Self-consistency as a method to develop computationally effective algorithms for high-dimensional models

Alex Tsodikov

Department of Biostatistics School of Public Health

University of Michigan

A collection of thoughts and examples

- Complex nonlinear models with high-dimensional parameters
 - Mechanistic models formulated as average over unobserved structural complete-data model
 - Statistical models that are difficult to fit because of dimensionality
- Algorithms
 - Algorithms based on self-consistency
 - EM algorithms working through missing data imputation
 - Generalizations that are not based on missing data (MM, etc.)

High-dimensional models

- Functional parameters whose dimension is proportional to sample size (non-parametrically specified distributional characteristics)
- Big data sets (cancer registry data, large population trials)
- Survival analysis, categorical data analysis, multivariate response models

M and Z-estimation algorithms

- Target function (loglikelihood ℓ)
- Model parameters w •
- Estimating equation \bullet $\varphi(w,w)=0$
- Estimation algorithm
 - Nonlinear programming ightarrow

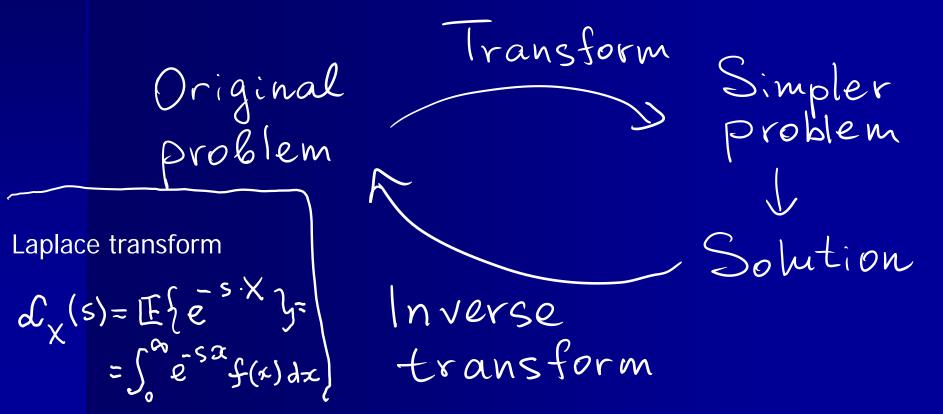
$$\mathcal{G}(\omega^{(K+1)}, \omega^{(K)}) = 0$$
$$\omega^{(K+1)} = \Psi(\omega^{(K)})$$

- Convergence \bullet Fixed point $\omega^{(\kappa+1)} \rightarrow \omega^{(\kappa)} \rightarrow \omega$

 - Contraction mapping $|| \psi || < 1$

Transforms

Are used to simplify solutions to difficult problems



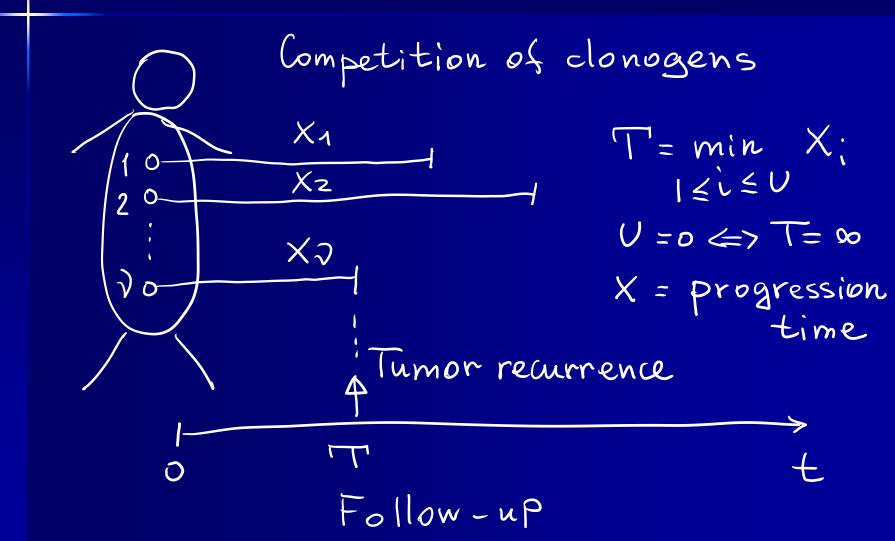
Reversed approach

Recognize original problem as a transform of a simpler one

w, U Iransform Simpler problem Original E problem F - -> Solution Self-consistency

The EM framework: solve (1) by solving (2) $l(\omega) = log L(\omega)$ MLE problem mode max l(w) (1)parameters $L(\omega) = \mathbb{E} \left\{ L_{o}(\omega, t) \right\}$ Transform $\max_{\omega} \ell_{o}(\omega, U)$ missing data (Z)lo=logho

A Simple Model of Tumor Recurrence



Distribution of T when U is allowed to vary?

Survival function G(+) = Pr{T>+} F(t) = Pr{ X>t4 X = i.i.d. $G(t|v) = [F(t)]^U$ $G(t) = \mathbb{E}\left\{G(t|U)\right\} = e^{-\Theta\left[1 - F(t)\right]}$ $\mathcal{U}_{\nu} Poisson(\Theta) - 1$

A cure model

Covariates affect progression time

 G(t) = e
 G(t) = e
 G(t) = e
 G(t) = e
 Sested Cox model for X

 Formulation without missing data

 For the Cure cumulative hazard must be

bounded => model as const*CDF

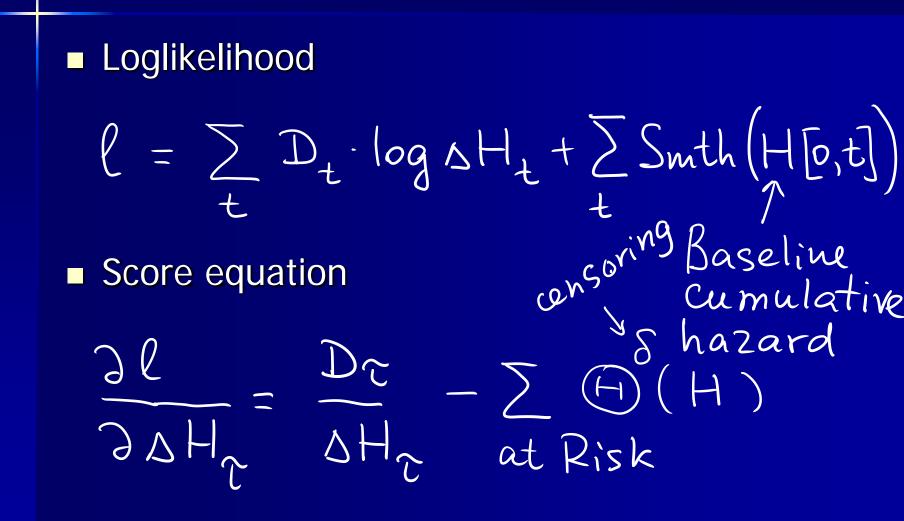
Univariate Frailty Models

 $G(t|z) = \mathbb{E}\left\{F(t)|z\right\} = \mathcal{N}(F) = \mathcal{L}(H)$ $V \sim P(du | \theta(z), \eta(z), \frac{2}{2})$ N is probability generating function L is Laplace transform of U H is baseline cumulative hazard $H = -\log F$

Self-consistency algorithm

bounded => model as const*CDF

Univariate survival MLE

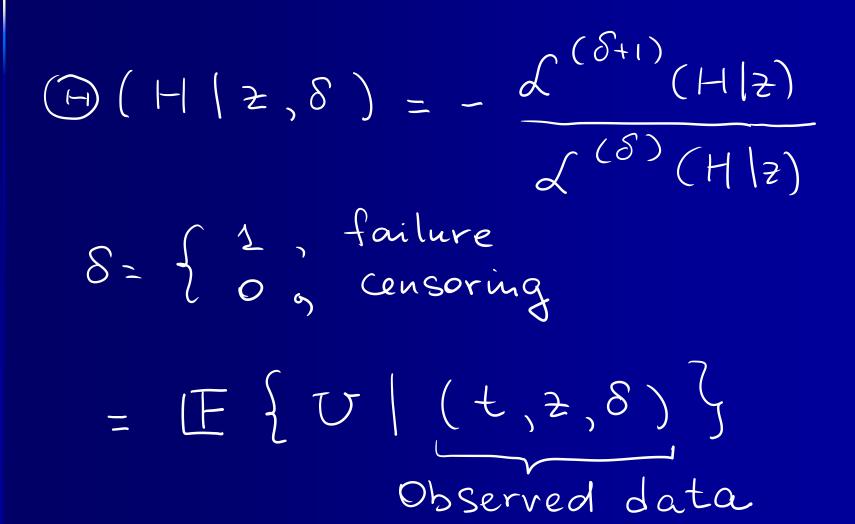


in mp of annulative Jump of annulative Jump of at man (m+1) Self-consistency algorithm, univariate survival humber of failures @t D SFIZE (HIZ, S) (ARisk S-censoring index = {1_failure 0_cens

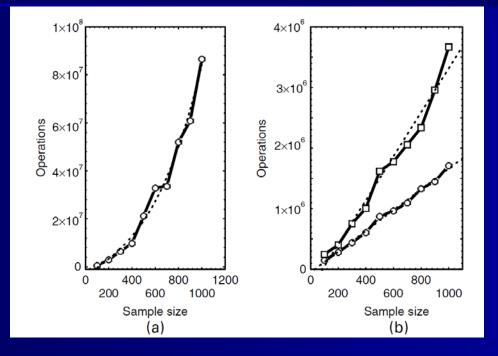
Univariate frailty model

Laplace transform $\mathcal{L}(S|Z)$ UZO, r. V. P(dy|z)S.f. $G(t|z) = \mathcal{L}(H|z)$ H(t) = cumulative The model hazard $G(t_{12}) = E \left\{ e^{-\nabla \cdot H(t)} \right\}$ mode

Imputation operator



Performance of the algorithm



Full MLESelf-consistencyNonlinear programmingalgorithm

nltm package for R implements the algorithm for a variety of survival models, tried on registry data with hundreds of thousands patients

PHPH Model: Prostate Cancer Dose Escalation

Survival model for fractionated radiotherapy

2753

Table 1. Estimates of the probability of cure and 95% likelihood ratio confidence intervals (in parenthesis) as estimated using stratified parametric analysis (SPA) based on (6) and multivariate semiparametric regression analysis (MSRA) based on (8).

Prognostic category		Dose group			
	Analysis	1	2	3	4
Favourable	SPA	0.80 (0.59, 0.93)	0.74 (0.61, 0.85)	0.87 (0.79, 0.94)	1.00 ^a
	MSRA	0.78 (0.55, 0.95)	0.79 (0.68, 0.92)	0.88 (0.80, 0.97)	1.00 ^a
Intermediate	SPA	0.25 (0.12, 0.42)	0.51 (0.41, 0.61)	0.58 (0.48, 0.68)	0.74 (0.61, 0.85)
	MSRA	0.37 (0.21, 0.55)	0.53 (0.41, 0.64)	0.67 (0.58, 0.78)	0.79 (0.68, 0.87)
Unfavourable	SPA	0.00 (0.00, 0.02)	0.27 (0.16, 0.34)	0.33 (0.26, 0.42)	0.64 (0.53, 0.75)
	MSRA	0.02 (0.00, 0.11)	0.35 (0.25, 0.45)	0.46 (0.38, 0.56)	0.60 (0.45, 0.74)

^aThe estimate of the probability of cure is set to be equal to 1 because there are no failures observed in this group of patients.

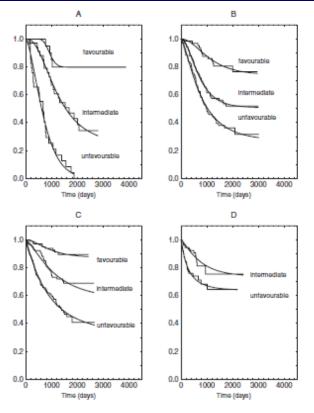


Figure 1. Survivor functions for relapse-free survival in different dose groups (A: group 1, B: group 2, C: group 3, D: group 4) of patients with clinically localized prostate cancer. Stepwise curve—Kaplan-Meier estimate, solid line—maximum likelihood parametric estimate based on formula (6).

Example: multinomial model

 Distribution of the response conditional on covariates

$$P_{k} = P_{k} \{ \tilde{Z} = k \} = \frac{\Theta_{k}}{\sum_{j=1}^{N} \Theta_{j}}$$

$$\Theta_{k} = e^{\beta_{k} \times \Theta_{k}} = \frac{\Theta_{k}}{\sum_{j=1}^{N} \Theta_{j}}$$
Restriction
$$\Theta_{k} = \delta_{k} = \delta_{k} = 0$$

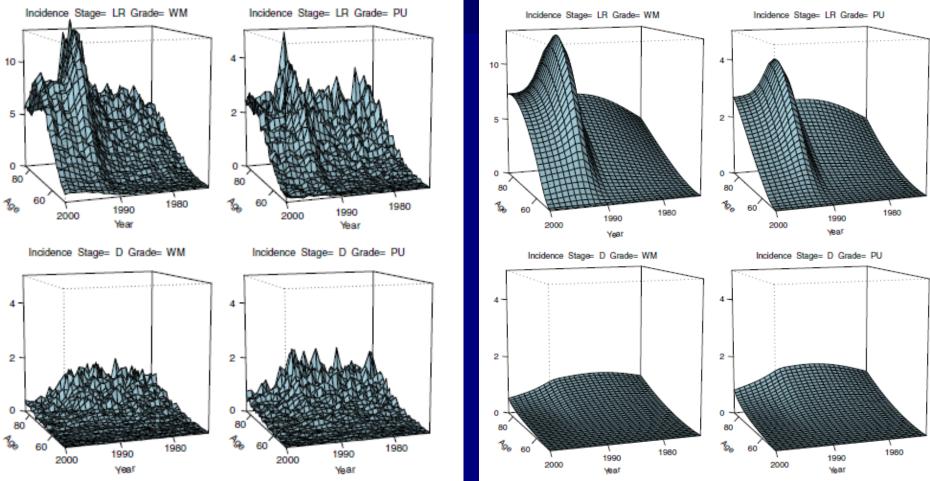
Artificial Mixture Transform

Write the model as a quasi-mixture
P_k = Ø_k · E { e U ≥ NO· J=2 0 J = Ø_k
Is not really a mixture since is not a probability

Complete-data "likelihood" $\sum_{i} \sum_{i} \sum_{i} \frac{events''}{events''} = \int_{i} \frac{f_{a} k e missing data}{iperson - yrs''}$ Lid = {1, ith subject response factorize i = Subject d = Category of response

Imputation: E-Step

Prostate Cancer Incidence SEER registry data (2-500,000 cancer cases, 11-15% of US males)



Chefo, S. and **Tsodikov**, **A**. (2009). Stage-specific cancer incidence: an artificially mixed multinomial logit model. *Statistics in Medicine*, 28/15, 2054-2076

Further examples and applications

- Multivariate (clustered) survival data
 Tsodikov, A., Liu, L., and Tseng, C. (2019) Likelihood Transformations and
 Artificial Mixtures, In Statistical Modeling for Biological Systems,
 Almudevar A, Oakes D, Hall J. Eds. Springer, in press.
- Missing data as a stochastic process, dynamic frailty Rice, J., Tsodikov, A. (2017) Semiparametric Time-to-Event Modeling in the Presence of a Latent Progression Event, *Biometrics*, 73/2, 463-472.

Multivariate survival Shared frailty model Archimedian Copula models

- Transform U > 0, r. v., Shared frailty $\int (S|z)$
- The model

$$G(t_{1}, \dots, t_{n}) = \mathcal{J}(H_{1} + \dots + H_{n}|_{z})$$
$$= \left[E \left\{ \begin{array}{c} -\nabla & \sum_{i=1}^{n} H_{i} \\ e & i = 1 \end{array} \right\} \right]$$
Independent PH models

Imputation operator

$$(\widehat{H}(H_{*}|z,n)) = - \frac{\int_{1}^{1} (H_{*}|z)}{\int_{1}^{1} (H_{*}|z)}$$

$$S_{*} = \sum_{i=1}^{n} S_{i}, \quad S_{i} = \begin{cases} 1, \text{ failure} \\ 0, \text{ censoring} \end{cases}$$

$$H_{*} = H_{1} + \dots + H_{n}$$

Multivariate survival M-Step

Symmetric case: Shared cumulative hazard $H_1 = H(t_1), \dots, H_n = H(t_n)$ Dm $\Delta (-) =$ $\sum_{\substack{f \in R \\ g}} (H_{*}^{S} | Z, \delta_{*}^{S})$ S \in R_{m} f = 1f =Set of clusters at risk $H_{*} = \sum_{i} H(t_{i})$ times in cluster S

Archimedian Copula Models

narginal s.f.

Shared frailty model induces an Archimedian Copula $G(t_{1}, t_{n}) = G(H_{*}), H_{*} = \Sigma H;$ $M(t_{1}) = G(0, t_{n}, t_{n}) = J(H_{i})$ $H_{i} = J^{-1}(M_{i})$

$$G = \mathcal{L}\left(\mathcal{L}^{-1}(M_{1}) + \ldots + \mathcal{L}^{-1}(M_{n})\right)$$

Shared frailty model vs. Archimedian Copula models

- Frailty models is a subset of Copula models
- Copula generator does not have to be a Laplace transform

Is a Laplace transform iff Completely monotonic

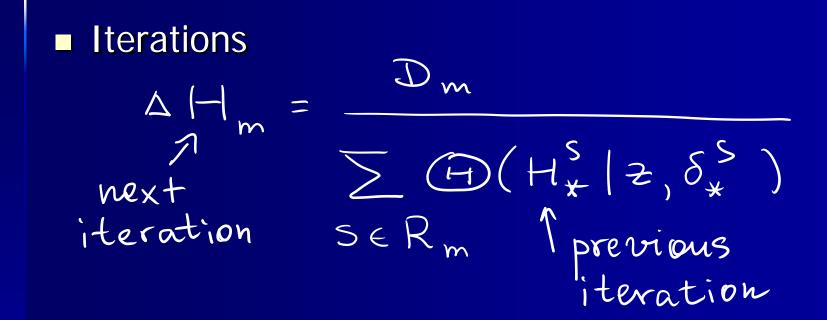
(-1) x (n) > 0 $n = 0, 1, \dots, \infty$

 Archimedian Copula model serving clusters of any size is a shared frailty model

Characterization of positive dependence

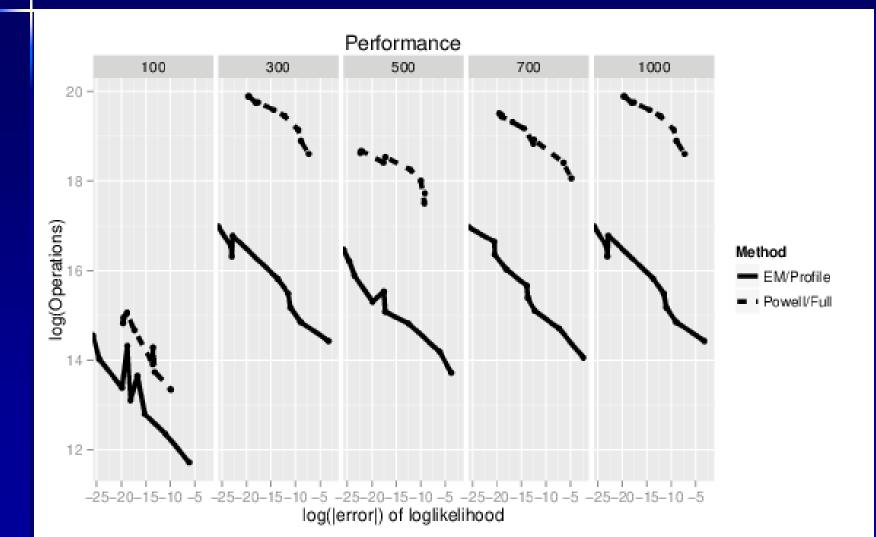
Multivariate totally positive Copulas of order
2, MTP2
(-1)ⁿ $\mathcal{L}^{(n)}$ is log-convex
i.e.
(+) (+| | n) = - $\frac{\mathcal{L}^{(n+1)}(+)}{\mathcal{L}^{(n)}(+)}$ is decreasing

Monotonic convergence of the algorithm



If Archimedian Copula is MTP2, each iteration improves the likelihood

Performance of the algorithm for clustered survival data



Latent progression event

The model

Latent event model $d\Lambda_0(t|\mathbf{z}) = \lim_{h \to 0} \frac{P(T_0 \in [t,t+h)|T_0 \ge t,\mathbf{z})}{h} = \mu \ dH(t)$

Model for observed event given latent $d\Lambda_1(t|T_0, \mathbf{z}) = \lim_{h \to 0} \frac{P(T_1 \in [t, t+h)|T_1 \ge t, T_0, \mathbf{z})}{h} = (t > T_0)\eta \ dH(t).$

The self-consistency algorithm

$$0 = \sum_{i=1}^{n} \frac{dN_i(s)}{dH_0^{(k+1)}(s)} - \Psi_i^{(k)}(s) + \left[\frac{dH_0^{(k)}(s)}{dH_0^{(k+1)}(s)} - 1\right] \theta_i^{(k)}(s),$$

Observed failures Imputed latent failures
$$dH^{(k+1)}(s) = \frac{\sum_{i=1}^{n} dN_i(s) + \left[\sum_{i=1}^{n} \theta_i^{(k)}(s)\right] dH^{(k)}(s)}{\sum_{i=1}^{n} \left[\Psi_i^{(k)}(s) + \theta_i^{(k)}(s)\right]}.$$

$$\Psi_{i}^{(k)}(s) = Y_{i}(s) \frac{\eta^{1-\Delta_{i}} \mu e^{-\mu H^{(k)}(T_{i}^{*})} - \eta \mu^{1-\Delta_{i}} e^{-\eta H^{(k)}(T_{i}^{*})}}{\eta^{1-\Delta_{i}} e^{-\mu H^{(k)}(T_{i}^{*})} - \mu^{1-\Delta_{i}} e^{-\eta H^{(k)}(T_{i}^{*})}}$$

$$\begin{aligned} \theta_i^{(k)}(s) \\ &= (\eta - \mu)\mu^{1 - \Delta_i} \frac{Y_i(s)e^{-\eta H^{(k)}(T_i^*) + (\eta - \mu)H^{(k)}(s)} + (1 - \Delta_i)[1 - Y_i(s)]e^{-\mu H^{(k)}(s)}}{\eta^{1 - \Delta_i}e^{-\mu H^{(k)}(T_i^*)} - \mu^{1 - \Delta_i}e^{-\eta H^{(k)}(T_i^*)}} \end{aligned}$$