
Deep Learning Models at Scale
with Apache SparkTM

Joseph K. Bradley (speaker), Xiangrui Meng
May 31, 2019
ASA SDSS

1

About me

Joseph Bradley

• Software Engineer at Databricks
• Apache Spark committer & PMC member

TEAM

About Databricks

Started Spark project (now Apache Spark) at UC Berkeley in 2009

PRODUCT
Unified Analytics Platform

MISSION
Making Big Data Simple

Try for free today.
databricks.com

Apache Spark + AI

Runtime
Delta
Spark Core Engine

Big Data Processing
ETL + SQL +Streaming

Machine Learning
MLlib + SparkR

Apache Spark:
The First Unified Analytics Engine

5

and many more...

Internet of ThingsDigital Personalization

Disruptive innovations are affecting enterprises across the planet

Healthcare and Genomics Fraud Prevention

AI is re-shaping the world

6

Better AI needs more data

7

When AI goes distributed ...

Larger datasets
èMore need for distributed training
èMore open-source offerings: distributed TensorFlow,

Horovod, distributed MXNet

This is where Spark and AI meet.

8

Challenges

Two user stories

As a data scientist,

● I can build a pipeline that fetches training data from a
production data warehouse and fits a DL model at scale.

● I can apply my DL model to a distributed data stream
and augment the data stream with predicted labels.

10

Distributed training

data
warehouse

load fit model

Required: Read from
Databricks Delta, Parquet,
MySQL, Hive, etc.

Answer: Apache Spark

Required: distributed GPU
cluster for fast training

Answer: Horovod, Distributed
TensorFlow, etc.

11

Two separate data and AI clusters?

load using a
Spark cluster

fit on a
GPU
cluster

modelsave data

required: glue code

12

Streaming model inference

Kafka load predict model

required:
● save to stream sink
● GPU for fast inference

13

A hybrid Spark and AI cluster?

load using a
Spark cluster w/
GPUs

fit a model
distributedly
on the same
cluster

model

load using a
Spark cluster w/
GPUs

predict w/ GPUs
as a Spark task

model

14

Unfortunately, it doesn’t work out of the box.

Project Hydrogen

Big data for AI

There are many efforts from the Spark community to
integrate Spark with AI/ML frameworks:
● (Yahoo) CaffeOnSpark, TensorFlowOnSpark
● (Intel) BigDL
● (John Snow Labs) Spark-NLP
● (Databricks) TensorFrames, Deep Learning Pipelines,

spark-sklearn
● … 80+ ML/AI packages on spark-packages.org

Project Hydrogen to fill the major gaps

Barrier
Execution
Mode

Accelerator
Aware
Scheduling

Optimized
Data
Exchange

In this talk

Within Apache Spark:
● Current status of Project Hydrogen features
● Development of new features

From Databricks:
● Our use of Project Hydrogen features
● Lessons learned and best practices

Story #1:
Distributed training

load using a
Spark cluster
w/ GPUs

fit a model
on the same
cluster

model

Project Hydrogen

Barrier
Execution
Mode

Accelerator
Aware
Scheduling

Optimized
Data
Exchange

Different execution models

Task 1

Task 2

Task 3

Spark (MapReduce)
Tasks are independent of each other

Embarrassingly parallel & massively scalable

Distributed training
Complete coordination among tasks

Optimized for communication

Task 1

Task 2 Task 3

Barrier execution mode

Gang scheduling on top of MapReduce execution model
è A distributed DL job can run as a Spark job.

● Coordination: start all tasks together
● Context: provides info to coordinate across tasks
● Failure handling: cancel and restart all tasks in case of failure

JIRA: SPARK-24374 (Spark 2.4)

https://jira.apache.org/jira/browse/SPARK-24374

Barrier mode integration

Horovod (an LF AI hosted project)

Horovod is a distributed training framework for
TensorFlow, Keras, PyTorch, and MXNet.
● Little modification to single-node code
● High-performance I/O via MPI and NCCL

Developed at Uber, now an LF AI hosted project at Linux Foundation.

https://github.com/horovod/horovod
https://lfdl.io/
https://www.linuxfoundation.org/

Hydrogen integration with Horovod

HorovodRunner: in Databricks Runtime 5.0 ML
● Runs Horovod under barrier execution mode.
● Hides cluster setup, scripts, MPI command line from users.

def train_hvd():
hvd.init()
… # train using Horovod

HorovodRunner(np=2).run(train_hvd)

Implementation of HorovodRunner

● Pickle and broadcast the train() function.
● Launch a Spark job in barrier execution mode.
● In the first executor, use worker addresses to launch the

Horovod MPI job.
● Terminate Horovod if the Spark job got cancelled.

Collaboration on Horovod + Spark

Engineers at Uber and Databricks are improving this integration:
● Merge design and code development into horovod.spark.
● HorovodRunner uses horovod.spark implementation with

extra Databricks-specific features.
● Support barrier execution mode and GPU-aware scheduling.

Stay tuned for future announcements!

Project Hydrogen

Barrier
Execution
Mode

Optimized
Data
Exchange

Accelerator
Aware
Scheduling

Accelerator-aware scheduling

Accelerators (GPUs, FPGAs) are widely used for accelerating
specialized workloads like deep learning and signal processing.

Spark is currently unaware of GPUs & other accelerators.

JIRA: SPARK-24615 (ETA: Spark 3.0)

https://jira.apache.org/jira/browse/SPARK-24615

Consider a simple case where one task needs one GPU:

Why does Spark need GPU awareness?

Executor 0

GPU:0

GPU:1

Task 0

Task 1

Executor 1

GPU:0

GPU:1

Task 2

Task 3

Task 4 ?

Workarounds (a.k.a hacks)

Limit Spark task slots per node to 1.
○ The running task can safely claim all GPUs on the node.
○ It might lead to resource waste if the workload doesn’t need all GPUs.
○ User also needs to write multithreading code to maximize data I/O.

Let running tasks themselves to collaboratively decide which
GPUs to use, e.g., via shared locks.

User-facing API

User can retrieve assigned GPUs from task context (#24374)

context = TaskContext.get()
assigned_gpu = context.getResources()[“gpu”][0]

with tf.device(assigned_gpu):
training code ...

https://github.com/apache/spark/pull/24374

Cluster manager support

YARN

SPARK-27361

Kubernetes

SPARK-27362

Mesos

SPARK-27363

Standalone

SPARK-27361

https://issues.apache.org/jira/browse/SPARK-27361
https://issues.apache.org/jira/browse/SPARK-27362
https://issues.apache.org/jira/browse/SPARK-27363
https://issues.apache.org/jira/browse/SPARK-27361

Future features in discussion

● FPGAs and other accelerators
● Resource request at task level
● Fine-grained scheduling within one GPU
● Affinity and anti-affinity
● ...

Story #2:
Streaming model inference

load using a
Spark cluster
w/ GPUs

predict w/
GPUs as a
Spark task

model

Project Hydrogen

Barrier
Execution
Mode

Optimized
Data
Exchange

Accelerator
Aware
Scheduling

Optimized data exchange

None of the integrations are possible without exchanging data
between Spark and AI frameworks. And performance matters.

JIRA: SPARK-24579

https://jira.apache.org/jira/browse/SPARK-24579

Pandas User-Defined Function (UDF)
Pandas UDF was introduced
in Spark 2.3
• Pandas for vectorized

computation
• Apache Arrow for data

exchange

Pandas UDF for distributed inference

Pandas UDF makes it simple to apply a model to a data stream.

@pandas_udf(...)
def predict(features):
...

spark.readStream(...) \
.withColumn(‘prediction’, predict(col(‘features’)))

Support for complex return types

We improved scalar Pandas UDF to return StructTypes.
E.g., predicted labels and raw scores together

JIRA: SPARK-23836 (Spark 3.0)

@pandas_udf(...)
def predict(features):

...
return pd.DataFrame({'labels': labels, 'scores': scores})

https://issues.apache.org/jira/browse/SPARK-23836

Data pipelining

CPU GPU

t1 fetch batch #1

t2 process batch #1

t3 fetch batch #2

t4 process batch #2

t5 fetch batch #3

t6 process batch #3

CPU GPU

t1 fetch batch #1

t2 fetch batch #2 process batch #1

t3 fetch batch #3 process batch #2

t4 process batch #3

(pipelining)

Pandas UDF prefetch

Goal: improve throughput
Prefetch next Arrow record batch while executing the
Pandas UDF on the current batch.
● Up to 2x for I/O and compute balanced workloads
● Observed 1.5x in real workloads

Enabled by default on Databricks Runtime 5.2.
JIRA: SPARK-27569 (ETA: Spark 3.0)

https://jira.apache.org/jira/browse/SPARK-27569

Per-batch initialization overhead
Loading a model per batch introduces overhead.

New Pandas UDF interface: Load model once.
Then iterate over batches.

JIRA: SPARK-26412 (WIP)

@pandas_udf(...)
def predict(batches):
model = … # load model once
for batch in batches:
yield model.predict(batch)

https://jira.apache.org/jira/browse/SPARK-26412

Standardize on the Arrow format

Many accelerated computing libraries now support Arrow.
Proposal: Expose the Arrow format in a public interface.
● Simplify data exchange.
● Reduce data copy/conversion overhead.
● Allow pluggable vectorization code.

JIRA: SPARK-27396 (pending vote)

https://jira.apache.org/jira/browse/SPARK-27396

Project Hydrogen

Barrier
Execution
Mode

Accelerator
Aware
Scheduling

Optimized
Data
Exchange

Getting started

Deep Learning on Apache Spark
• Doc sources: docs.databricks.com,

github.com/horovod/horovod
• Topics: HorovodRunner, horovod.spark, Pandas UDFs

Project Hydrogen
• Apache Spark JIRA & dev mailing list
• spark.apache.org

47

http://docs.databricks.com/
https://github.com/horovod/horovod
http://spark.apache.org/

Acknowledgements

● Many ideas in Project Hydrogen are based on previous
community work: TensorFrames, BigDL, Apache Arrow,
Pandas UDF, Spark GPU support, MPI, etc.

● We would like to thank many Spark committers and
contributors who helped the project proposal, design, and
implementation.

Acknowledgements

● Xingbo Jiang
● Thomas Graves
● Andy Feng
● Alex Sergeev
● Shane Knapp
● Xiao Li
● Li Jin
● Bryan Cutler
● Takuya Ueshin
● Wenchen Fan
● Jason Lowe

● Hyukjin Kwon
● Madhukar Korupolu
● Robert Evans
● Yinan Li
● Felix Cheung
● Imran Rashid
● Saisai Shao
● Mark Hamstra
● Sean Owen
● Yu Jiang
● … and many more!

Thank You!
Questions?

