- ATS = Average-Transform-Smooth
  - Average observations by taking means
  - Transform the averages
  - Smooth the transformed averages by a nonparametric or parametric modeling

This has elements of methods that go back many decades in statistics

1

Variance stabilizing transformations when the variance is a function of the mean

Example: Taking the square root of Poisson observations with changing means makes the variance approximately constant

# **ATS Estimation & Diagnostics for Nongaussian Models**

But we want to Gaussianize the data as well, also to make analysis simpler, especially model diagnostics

Averaging the data helps this as well as transformation

Work on fundamentals: can we make things Gaussian

Cleveland, W. S. and Mallows, C. L. and McRae J. E. **ATS Methods: Nonparametric Regression for Nongaussian Data**  *Journal of the American Statistical Association, Volume = 88, 821-835, 1993*  Example: Non-parametric estimation of the power spectrum from the periodogram ordinates  $I(f_k)$  at the Fourier frequencies  $f_k$ 

Ordinates divided by the power spectrum,  $S(f_k)$ , are close to independent chi-squared with 2 df

Take means of periodogram ordinates at successive blocks of frequencies of of size  $\boldsymbol{b}$ 

Take logs which leaves us with  $\log(\overline{I}(j)) - \log(S\overline{f}_j)$ , nicely additive

What is the smallest value of b that will do a reasonable job of gaussianizing the log block means

The answer is b = 4, which is a very exciting result

Typically, in practice, makes the bias of averaging tolerable

We can treat estimation as a gaussian regression and, say, smooth with loess, and do regression diagnostics

The model is  $\log(\bar{I}(j)) = \log(S\bar{f}_j) + \epsilon_j$  where errors  $\epsilon_j$  are i.i.d. gaussian

We can use the full spectrum of regression diagnostics for nonparametric estimation of the power spectrum

The residuals are  $\hat{\epsilon}_j = \log(\bar{I}(j)) - smooth(\log(\bar{I}(j)))$ 

# The ed Method for Nonparametric Univariate Density Estimation <sup>5</sup> with Diagnostic Checking

- (e)stimation and (d)iagnostics
- Collaboration with Ryan Hafen
- Density estimation goes back to the 50's
- Mostly kernel density estimation
- A seminal paper by Murray Rosenblatt in 1956
- David Scott has made major contributions to multivariate density estimation
- But, we need much more powerful methods of diagnostic checking to see if the density patterns are faithfully represented

Enables taking a model building approach

As with power spectrum estimation, turns nonparametric density estimation into a gaussian regression analysis

And this enables the power of gaussian regression diagnostics

## Normalized British Income Data (7201 observations)



# **Order Statistics and Their Gaps**

 $x_j$  normalized pounds sterling (nps) for j = 1 to m=7162, ordered from smallest to largest

Order statistic  $\kappa$ -gaps:

For  $\kappa = 10$ :

 $g_{1}^{(\kappa)} = x_{\kappa+1} - x_{1} \qquad g_{1}^{(10)} = x_{11} - x_{1}$   $g_{2}^{(\kappa)} = x_{2\kappa+1} - x_{\kappa+1} \qquad g_{2}^{(10)} = x_{21} - x_{11}$   $g_{3}^{(\kappa)} = x_{3\kappa+1} - x_{2\kappa+1} \qquad g_{3}^{(10)} = x_{31} - x_{21}$   $\vdots$ 

Gaps have units nps

Number of observation in each interval is  $\kappa$ 

#### **Balloon Densities**

Gaps: 
$$g_i^{(\kappa)} = x_{i\kappa+1} - x_{(i-1)\kappa+1}, \quad i = 1, 2, \dots, n$$

$$b_i^{(\kappa)} = \frac{\kappa/m}{g_i^{(\kappa)}} \frac{\text{fraction of observations}}{\text{nps}}$$

 $g_i^{(\kappa)}$  is positioned at the midpoint of the gap interval  $[x_{(i-1)\kappa+1}, x_{i\kappa+1}]$ 

$$x_i^{(\kappa)} = \frac{x_{i\kappa+1} + x_{(i-1)\kappa+1}}{2} \quad \text{nps}$$

Now  $\kappa$  is fixed and we think of  $g_i^{(\kappa)}$  as a random variable

$$y_i^{(\kappa)} = \log(b_i^{(\kappa)}), i = 1, \dots, n$$

Distributional Properties: The "Theory"

"Approximately" independent and distributed like a constant plus the log of a chi-squared distribution with  $2\kappa$  degrees of freedom

$$E(y_i^{(\kappa)}) = \log f(x_i^{(\kappa)}) + \log \kappa - \psi_0(\kappa)$$
$$Var(y_i^{(\kappa)}) = \psi_1(\kappa)$$

 $\psi_0$  = digamma function  $\psi_1$  = trigamma function

# **Log Balloon Densities**

Start with the log balloon densities as "the raw data"

Two considerations in the choice of  $\kappa$ 

(1) small enough that there is as little distortion of the density as possible by the averaging that occurs

(2) large enough that  $y_i^{(\kappa)}$  is approximately normal

- $\kappa=10$  is quite good and  $\kappa=20$  nearly perfect (in theory)
- we can give this up and even take  $\kappa=1$  but next steps are more complicated

#### Log Balloon Densities vs. Gap Midpoints $\kappa = 10$



## <u>Smooth</u>

Smooth  $y_i^{(\kappa)}$  as a function of  $x_i^{(\kappa)}$  using loess

Fit polynomials locally of degree  $\delta$ 

Bandwidth parameter:  $0 < \alpha \leq 1$ 

Fit at x uses the  $[\alpha n]$  closest points to x, the neighborhood of x

## **Smooth Log Balloon Densities Using Loess**



- $\kappa: \operatorname{gap} \operatorname{length}$
- $\alpha : {\rm bandwidth}$
- $\delta :$  degree of polynomial in local fitting
- Use a model selection criterion like  $C_p$  or AIC to help chose values

#### Fitted Values vs. Income



#### **Residuals vs. Income**

Density



British Income

# **Model Selection for British Incomes**

From Cp plot, plots of residuals, and plots of fits

Gap size:  $\kappa = 10$ 

- Polynomial degree:  $\delta = 2$
- Bandwidth parameter:  $\alpha = 0.16$

Equivalent degrees of freedom:  $\nu = 19$ 

# ed Log Density Estimate for Income: Fit vs. Income



#### ed Log Density Estimate for Income: Residuals vs. Income



## ed Log Density Estimate for Income: Absolute Residuals vs. Income



# **Normal Quantile Plot of Residuals**



## ed Log Density Estimate for Income: 99% Pointwise Confidence<sup>23</sup> Intervals

