Topological mixture estimation

Steve Huntsman

FAST Labs (goo.gl/zWw5HQ) Cyber Technology

17 May 2018

The rudiments of topological data analysis

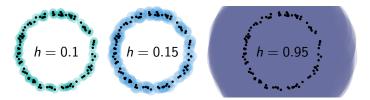
- Approximate $X = (X_j)_{j=1}^n \subset (\mathbb{R}^d)^n$ at various scales h > 0
- Compute a topological invariant of the approximations
- Highlight invariants that persist as h varies
- Toy example: 12 equispaced points on S^1 ($\Delta \approx 0.2588$)

•
$$\beta_0 = 12 \cdot 1_{[0,\Delta)} + 1_{[\Delta,1)} + 1_{[1,\infty)}$$

• $\beta_1 = 1_{[\Delta,1)}$

Belaboring some details

- There exists $\varepsilon > 0$ s.t. $\beta_0([0, \varepsilon)) = n$ (undersmoothing)
- $\beta_0([\text{diam } X, \infty)) = 1 \text{ (oversmoothing)}$
- Persistent structure is stable under perturbations
- Example: n = 100, $\delta = 0.05$, $|X| \sim U([1 \delta, 1 + \delta])$, $\varepsilon' \approx \delta$
 - $\beta_0 = n \cdot 1_{[0,\varepsilon)} + \text{noise}_0 \cdot 1_{[\varepsilon,\Delta)} + 1_{[\Delta,1-\varepsilon')} + 1_{[1-\varepsilon',\infty)}$ • $\beta_1 = \text{noise}_1 \cdot 1_{[\varepsilon,\Delta)} + 1_{[\Delta,1-\varepsilon')}$



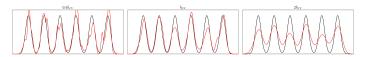
Is topological data analysis interesting or useful for d = 1?

Yes and $\ensuremath{\mathsf{YES}}$

Approximate: kernel density estimate

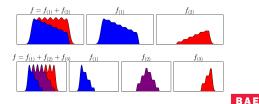
•
$$X \sim f \approx \hat{f}_{h;X} := \frac{1}{n} \sum_{j=1}^{n} K_{X_j,h}$$
 with $K_{\mu,h}(x) := \frac{1}{h} K\left(\frac{x-\mu}{h}\right)$

- To estimate f, just select a good bandwidth h
 - Choice of K much less important than h as long as K is nice
- Least-squares cross-validation (CV) optimizes L² error estimate without a priori information about f
 - Epanechnikov is L^2 optimal choice for K, but see above
 - Gaussian is also good and very convenient
- If *f* is multimodal but we have no *a priori* information, the literature doesn't offer any significant improvement on CV



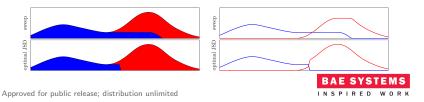
Compute: topologically optimal mixture

- A PDF f ∈ C(ℝ^d) is unimodal iff f⁻¹([y,∞)) is contractible (i.e., homotopic to a point) for all 0 < y ≤ max f
 - For d = 1, contractible = interval (captures intuitive notion)
- ucat(f) is the smallest number M s.t. $f = \sum_{m=1}^{M} \pi_m p_m$ for some $\pi > 0$, $\sum_m \pi_m = 1$, and p_m unimodal: write $(\pi, p) \models f$
- Lemma: ucat is invariant under homeomorphism
- Theorem [Baryshnikov and Ghrist]: For d = 1, a "sweep" algorithm efficiently produces a (π, p) ⊨ f



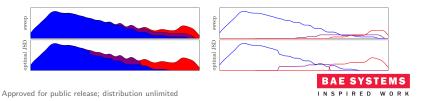
Compute: information theoretically optimal mixture

- Mixture $(\pi, p) \models f$ produced by sweep algorithm is ugly
- Want to preserve predicate (π, p) ⊨ f while maximizing mutual info J(π, p) between Ξ ~ π and X ~ ∑_m π_mp_m
- Two lemmas regarding local perturbations of piecewise affine (π, p) that preserve (π, p) ⊨ f:
 - J is convex
 - Explicit tight bounds on perturbations
- Theorem: Greedy unimodality-preserving local perturbations obtain arg max_{(π,p)⊨f} J(π, p) in O(ucat · |mesh|) iterations



Compute: information theoretically optimal mixture

- Mixture $(\pi, p) \models f$ produced by sweep algorithm is ugly
- Want to preserve predicate (π, p) ⊨ f while maximizing mutual info J(π, p) between Ξ ~ π and X ~ ∑_m π_mp_m
- Two lemmas regarding local perturbations of piecewise affine (π, p) that preserve (π, p) ⊨ f:
 - J is convex
 - Explicit tight bounds on perturbations
- Theorem: Greedy unimodality-preserving local perturbations obtain arg max_{(π,p)⊨f} J(π, p) in O(ucat · |mesh|) iterations



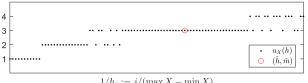
Topological density estimation (TDE)

- Approximate X at various scales h > 0 by $\hat{f}_{h;X}$
- Compute the topological invariant $u_X(h) := \text{ucat}(\hat{f}_{h;X})$
- Highlight the most persistent value:

$$\hat{m}:= rg \max_m \mu(u_X^{-1}(m))$$

• Topological bandwidth estimate

$$\hat{h} := \mathsf{median}_{\mu}(u_X^{-1}(\hat{m}))$$



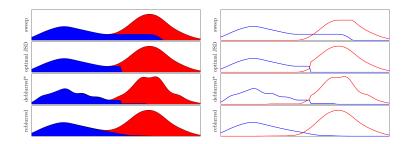
$$1/h_j := j/(\max X - \min X)$$

9

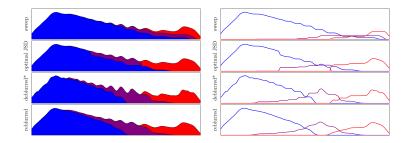
$({\rm De/re})$ blurring

- TDE and TME are better together than apart
- For convenience take *K* = Gaussian
 - Gives semigroup $K_{\mu,h} * K_{\mu',h'} = K_{\mu+\mu',(h^2+h'^2)^{1/2}}$
 - Any other choice of K yielding a semigroup would also work
- Deblur by replacing median (or similar) with inf (or similar)
- Reblur by convolving with $K_{0,\Delta h}$ to recover original density
 - Preserves topological optimality
 - Sensibly trades information-theoretical, smoothness objectives
 - Could do something similar directly on a density via Fourier deconvolution, but this is delicate and of more limited utility

Putting it all together: n = 272 Old Faithful data



Putting it all together: n = 2107 color index data



d > 1 is hard to get but would be nice to have

- For d = 2 computing ucat is hard
 - ucat(f) determined by the combinatorial type of the Reeb graph of f labeled by critical values (not true for d > 2)
 - No explicit efficient algorithm known
 - Partial bound established in unpublished work of Hickok, Villatoro, and Wang
- For $d \gg 1$ computing ucat is undecidable
 - Will have to restrict notion of unimodality and/or employ heuristics, probably tomographic in spirit and using sheaves/Morse theory
- Determining the number of clusters/mixture components in data is an important but delicate art, with subjective results
 - Obvious that this should be informed by topology
 - · Not obvious how to account for variable density and overlap
 - Random projections can help

Current and future directions

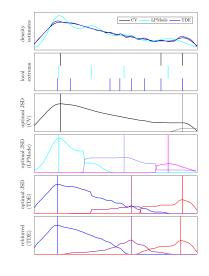
- *d* = 1:
 - Recursive TME/variable bandwidth estimation
 - Enhanced LODA algorithm
 - Component-aware fusion
 - ...
- *d* > 1: topological mixture tomography
 - Glue together 1D mixtures using some combination of random projections, sheaves, Morse theory, etc.
 - Need a decidable restriction of unimodality for nice theory; need an efficient restriction for nice practice

Thanks

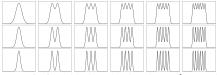
steve.huntsman@baesystems.com FAST Labs (goo.gl/zWw5HQ)

MATLAB code available at goo.gl/KoBtHb

Comparative analysis: n = 2107 color index data

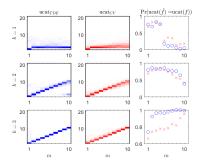


Performance of TDE vs CV on a multimodal family

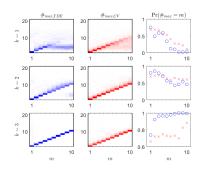


Densities f_{km} for $1 \le k \le 3$ and $1 \le m \le 6$ over [-0.5, 1.5].

Rows and column indices are k and m, respectively; upper left and lower right panels respectively show f_{11} and f_{36} .



Approved for public release; distribution unlimited



BAE SYSTEMS

TDE: broad observations

- TDE requires no nontrivial information or parameters
- TDE's estimated lower bound on modes is itself very useful
- TDE can sense if its output is appropriate to use
 - f has ≥ 2 clearly resolvable modes \Rightarrow TDE is a good choice
 - Otherwise TDE is the wrong choice
- TDE works well on multimodal distributions because unimodal decompositions are stable w.r.t. perturbations and persist over bandwidths that correctly resolve extrema
 - Maybe there is a nice theorem (exercise for the audience)
- TDE is usually faster than CV for large n
 - Both spend most of their time evaluating and summing kernels
 - CV: $2n_h n^2$ evals; TDE: $n_h n_x n$ evals; typically $n_x \ll n$ if n large
 - Unimodal decompositions contribute a marginal $O(n_h n_x \langle m \rangle_h)$

