1 X, 1000 independent copies of Z.(CL=95%)



- improves. Note decreasing the threshold might not always help.
- **Efficiency and Accuracy Trade-off:**
- Selection of Threshold:
- If the threshold is too big  $\implies$  biased samples;
- If the threshold is too small,  $\implies$  very difficult to generate enough samples.
- Efficiency and Accuracy Trade-off: In practice, we could use one random batch of samples to estimate the distribution of  $dist(x, \hat{x})$ and select the threshold.

## Ionlinear Data Generating Equation

|--|

| 200 observations, 1000 generalized fiducial samples, and confidence level $=90\%$ |          |                    |               |                 |  |  |  |  |
|-----------------------------------------------------------------------------------|----------|--------------------|---------------|-----------------|--|--|--|--|
| True $\mu$                                                                        | Coverage | Expected CI Length | Expected Mean | Expected Median |  |  |  |  |
| 1                                                                                 | 0.985    | 2.03               | 1.07          | 0.9             |  |  |  |  |
| 2                                                                                 | 0.905    | 3.5                | 2.64          | 2.49            |  |  |  |  |
| 3                                                                                 | 0.865    | 4.25               | 3.85          | 3.81            |  |  |  |  |
| 4                                                                                 | 0.87     | 4.28               | 4.48          | 4.45            |  |  |  |  |
|                                                                                   |          |                    |               | -               |  |  |  |  |

### Table 1: Inference Performance without AFC.

## 200 observations, 1000 generalized fiducial samples, and confidence level = 90%

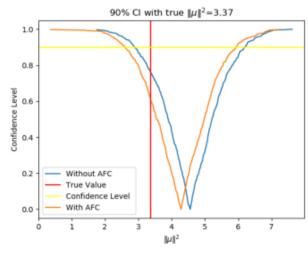
| True $\mu$ | Coverage | Expected CI Length     | Expected Mean | E  |
|------------|----------|------------------------|---------------|----|
| 1          | 0.95     | Expected CI Length 3.1 | 1.44          | 1. |
| 2          | 0.95     | 4.07                   | 2.55          | 2. |
| 3          | 0.97     | 3.43                   | 3.22          | 2. |
|            | 0.94     | 3.3                    | 3.98          | 3. |
|            |          |                        |               |    |

Table 2: Inference Performance with AFC.



## Many Means

- Many Means:  $\mathbf{x} = \mu + \mathbf{z}$ , with  $\mathbf{x}, \mu, \mathbf{z} \in \Re^m$  and m = 3
- The parameter of interests is the square of the *l*-2 norm of  $\mu$ ,  $\|\mu\|^2$ , instead of  $\mu$  itself.
- Since  $\hat{\mathbf{x}} = f(\hat{\mu}, \mathbf{z}^*) = \hat{\mu} + \mathbf{z}^* = g(\mathbf{x}, \mathbf{z}^*) + \mathbf{z}^* = \mathbf{x} \mathbf{z}^* + \mathbf{z}^* = \mathbf{x}$ , We proposed the following estimation  $\tilde{\mu} = \|\hat{\mu}\| * (\mathbf{x}/\|\mathbf{x}\|)$  with  $\hat{\mu} = \mathbf{x} - \mathbf{z}^*$ .
- Confidence Curves with and without AFC.(CL = 90%)



200 observations, 1000 generalized fiducial samples, and confidence level = 90%

| If AFC | Coverage | Expected CI Length                 | Expected Mean | Expected Median |
|--------|----------|------------------------------------|---------------|-----------------|
| No     | 0.85     | 3.12                               | 3.91          | 3.91            |
| Yes    | 0.95     | Expected CI Length<br>3.12<br>3.29 | 3.65          | 3.64            |

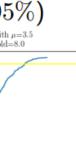
**Table 3:** Inference Performance with and without AFC. (True  $\|\mu\|^2 = 3.37$ )

As shown in Table 3, the empirical coverage increase 10%. In addition, both the expected median and the expected mean are more accurate.

## CONCLUSIONS

### Conclusions

- In summary, we introduce AFC and provide a backward solution for generalized fiducial inference.
- We further design FAE for the circumstance in which the analytical form of the inverse function is not available.
- The universal approximation theorem provides theoretical guarantees for the approximation performance.
- Our simulation validates our approach.
- Further research: real data applications.



Expected Median 2.18 2.99 3.89



## THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

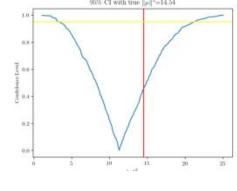
## BACKGROUND

### Distribution Estimator

• Distribution Estimator Point Estimator; Interval Estimator; Distribution Estimator

# value for hypothesis $K_0: \theta \ge b$

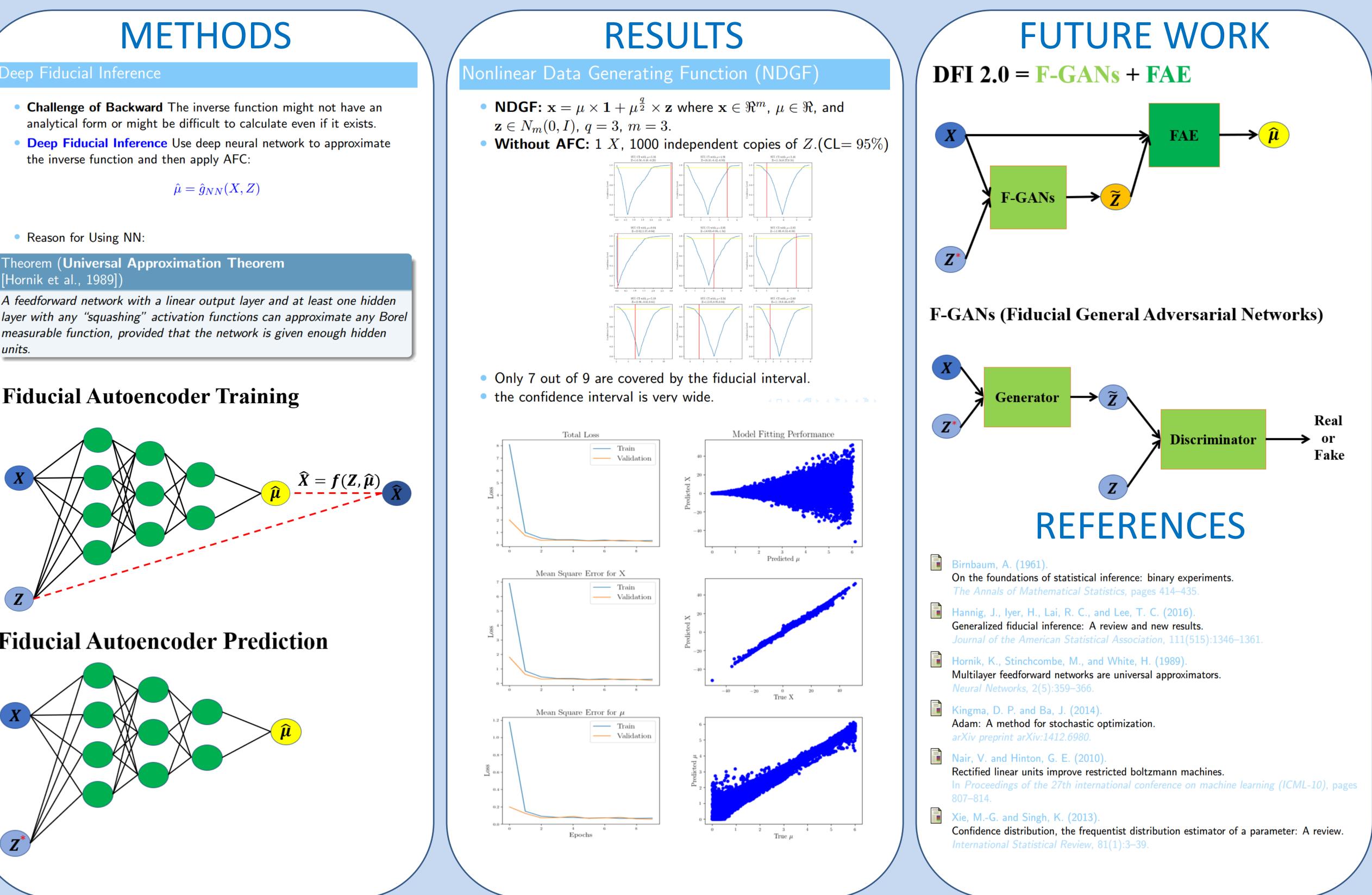
 Confidence Curve(CC) CC is a great visualization tool for GFD. CC is defined as  $CV(\mu) = 2|F(\mu|\mathbf{x}) - 0.5|$ . CC shows confidence intervals at all significance levels stacked up on each other.

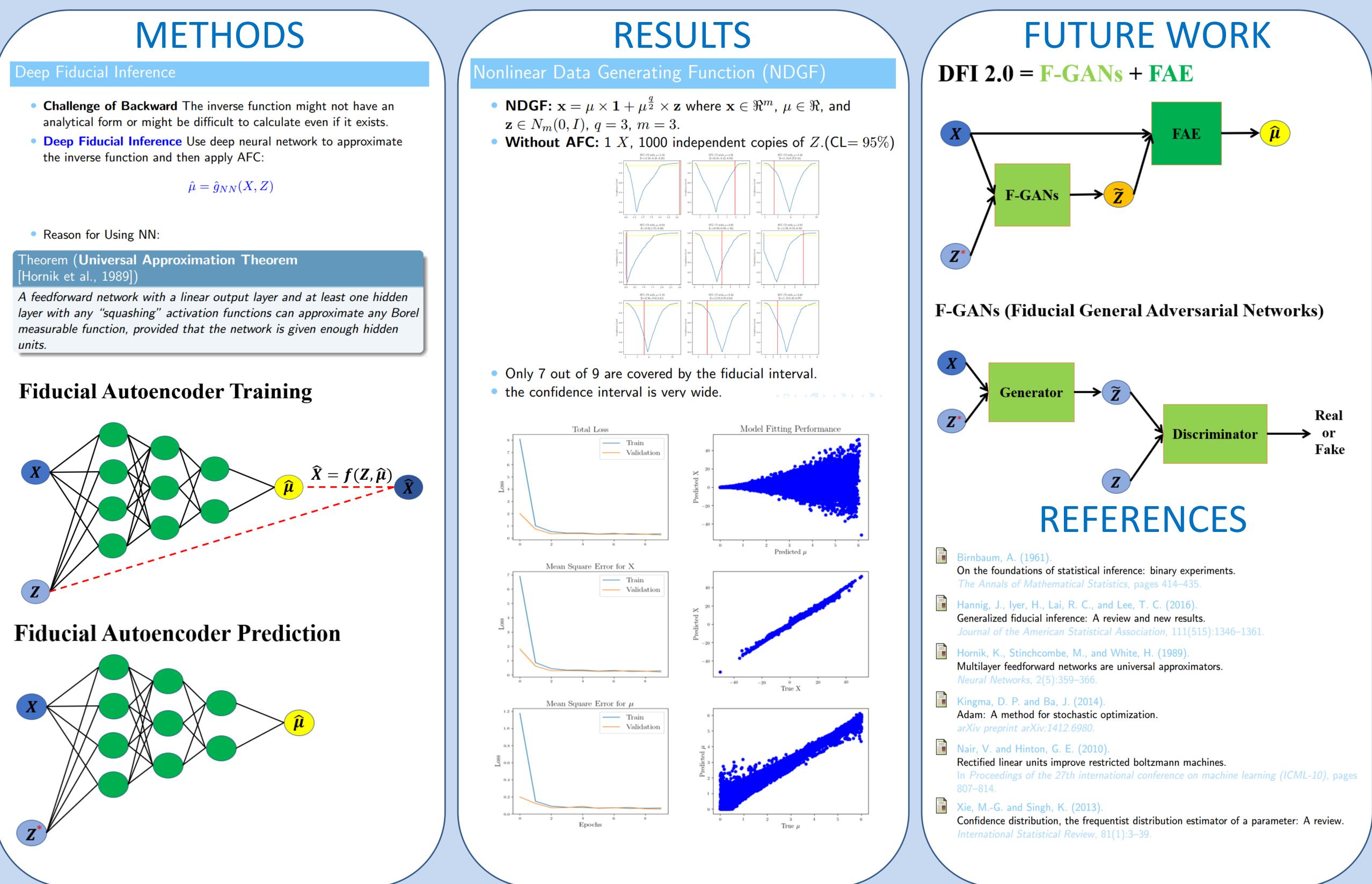


- ► Fisher (1922, 1930, 1935) no formal definition
- Lindley (1958) fiducial vs Bayes
- ► Fraser (1966) structural inference
- Dempster (1967) upper and lower probabilities
- Dawid and Stone (1982) theoretical results for simple cases.
- Barnard (1995) pivotal based methods.
- Weerahandi (1989, 1993) generalized inference.
- Dempster-Shafer calculus; Dempster (2008), Edlefsen, Liu & Dempster (2009)
- Inferential Models; Liu & Martin (2015)
- Confidence Distributions; Xie, Singh & Strawderman (2011). Schweder & Hjort (2016)
- $\blacktriangleright$  Higher order likelihood, tangent exponential family,  $r^*$ , Reid & Fraser (2010)
- Objective Bayesian inference, e.g., reference prior Berger, Bernardo & Sun (2009, 2012).
- Fiducial Inference H, Iyer & Patterson (2006), H (2009, 2013), H & Lee (2009), Taraldsen & Lindqvist (2013), Veronese & Melilli (2015), H, Iyer, Lai & Lee (2016)...

## [Hornik et al., 1989])

units.





## **AFC and DFI Supplementary Poster**

Gang Li\* (franklee@live.unc.edu) and Jan Hannig Department of Statistics and Operations Research, UNC at Chapel Hill, NC 27599