
Symbulate: Probability Simulation in Python

Kevin Ross
Cal Poly

Joint work with Dennis Sun (Cal Poly and Google)

Research supported by the Bill and Linda Frost Fund

May 30, 2019

1 Motivation

2 Symbulate Gallery

3 Symbulate Mechanics

4 Symbulate in the Classroom

1 Motivation

2 Symbulate Gallery

3 Symbulate Mechanics

4 Symbulate in the Classroom

Pedagogical Goals for Probability and
Simulation

• Conceptual understanding
• Multivariable thinking
• Problem solving
• Active learning

Proposal:
• Simulate everything

• Tactile, in class
• Technology, with Symbulate

• Use lots of visuals

Pedagogical Goals for Probability and
Simulation

• Conceptual understanding
• Multivariable thinking
• Problem solving
• Active learning

Proposal:
• Simulate everything

• Tactile, in class
• Technology, with Symbulate

• Use lots of visuals

A Simple Dice Rolling Example

Suppose we roll two fair, six-sided dice. Let X be the sum and Y
the maximum of the rolls. What is Cov(X,Y)?

What’s wrong with the following R code to approximate the
answer?

x <- replicate(10000, sum(sample(1:6, size=2, replace=T)))

y <- replicate(10000, max(sample(1:6, size=2, replace=T)))

cov(x, y)

Correct R code:

xy <- replicate(10000, sample(1:6, size=2, replace=T))

x <- apply(xy, 2, sum)

y <- apply(xy, 2, max)

cov(x, y)

A Simple Dice Rolling Example

Suppose we roll two fair, six-sided dice. Let X be the sum and Y
the maximum of the rolls. What is Cov(X,Y)?

What’s wrong with the following R code to approximate the
answer?

x <- replicate(10000, sum(sample(1:6, size=2, replace=T)))

y <- replicate(10000, max(sample(1:6, size=2, replace=T)))

cov(x, y)

Correct R code:

xy <- replicate(10000, sample(1:6, size=2, replace=T))

x <- apply(xy, 2, sum)

y <- apply(xy, 2, max)

cov(x, y)

Shortcomings of R
(and other simulation languages)

• R does not prevent you from writing code that makes no
statistical sense
• The (correct) code does not resemble the language of
probability, e.g., apply(xy, 2, max)

• Programming a simulation involves several levels of code:
• Defining the probability simulation
• Summarizing simulation output
• Constructing visualizations

As a result:
• Students must learn two languages: the language of
probability and the language of coding simulations

Shortcomings of R
(and other simulation languages)

• R does not prevent you from writing code that makes no
statistical sense
• The (correct) code does not resemble the language of
probability, e.g., apply(xy, 2, max)

• Programming a simulation involves several levels of code:
• Defining the probability simulation
• Summarizing simulation output
• Constructing visualizations

As a result:
• Students must learn two languages: the language of
probability and the language of coding simulations

Symbulate

Symbulate is a Python library for specifying simulations from
probability models.

P = BoxModel([1, 2, 3, 4, 5, 6], size=2, replace=True)

X = RV(P, sum)

Y = RV(P, max)

(X & Y).sim(10000).cov()

Define a probability
space.

A random variable is a
function defined on a
probability space.

Simulate 10000 draws
from the joint

distribution of X and Y .

Symbulate

Symbulate is a Python library for specifying simulations from
probability models.

P = BoxModel([1, 2, 3, 4, 5, 6], size=2, replace=True)

X = RV(P, sum)

Y = RV(P, max)

(X & Y).sim(10000).cov()

Define a probability
space.

A random variable is a
function defined on a
probability space.

Simulate 10000 draws
from the joint

distribution of X and Y .

Symbulate

Symbulate is a Python library for specifying simulations from
probability models.

P = BoxModel([1, 2, 3, 4, 5, 6], size=2, replace=True)

X = RV(P, sum)

Y = RV(P, max)

(X & Y).sim(10000).cov()

Define a probability
space.

A random variable is a
function defined on a
probability space.

Simulate 10000 draws
from the joint

distribution of X and Y .

Symbulate

Symbulate is a Python library for specifying simulations from
probability models.

P = BoxModel([1, 2, 3, 4, 5, 6], size=2, replace=True)

X = RV(P, sum)

Y = RV(P, max)

(X & Y).sim(10000).cov()

Define a probability
space.

A random variable is a
function defined on a
probability space.

Simulate 10000 draws
from the joint

distribution of X and Y .

Symbulate Prevents Common Code Mistakes

X = RV(BoxModel([1, 2, 3, 4, 5, 6], size=2, replace=True), sum)

Y = RV(BoxModel([1, 2, 3, 4, 5, 6], size=2, replace=True), max)

(X & Y).sim(10000).cov()

Exception: Random variables must be defined on the

same probability space.

Symbulate Prevents Common Code Mistakes

X = RV(BoxModel([1, 2, 3, 4, 5, 6], size=2, replace=True), sum)

Y = RV(BoxModel([1, 2, 3, 4, 5, 6], size=2, replace=True), max)

(X & Y).sim(10000).cov()

Exception: Random variables must be defined on the

same probability space.

Language of Probability and Simulation

• Components of a probability model
• Probability space
• Related events, and in particular, conditioning on events
• Random variables or stochastic processes defined on the

probability space, possibly via transformations

• Steps in a simulation
• Define a probability model
• Simulate realizations of objects, possibly with conditioning
• Summarize and visualize simulation output

Language of Probability and Simulation

• Components of a probability model
• Probability space
• Related events, and in particular, conditioning on events
• Random variables or stochastic processes defined on the

probability space, possibly via transformations
• Steps in a simulation

• Define a probability model
• Simulate realizations of objects, possibly with conditioning
• Summarize and visualize simulation output

Some Features of Symbulate
• Syntax is consistent with the language of probability
• Probability spaces, random variables, etc., are abstract
objects that can be manipulated
• Realizations generated using .sim()

• Can simulate from conditional distributions using |

• Universal function .plot() automatically determines an
appropriate plot

1 Motivation

2 Symbulate Gallery

3 Symbulate Mechanics

4 Symbulate in the Classroom

Transforming a Random Variable

Simulating from a Conditional Distribution

Simulating from a Conditional Distribution

Sample Path of a Poisson Process

Many Sample Paths of a Poisson Process

Poisson Process: Marginal Distribution

Brownian Motion Sample Paths

Brownian Motion: Joint Distribution

Discrete Time Markov Chains

Markov Chains: Cumulative Fraction of Time
Spent in State

Markov Chains: Stopping Time
Stopping Time (e.g., time to hit state 1)

Markov Chains: Stopping Time
We can evaluate processes at stopping times, too.

Poisson Process at Independent Exponential
Time

Jupyter Widgets

1 Motivation

2 Symbulate Gallery

3 Symbulate Mechanics

4 Symbulate in the Classroom

Probability World

X = RV(Poisson(2))

Y = RV(Poisson(3))

X, Y = AssumeIndependent(X, Y)

Z = (X | (X + Y == 6))

z = Z.sim(10000)

z.plot()

Probability World
X = RV(Poisson(2))

Y = RV(Poisson(3))

X, Y = AssumeIndependent(X, Y)

Z = (X | (X + Y == 6))

z = Z.sim(10000)

z.plot()

Simulation World
X = RV(Poisson(2))

Y = RV(Poisson(3))

X, Y = AssumeIndependent(X, Y)

x, y = (X & Y).sim(10000)

z = x[x + y == 6]

z.plot()

Probability vs. Simulation Worlds
For every operation in probability world (e.g., addition and

conditioning), there is an equivalent operation in simulation world.

Probability World Simulation World

RV X,Y
[2, 1, 4, 3, ...]
[4, 0, 1, 3, ...]

RV X | X + Y [2, 3, ...]

.sim(10000)

+, |

.sim(10000)

+, []

Common Mistakes in Simulation World?
In simulation world, it is easier to write code that makes no
statistical sense....

X = RV(Poisson(2))

Y = RV(Poisson(3))

X, Y = AssumeIndependent(X, Y)

x = X.sim(10000)

s = (X + Y).sim(10000)

x[s == 6]

Exception: In order to filter one set of Results by

another, they must come from the same simulation.

...but Symbulate will refuse to perform those operations.

Common Mistakes in Simulation World?
In simulation world, it is easier to write code that makes no
statistical sense....

X = RV(Poisson(2))

Y = RV(Poisson(3))

X, Y = AssumeIndependent(X, Y)

x = X.sim(10000)

s = (X + Y).sim(10000)

x[s == 6]

Exception: In order to filter one set of Results by

another, they must come from the same simulation.

...but Symbulate will refuse to perform those operations.

How to Simulate Brownian Motion?
The usual approach is to discretize and simulate a random walk.

zoom

The problem is that the resolution is fixed. If we zoom in, then
the graph is no longer an accurate representation of the process.

Brownian Motion at Any Resolution?
Each realization w of Brownian motion {W (t)} is a function of
time.

We should be able to evaluate this function at any time t.

We can’t just interpolate to get these values because, even
though sample paths of Brownian motion are continuous, they
are nowhere differentiable.

Brownian Motion at Any Resolution?

zoom in

zoom in
zoom out

Brownian Motion at Any Resolution?

zoom in

zoom in
zoom out

Brownian Motion at Any Resolution?

zoom in

zoom in

zoom out

Brownian Motion at Any Resolution?

zoom in

zoom in
zoom out

A Peek Under the Hood
How is Symbulate able to generate a sample path w that can be
evaluated at any time t and yet remains consistent across
repeated evaluations?

Problem: Brownian motion is nowhere differentiable, so infinitely
many values are needed to represent the entire sample path.

Solution: lazy evaluation
• Only generate the value of w(t∗) as needed. Store the values
of t∗ and w(t∗) in t and w, respectively.
• All values are generated from the conditional distribution

W (t∗) |
{
W (t) = w

}
∼ Normal

(
Σt∗,tΣ

−1
t,tw, t∗ − Σt∗,tΣ

−1
t,tΣt,t∗

)
.

Symbulate uses a similar approach for
other infinite dimensional models, e.g.,

Poisson processes

A Peek Under the Hood
How is Symbulate able to generate a sample path w that can be
evaluated at any time t and yet remains consistent across
repeated evaluations?

Problem: Brownian motion is nowhere differentiable, so infinitely
many values are needed to represent the entire sample path.

Solution: lazy evaluation
• Only generate the value of w(t∗) as needed. Store the values
of t∗ and w(t∗) in t and w, respectively.
• All values are generated from the conditional distribution

W (t∗) |
{
W (t) = w

}
∼ Normal

(
Σt∗,tΣ

−1
t,tw, t∗ − Σt∗,tΣ

−1
t,tΣt,t∗

)
.

Symbulate uses a similar approach for
other infinite dimensional models, e.g.,

Poisson processes

A Peek Under the Hood
How is Symbulate able to generate a sample path w that can be
evaluated at any time t and yet remains consistent across
repeated evaluations?

Problem: Brownian motion is nowhere differentiable, so infinitely
many values are needed to represent the entire sample path.

Solution: lazy evaluation
• Only generate the value of w(t∗) as needed. Store the values
of t∗ and w(t∗) in t and w, respectively.
• All values are generated from the conditional distribution

W (t∗) |
{
W (t) = w

}
∼ Normal

(
Σt∗,tΣ

−1
t,tw, t∗ − Σt∗,tΣ

−1
t,tΣt,t∗

)
.

Symbulate uses a similar approach for
other infinite dimensional models, e.g.,

Poisson processes

1 Motivation

2 Symbulate Gallery

3 Symbulate Mechanics

4 Symbulate in the Classroom

Symbulate in the Classroom
We have used Symbulate in two undergraduate probability
courses:

1 Probability and Random Processes for Engineers:
A first course in probability (and for most, their last) for EE
majors, which covers probability up through Gaussian
processes and the Wiener-Khinchin theorem. Students had
previous exposure to Python. Course required simulation in
Symbulate only.

2 Introduction to Probability and Simulation
A first course in probability for statistics and data science
majors, which covers probability up through the Central
Limit Theorem. Students had previous exposure to Python,
some to R. Course required simulation in both Symbulate
and another language.

Symbulate in the Classroom
We have used Symbulate in two undergraduate probability
courses:

1 Probability and Random Processes for Engineers:
A first course in probability (and for most, their last) for EE
majors, which covers probability up through Gaussian
processes and the Wiener-Khinchin theorem. Students had
previous exposure to Python. Course required simulation in
Symbulate only.

2 Introduction to Probability and Simulation
A first course in probability for statistics and data science
majors, which covers probability up through the Central
Limit Theorem. Students had previous exposure to Python,
some to R. Course required simulation in both Symbulate
and another language.

HowWe Used Symbulate

• Instructors used Symbulate in lecture to demo concepts
• Students used Symbulate in weekly lab meetings
• Students were required to use Symbulate on homework
• Symbulate syntax and usage was assessed on exams

Survey of Students
At the end of the course, we asked students to fill out an
anonymous survey about their experience with Symbulate:

Strongly Strongly No
Course Agree Agree Neither Disagree Disagree Response

Visualizing simulation results in
graphs facilitated my
understanding of probability
concepts.

1 39% 50% 10% 1% 0%
2 47 47 6 0 0

Performing and analyzing
simulations using Symbulate
facilitated my understanding of
probability concepts.

1 24 55 14 5 1
2 26 50 20 4 0

The syntax of Symbulate
facilitated my understanding of
the “language of probability”.

1 20 37 33 10 0
2 11 38 36 11 4

In general, the use of Symbulate
facilitated my understanding of
probability concepts.

1 22 59 12 5 1
2 15 55 22 5 4

Survey of Students

Course Symbulate Python Matlab R Other
If you had to do it over,
which one of the
following would best
represent the software
you would prefer to use?

1 78% 8% 9% 3% 3%
2 51 19 0 23 8

• Students taking probability as a terminal course (i.e., Course
1) overwhelmingly preferred Symbulate.
• Students taking probability as a gateway course (i.e., Course
2) still preferred Symbulate, but many wanted more practice
with R and Python.

Interested in Symbulate?

• Try it out! To install, just run
pip install symbulate

at a terminal. (You will need Python and the usual scientific
computing stack, e.g., Numpy and Scipy. If you don’t have
this, download Anaconda.)
• The project is open source. Check it out on Github:

http://www.github.com/dlsun/symbulate

• Look for our paper: “Symbulate: Simulation in the Language
of Probability”, Journal of Statistics Education (2019).

Thank you!
Kevin Ross (kjross@calpoly.edu)

	Motivation
	Symbulate Gallery
	Symbulate Mechanics
	Symbulate in the Classroom

