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Motivation

I This study is motivated by the analysis of Dynamic Contrast Enhanced
(DCE) imaging data, E.g MRI,CT scan images

I DCE imaging provides a non-invasive measure of tumor angiogenesis
and cancer detection and characterization, monitoring.

I Used in various medical assessments such as brain flows, strokes or
cancer angiogenesis
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Motivation

I The particles of the contrast agent entering a tissue voxel x satisfies the
following equation.

I

Y (t , x) =

∫ t−δ

0
g(t − z)β(x)(1− F (z, x))dz + εξ(t , x) (1)

I The errors ξ(t , x) are independent for different t and x = (x1, x2),
g(t) = AIF(t), a positive coefficient β(x) is related to a fraction of the
contrast agent entering the voxel x and δ is the time delay that can be
easily estimated from data. The function of interest is
f (z, x) = β(x)(1− F (z, x)).
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Motivation

I The DCE imaging experiments can be described by a collection of
Laplace convolution equations based on noisy observations, one
equation per unit volume (voxel)

I Y (t , x) =
∫ t−δ

0 g(t − z)β(x)(1− F (z, x))dz + εξ(t , x)
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Motivation

I Y (t , x) =
∫ t−δ

0 g(t − z)β(x)(1− F (z, x))dz + εξ(t , x)

I At Present due to high level of noise in the left hand side of above
equation, the curves for each voxel x are roughly clustered and
averaged

I For each of the clusters, the problem appears as location-independent
version

I Analysis is done for the secondary data
I It is impossible to accurately assess the clustering errors,the results are

unreliable in estimation errors

udara |



6

Our Method

I Our objective is solve the functional Laplace deconvolution problem
directly.

I We assume that for each voxel "x",function f (z, x) is a smooth in t
moreover for each t it is piecewise smooth.

I We assume that the unknown function belongs to an anisotropic
Laguerre-Sobolev space and recover it using a combination of wavelet
and Laguerre functions expansion.

I After time measurement are appropriately shifted, use δ = 0
I Y (t , x) = q(t , x) + εξ(t , x) with q(t , x) =

∫ t
0 g(t − z)f (z, x)dz.

udara |



7

Estimation Algorithm

I

Y (t , x) = q(t , x) + εξ(t , x) with q(t , x) =

∫ t

0
g(t − z)f (z, x)dz. (2)

where x = (x1, x2), (t , x1, x2) ∈ U = [0,∞)× [0, 1]× [0, 1] and
ξ(z, x1, x2) is the three-dimensional Gaussian white noise such that

Cov (ξ(z1, x11, x12), ξ(z2, x21, x22)) = I(z1 = z2) I(x11 = x21) I(x12 = x22).

I Choose finitely supported periodized r0-regular wavelet basis (e.g.,
Daubechies) ψj,k (x). On [0, 1], form a product wavelet basis
Ψω(x) = ψj1,k1 (x1)ψj2,k2 (x2) on [0, 1]× [0, 1] where ω ∈ Ω with

I Ω =
{
ω = (j1, k1; j2, k2) : j1, j2 = 0, · · · ,∞; k1 = 0, · · · , 2j1−1, k2 = 0, · · · , 2j2−1

}
.
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Estimation Algorithm

I Obtain functional wavelet coefficients of f (t , x), q(t , x), Y (t , x) and
ξ(t , x) by, respectively, fω(t), qω(t), Yω(t) and ξω(t). Then, for any
t ∈ [0,∞)

I Yω(t) = qω(t) + εξω(t) with qω(t) =
∫ t

0 g(t − s)fω(s)ds
I The function f (t , x) can be written as

f (t , x) =
∑
ω∈Ω fω(s)Ψω(x), x = (x1, x2), ω = (j1, j2, k1, k2)
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Estimation Algorithm

I Consider the orthonormal basis ϕl (t) l = 0, 1, 2, . . . , that consists of a
system of Laguerre functions:
ϕl (t) = e−t/2Ll (t), l = 0, 1, 2, . . . ,
where Lk (t) are Laguerre polynomials Lk (t) =

∑k
j=0(−1)j(k

j

) t j

j! , t ≥ 0.
I Expand the wavelet coefficients fω(·), Yω(·), qω(·) and kernal g(·) over

the Laguerre basis, and obtained the coefficients θl;ω for fω(·), Yl;ω for
Yω(·), ql;ω for qω(·) and gl for g(·), l = 1, . . . ,∞

I Plugging these expansions into formula (2), obtain the following equation∑∞
l=0 ql;ω ϕl (t) =

∑∞
l=0

∑∞
k=0 θl;ω gk

∫ t
0 ϕk (t − s)ϕl (s)ds.
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Estimation Algorithm

I Use formula∫ t

0
φk (x)φj (t − x)dx = e−t/2

∫ t

0
Lk (x)Lj (t − x)dx = φk+j (t)− φk+j+1(t).

I Rewrite the equation above

∞∑
k=0

qk ;ω ϕk (t) =
∞∑

k=0

[
θk ;ωg0 +

k−1∑
l=0

(gk−l − gk−l−1)fl;ω

]
ϕk (t).

I Equating coefficients for each basis function, obtain an infinite triangular
system of linear equations.
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Estimation Algorithm

I Cut Laguerre expansions to M coefficients
I Obtain the following expansions for f and q:

fM (t , x) =
∑
ω∈Ω

M−1∑
l=0

θl;ωϕl (t)Ψω(x), qM (t , x) =
∑
ω∈Ω

M−1∑
l=0

ql;ωϕl (t)Ψω(x).

I We need to estimate coefficients θl;ω and we need to decide which of
the estimated coefficients to "keep" or "kill"
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Estimation Algorithm

I Let θ(M)
ω , g(M) and q(M)

ω be M-dimensional vectors with elements θl;ω , gl

and ql;ω , l = 0, 1, . . . ,M − 1, respectively.
I Then, for any M and any ω ∈ Ω, one has q(M)

ω = G(M)θ
(M)
ω where G(M) is

the lower triangular Toeplitz matrix with elements G(M)
i,j , 0 ≤ i, j ≤ M − 1

I G(M)
i,j =


g0, if i = j,
(g(i−j) − g(i−j−1)), if j < i,
0, if j > i.
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Estimation Algorithm

I We estimate coefficients ql;ω by
q̂l;ω =

∫∞
0 Yω(t)ϕl (t) dt , l = 0, 2, . . . ,

I Obtain an estimator θ̂(M)
ω of vector θ(M)

ω of the form θ̂
(M)
ω = (G(M))−1q̂(M)

ω .

I Finally, construct a hard thresholding estimator for the function f (t , x) as
f̂ (t , x) =

∑M−1
l=0

∑
ω∈Ω(J1,J2) θ̂l;ω I

(
|θ̂l;ω | > λl,ε

)
ϕl (t) Ψω(x)
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Estimation Algorithm

Denote by Ω(J1, J2) a truncation of a set Ω

Ω(J1, J2) =
{
ω = (j1, k1; j2, k2) : 0 ≤ ji ≤ Ji − 1, ki = 0, · · · ,2ji−1; i = 1,2

}
.

We choose J1, J2, M and λl,ε such that

2J1 = 2J2 = A2ε−2, M = max{m ≥ 1 : ||(G(m))−1|| ≤ ε−2},

and thresholds λl,ε of the forms

λl,ε = 2ε
√

2 ν log(ε−1) l−1||(G(l))−1||,

where ν is a large enough constant (ν = 8)
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Estimation error Assumption

I In order to evaluate the precision of the estimator f̂ (t , x), we need some
assumptions on the function g.

I Let r ≥ 1 be such that

d jg(t)
dt j

∣∣∣∣
t=0

=

{
0, if j = 0, ..., r − 2,
Br 6= 0, if j = r − 1,

where g(0) = B1 6= 0 for r = 1.
I We assume that function g(x) and its Laplace transform

G(s) =
∫∞

0 e−sx g(x)dx satisfy the following conditions:
I Assumption A1. g ∈ L1[0,∞) is r times differentiable with

g(r) ∈ L1[0,∞).
I Assumption A2. Laplace transform G(s) of g has no zeros with

non-negative real parts except for zeros of the form s =∞+ ib.
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Degree of ill-posedness

Lemma
(Lemma 4, Comte et al. (2017)), Lemma 5.4, Vareschi (2015).
Let conditions A1 and A2 hold. Denote the elements of the last row of matrix
(G(m))−1 by υj , j = 1, · · · ,m. Then, there exist absolute positive constants
CG1, CG2, Cυ1 and Cυ2 independent of m such that

CG1m2r ≤ ||(G(m))−1||2 ≤ ||(G(m))−1||2F ≤ CG2m2r ,

Cv1 m2r−1 ≤
m∑

j=1

υ2
j ≤ Cυ2m2r−1.

I The lemma shows that the degree of ill-posedness is r , the eigenvalues
of the inverse matrix (G(m))−1 grow as mr .

I We do not know r and are not planning to use it
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Laguerre-Sobolev ball

I We assume that the unknown function f belongs to the generalized
three-dimensional Laguerre-Sobolev ball of radius A, characterized by
its wavelet-Laguerre coefficients θl;ω = θl;j1,j2,k1,k2 as follows:

Bs1,s2,s3
γ,β (A) =

f :
∞∑
l=0

∞∑
j1=0

∞∑
j2=0

22js1+2j′s2 (l ∨ 1)2s3 e2γ lβ
2j1−1∑
k1=0

2j2−1∑
k2=0

θ2
l;ω ≤ A2

 ,

where we assume that β = 0 if γ = 0 and β > 0 if γ > 0.
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Minimax upper bounds for the risk

In order to construct upper bounds for the risk , we define the
maximum risk of an estimator f̂ over a set V as

Rε(V , f̂ ) = sup
f∈V

E||̂f − f ||2

Denote

∆ =



A2
[
A−2ε2

] 2s1
2s1+1 , if s1 ≤ min(s2, s3/(2r)), γ = β = 0

A2
[
A−2ε2

] 2s2
2s2+1 , if s2 ≤ min(s1, s3/(2r)), γ = β = 0

A2
[
A−2ε2

] 2s3
2s3+2r , if s3 ≤ min(2rs1,2rs2), γ = β = 0

A2
[
A−2ε2

] 2s1
2s1+1 , if s1 ≤ s2, γ > 0, β > 0

A2
[
A−2ε2

] 2s2
2s2+1 , if s2 ≤ s1, γ > 0, β > 0
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Minimax upper bound for the risk

Theorem

Let min{s1, s2} ≥ 1/2 and s3 ≥ 1/2 if γ = β = 0. Let f̂ (t ,x) be the
wavelet-Laguerre estimator of f . If ν ≥ 12Cυ2/CG1, then, under
Assumptions A1 and A2, if ε is small enough, for some absolute
constant C > 0 independent of ε, one has

Rε(B
s1,s2,s3
γ,β (A), f̂ ) ≤ C ∆ [log(1/ε)]d

d depends on the parameters of the Laguerre-Sobolev ball and on
r ,d ≤ 3.
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Minimax lower bounds for the risk

In order to ensure that the estimator f̂ is asymptotically optimal, we
evaluate the minimax lower bounds for the risk of any estimator f̃ over
the Sobolev ball:

Rε(Bs1,s2,s3
γ,β (A)) = inf

f̃
sup

f∈Bs1,s2,s3
γ,β (A)

E||̃f − f ||2

Theorem
Let min{s1, s2} ≥ 1/2 and s3 ≥ 1/2 if γ = β = 0. Then, if ε is small
enough, under Assumptions A1 and A2, for some absolute constant
C > 0 independent of ε, one has

Rε(Bs1,s2,s3
γ,β (A)) ≥ C ∆

where ∆ was defined before
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Simulation Studies

I ConsiderY (t , x) = q(t , x)+εξ(t , x) with q(t , x) =
∫ t

0 g(t−z)f (z, x)dz.
I We considered and n equally spaced observations on the time interval

[0; T ]

I For each test function f (t , x) and a kernel g(t), we obtained exact values
of q(t , x) in the equation above equation.
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Simulation Studies

I We created an uniform grid {x1,i , x2,j} with i = 1, · · · , n1 and
j = 1, · · · , n2, and obtained the three-dimensional array of values
q(x1,i , x2,j , tk ), k = 1, · · · , n

I Finally, we obtained a sample Yi,j,k of the left-hand side of the equation
above by adding independent Gaussian N(0, σ2) noise to each value
q(x1,i , x2,j , tk ), i = 1, · · · , n1, j = 1, · · · , n2, k = 1, · · · , n.
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Simulation Studies

I We constructed a system of M Laguerre functions obtained an estimator

f̂ (t , x) =
M−1∑
l=0

∑
ω∈Ω(J1,J2)

θ̂l;ω I
(
|θ̂l;ω | > λl,ε

)
ϕl (t) Ψω(x)

with the thresholds λl,ε̂, l = 0, · · · ,M − 1, given by

λl,ε = 2ε
√

2 ν log(ε−1) l−1||(G(l))−1||,

I ε̂ is estimated using the standard deviations of the wavelet coefficients
at the highest resolution level.

I The precision of the estimator f̂ was measured by the relative risk
∆(̂f ) = ||̂f − f ||2/||f ||2.
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Simulation Studies

We used n1 = n2 = n = 32, M = 8 and T = 5, and choose
g(x) = exp(−x/2) and four test functions for f :
f1(t ,x) = t e−t (x1 − 0.5)2) (x2 − 0.5)2,f2(t ,x) = e−t/2 cos(2πx1x2),
f3(t ,x) = t e−t (x1 − 0.5)2) (x2 − 0.5)2 + e−t/2 cos(2πx1x2)
f4(t ,x) = e−t/2 cos(2πx1x2) + (x1 − 0.5)2) (x2 − 0.5)2

Function SNR=3 SNR=5 SNR=7
f1(t ,x) 0.1107 (0.0110) 0.0694 (0.0066) 0.0511 (0.0049)
f2(t ,x) 0.1224 (0.0100) 0.0761 (0.0071) 0.0567 (0.0051)
f3(t ,x) 0.1107 (0.0112) 0.0680 (0.0068) 0.0511 (0.0048)
f4(t ,x) 0.1080 (0.0117) 0.0690 (0.0058) 0.0519 (0.0046)

Table: The average values of the relative errors (with the standard errors of
the means in parentheses) evaluated over 100 simulation runs.
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Real Data example

I CE-CT (Computerized Tomography) images of a participant of the
REMISCAN cohort study , who underwent anti-angiogenic treatment for
renal cancer.

I The data consist of the arterial images and images of the area of
interest (AOI) at 37 time points over approximately 4.6 minute interval.

I The first 15 time points (approximately the first 30 seconds) correspond
to the time period before the contrast agent reached aorta, so we just
used them for the evaluation of the base intensity.
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Real Data example

I Since the images of the aorta are extremely noisy, we evaluated the
average values of the grey level intensity at each time point and then
used Laguerre functions smoothing in order to obtain AIF

I The images of AOI contain 49× 38 pixels.
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Real Data example

I Since our technique is based on periodic wavelets and hence
application of the method to a non-periodic function is likely to produce
Gibbs effects, we cut the image to the size of 32× 32 pixels.

I We obtained symmetric versions of the the images (reflecting the
images over the two sides) and applied our methodology to the resulting
spatially periodic functions.

I Consequently, the estimator obtained by the technique is spatially
symmetric, so we record only the original part as the estimator f̂ .
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Real Data example
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Figure: Left: the averages of the aorta intensities (blue) and the estimated
Arterial Input Function AIF(t) (red). Right: two curves for distinct spatial
locations.
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Real Data example
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Figure: The values of f̂ at 34 seconds (corresponds to the first time point), 95
seconds (the 12th time point) and 275 seconds (the last time point).
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