tmerge

A Tool to Facilitate Creation of Multiple Time-Based Intervals per Subject

Cynthia Crowson, Terry Therneau and Elizabeth Atkinson

SDSS May 18, 2018

- Often requires creation of multiple start/stop intervals per subject
 - time-dependent covariates
 - multiple outcomes per subject
 - multi-state models
- Deceptively simple task, easy to do incorrectly

Simple Example

- starting dataset has 1 observation per subject
- surgery is a time-dependent covariate

	id	age	tm_surg	futime	event	
1	1	40	5	10	0	
2	2	20	8	20	1	
3	3	50	NA	30	1	

need to separate time periods before and after surgery

	id	age	tstart	tstop	${\tt death}$	surgery
1	1	40	0	5	0	0
2	1	40	5	10	0	1
3	2	20	0	8	0	0
4	2	20	8	20	1	1
5	3	50	0	30	1	0

- tmerge function in survival package in R makes this task easier
- sequential insertion
 - build the dataset one covariate or endpoint at a time
 - each addition will be "slipped in" to the original data in the same way that one would slide a new card into an existing deck of cards

The basic form of the function call is

primary arguments:

- data1: baseline data to be retained in the analysis dataset
- data2: source for new data including events and time-dependent covariates
- id: subject identifier used to merge the data together
- ...: additional arguments that add variables to the dataset
- tstart, tstop: used to set the time range for each subject
- options

- The key part of the call are the "..." arguments, which each can be one of 4 types:
 - tdc() and cumtdc() add a time-dependent covariate
 - event() and cumevent() add a new endpoint
- resulting dataset has 3 new variables (at least):
 - id: identifier indicating which rows belong to the same subject
 - tstart: start of the interval
 - tstop: end of the interval

Example

dataset: d1

dataset: d2

	id	tm_surg	futime	event
1	1	5	10	0
2	2	8	20	1
3	3	NA	30	1

	id	age	tstart	tstop	death
1	1	40	0	10	0
2	2	20	0	20	1
3	3	50	0	30	1

Example: step 2 - create time-dependent covariate

step2

	id	age	tstart	tstop	death	surgery
1	1	40	0	5	0	0
2	1	40	5	10	0	1
3	2	20	0	8	0	0
4	2	20	8	20	1	1
5	3	50	0	30	1	0

Note: this can also be done in just one step:

- time-dependent covariates
 - apply from the start of a new interval
 - persist for all remaining intervals unless subsequently changed

events

- occur at the end of an interval
- only occur once
- in time-to-event analyses, time intervals are open on the left and closed on the right, i.e., (tstart, tstop].

▶ Here is the data for the first 4 subjects

	id	treat	sex	age	futime	etime1	etime2	etime3
1	1	1	2	12	414	219	373	NA
2	2	0	1	15	439	8	26	152
3	3	1	1	19	382	NA	NA	NA
4	4	1	1	12	388	NA	NA	NA

Example: Multiple Events

dim(cgd0)

[1] 128 20

[1] 196 16

	id	treat	sex	age	futime	tstart	tstop	infect
1	1	1	2	12	414	0	219	1
2	1	1	2	12	414	219	373	1
3	1	1	2	12	414	373	414	0
4	2	0	1	15	439	0	8	1
5	2	0	1	15	439	8	26	1
6	2	0	1	15	439	26	152	1
7	2	0	1	15	439	152	439	0

attr(newcgd, "tcount")

	early	late	gap	within	boundary	lead	trail	tied
infect	0	0	0	44	0	0	0	0
infect	0	0	0	16	0	0	1	0
infect	0	0	0	8	0	0	0	0

Example: Continuous values that change over time

- pbc data set contains baseline data and follow-up status for 312 subjects with primary biliary cirrhosis (one obs per person)
- pbcseq data set contains 1945 repeated laboratory values

	id	tstart	tstop	death	ascites	bili	albumin
1	1	0	192	0	1	14.5	2.60
2	1	192	400	2	1	21.3	2.94
3	2	0	182	0	0	1.1	4.14
4	2	182	365	0	0	0.8	3.60
E	0	265	760	^		1 0	
					tmerge		

	early	late	gap	within	boundary	lead	trail	tied
death	0	0	0	0	0	0	312	0
ascites	0	131	0	1442	0	312	0	0
bili	0	138	0	53	1442	312	0	0
albumin	0	138	0	0	1495	312	0	0

- Missing values in time or value from data2 are ignored
 - Consequence: "last value carried forward"
- Default can be changed by adding options=list(na.rm=FALSE) to the second call
 - Any tdc calls with a missing time are still ignored, independent of the na.rm value, since we would not know where to insert ^N_C them.

Time delay

- For any data set containing constructed time-dependent covariates, it is a good idea to re-run the analyses after adding a 7-14 day lag to key variables.
 - One reason is to check for cases of reverse causality. A covariate measured soon before death may not be a predictor of death but rather is simply a marker for an event that is already in progress.
 - Even more subtle biases can occur via coding errors.
- When the results show a substantial change, understanding why this occurred is an critical step.

- Time dependent covariates that occur before the start of a subject's follow-up interval or during a gap in time do not generate a new interval split, but they do set the value of that covariate for future times.
 - Rationale: during a subject's time within the county we would like the variable "prior diagnosis of diabetes" to be accurate, even if that diagnosis occurred during a non-resident period
- Events that occur in a gap are not counted.
 - For events outside of the timeline, we have no way to know who the appropriate comparison group is, and so must ignore those events.

- tmerge is a simple to use, flexible tool to create multiple start/stop intervals per subject
 - time-dependent covariates both binary and continuous
 - multiple outcomes per subject
 - allows for gaps in time
- data checks can help avoid errors
 - tcount attribute
 - use of delay for time-dependent covariates

