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introduction

BFF

▶ Many great minds contributed to foundations of statistics in
the past – Fisher, Neyman, Pierson, de Finetti, Lindley,
Savage, LeCam, Cox, Efron, Berger, Fraser, Reid, Dempster,
Dawid, …

▶ Area was not known for harmonious relationships and
respectful discourse

the “protracted battle” among leading statistics found-
ing fathers “has left statistics without a philosophy that
matches contemporary attitudes.” (Kass, 2011)

Can Bayesian, Fiducial and Frequentist
become Best Friends Forever?
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introduction Bird’s Eye View

Bird's Eye View of Statistical Methodology

▶ Common: givenX find adequate data generating mechanism
▶ Difference: math details, interpretation

▶ My subjective opinion: If the underlying optimization problem
is the same, the methods are the same.
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introduction Bird’s Eye View

Frequentist

▶ Modeling: collection of distributions P = {Pθ}θ∈×.
▶ Replication: parameter θ0 fixed, data x replicated

θ0

x0x∗ x∗ x∗ x∗x∗x∗

▶ Issues:
▶ Quality judged by averaging over unobserved data x∗

(SLLN + Cournot’s principle)
▶ Each problem requires its own solution
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introduction Bird’s Eye View

Bayesian

▶ Modeling: One joint distribution f(x|θ) · π(θ).
▶ Replication: data x0 fixed, parameter θ replicated

θ0θ∗ θ∗ θ∗ θ∗θ∗θ∗

x0

▶ Issues:
▶ Averaging over unused parameters θ∗ needs prior
▶ Unique solution using Bayes theorem (conditional probability)
▶ Axiomatic system for all of inference, subjective

interpretation (de Finetti, Savage).
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introduction Bird’s Eye View

Fiducial

▶ Modeling: Data generating equation: x = G(u, θ)

▶ Replication: data x & parameter θ linked through DGE,
auxiliary variable u replicated

▶ Issues
▶ Fix either x0 or θ0. Under symmetry “fiducial←→ frequentist”.
▶ Break in symmetry: some u∗ incompatible with observed x0.

Still useful, frequentist properties need to be established.
▶ Does not satisfy likelihood principle.

Philosophical interpretation subject to argument
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introduction Bird’s Eye View

Fiducial?

▶ Oxford English Dictionary
▶ adjective technical (of a point or line) used as a fixed basis of

comparison.
▶ Origin from Latin fiducia ‘trust, confidence’

▶ Merriam-Webster dictionary
1. taken as standard of reference a fiducial mark
2. founded on faith or trust
3. having the nature of a trust : fiduciary
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definition

Comparison to likelihood

▶ Density is the function f(x,θ), where θ is fixed and x is
variable.

▶ Likelihood is the function f(x,θ), where θ is variable and x is
fixed.
▶ Likelihood as a distribution?

8



definition Formal Defintion

General Definition

▶ Data generating equationX = G(U ,θ).
▶ e.g. Xi = θ + σUi

▶ A Generalized Fiducial Distribution defined as a limit of

θ∗ = arg min
θ

∥x−G(U⋆,θ)∥ (1)

whereU⋆ is conditioned on

{U⋆ : ∥x−G(U⋆,θ∗)∥ ≤ ε}

with θ from (1), ε ↓ 0.
▶ Similar to ABC; generating from prior replaced bymin.
▶ Computations?
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definition Formal Defintion

Explicit limit (1)

▶ AssumeX ∈ Rn is continuous; parameter θ ∈ Rp

▶ The limit in (1) has density (H, Iyer, Lai & Lee, 2016)

r(θ|x) = fX(x|θ)J(x,θ)∫
θ fX(x|θ′)J(x,θ′) dθ′ ,

where J(x,θ) = D
(
∇θG(u,θ)|u=G−1(x,θ)

)
▶ n = p givesD(A) = | detA|

▶ ∥· ∥2 givesD(A) = (detA⊤A)1/2

▶ ∥· ∥∞ givesD(A) =
∑

i=(i1,...,ip)

|det(A)i|

▶ ∥· ∥1 givesD(A) =
∑

i=(i1,...,ip)

wi |det(A)i|

10
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definition Formal Defintion

Example -- Uniform(θ, θ2)

▶ Xi i.i.d. U(θ, θ2), θ > 1

▶ Data generating equationXi = θ + (θ2 − θ)Ui, Ui ∼ U(0, 1).

▶ d
dθ [θ + (θ2 − θ)Ui] = 1 + (2θ − 1)Ui, with Ui =

Xi−θ
θ2−θ

.
▶ Jacobian

J(x, θ) = D


1 + (2θ−1)(x1−θ)

θ2−θ
...

1 + (2θ−1)(xn−θ)
θ2−θ

 =
1

θ2 − θ
D

x1(2θ − 1)− θ2

...
xn(2θ − 1)− θ2


▶ = n x̄(2θ−1)−θ2

θ2−θ for L∞.
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definition Formal Defintion

Example -- Uniform(θ, θ2)

▶ Reference prior (Berger, Bernardo & Sun, 2009)

π(θ) = e
ψ( 2θ

2θ−1)(2θ−1)
θ2−θ

.

▶ reference prior vs fiducial Jacobian

▶ In simulations fiducial was marginally better than reference
prior which was much better than flat prior.
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definition Theoretical Results

Remarks

▶ GFD is always proper

▶ GFD is invariant to re-parametrizations (same as Jeffreys)

▶ GFD is not invariant to smooth transformation of the data if
n > p
▶ GFD does not satisfy likelihood principle.

▶ Bersntein-von Mises theorem proved in many setting

13
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applications Deep Neural Network

Deep Neural Network (DNN)

▶ Idea: Use deep neural network in fiducial computations

▶ Universal approximation theorem: A large enough network
with a linear output layer and at least one hidden layer can
approximate any Borel measurable function.

▶ Idea: Use Auto-encoder to approximate fiducial inverse

14
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applications Deep Neural Network

Challenges

▶ A large number of choices
▶ DNN architecture (fully connected, convolution, auto-encoder,

adversarial + combination …)

▶ Number of layers, number of nodes per layers, activation
function (RELU, sigmoid, softmax,…)

▶ Optimization algorithm (stochastic gradient descent, Adaptive
Subgradient Methods, ADAM (Kingma & Ba 2014), …)

▶ Host of other sensitivities (data generation, stopping rules,
anti-over fitting measures,…)
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▶ Host of other sensitivities (data generation, stopping rules,

anti-over fitting measures,…)
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applications Deep Neural Network

Fiducial Auto Encoder

▶ Encoder: Fully connected layers,
▶ Decoder: DGEX = G(Z,µ)

▶ Loss function: L = w1∥x− x̂∥2 + w2∥µ− µ̂∥2

▶ Training data: Generated from DGE with different values of
µ,Z .

▶ Trained encoder used for inference
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applications Deep Neural Network

Preliminary Result - Training

▶ Model:
Xi = µ+ µq/2Zi

▶ Network: 11 layers
fully connected

▶ ReLU activation
▶ Data: Training

80,000, Validation
20,000

▶ Optimization: ADAM

17



applications Deep Neural Network

Preliminary Results - Inference

▶ Use encoder
repeatedly

▶ Inputs: Observed
X , multiple
independentZ∗

▶ Output:
Approximate
fiducial sample µ∗

▶ Issues:
conservative,
biased
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applications Deep Neural Network

Preliminary Results - Conditioning

▶ ConditionZ∗ on
∥X∗ −X∥ ≤ ϵ.

▶ Big improvement
in coverage and
length

▶ Issue: too
inefficient

▶ Future work: Use
GAN to generate
conditionalZ∗.
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conclusions

I have a dream …

▶ One famous statistician said (I paraphrase)
“I useBayes because there is no need to prove asymptotic
theorem; it is correct.”

▶ I have a dream that people will one day soon gain similar
trust in fiducial inspired approaches.

Thank you!
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