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The rudiments of topological data analysis

• Approximate X = (Xj)
n
j=1 ⊂ (Rd)n at various scales h > 0

• Compute a topological invariant of the approximations

• Highlight invariants that persist as h varies

• Toy example: 12 equispaced points on S1 (∆ ≈ 0.2588)
• β0 = 12 · 1[0,∆) + 1[∆,1) + 1[1,∞)

• β1 = 12 · 1[0,∆) + 1[∆,1)

h = 0.2 h = 0.3 h = 1.1
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Belaboring some details

• There exists ε > 0 s.t. β0([0, ε)) = n (undersmoothing)

• β0([diam X ,∞)) = 1 (oversmoothing)

• Persistent structure is stable under perturbations

• Example: n = 100, δ = 0.05, |X | ∼ U([1− δ, 1 + δ]), ε′ ≈ δ
• β0 = n · 1[0,ε) + noise0 · 1[ε,∆) + 1[∆,1−ε′) + 1[1−ε′,∞)

• β1 = n · 1[0,ε) + noise1 · 1[ε,∆) + 1[∆,1−ε′) + 1[1−ε′,∞)

h = 0.1 h = 0.15 h = 0.95
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Is topological data analysis interesting or useful for d = 1?

Yes and YES
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Approximate: kernel density estimate

• X ∼ f ≈ f̂h;X := 1
n

∑n
j=1 KXj ,h with Kµ,h(x) := 1

hK
( x−µ

h

)
• To estimate f , just select a good bandwidth h

• Choice of K much less important than h as long as K is nice

• Least-squares cross-validation (CV) optimizes L2 error
estimate without a priori information about f

• Epanechnikov is L2 optimal choice for K , but see above
• Gaussian is also good and very convenient

• If f is multimodal but we have no a priori information, the
literature doesn’t offer any significant improvement on CV
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Compute: topologically optimal mixture

• A PDF f ∈ C (Rd) is unimodal iff f −1([y ,∞)) is contractible
(i.e., homotopic to a point) for all 0 < y ≤ max f

• For d = 1, contractible = interval (captures intuitive notion)

• ucat(f ) is the smallest number M s.t. f =
∑M

m=1 πmpm for
some π > 0,

∑
m πm = 1, and pm unimodal: write (π, p) |= f

• Lemma: ucat is invariant under homeomorphism

• Theorem [Baryshnikov and Ghrist]: For d = 1, a “sweep”
algorithm efficiently produces a (π, p) |= f
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Compute: information theoretically optimal mixture

• Mixture (π, p) |= f produced by sweep algorithm is ugly

• Want to preserve predicate (π, p) |= f while maximizing
mutual info J(π, p) between Ξ ∼ π and X ∼

∑
m πmpm

• Two lemmas regarding local perturbations of piecewise affine
(π, p) that preserve (π, p) |= f :

• J is convex
• Explicit tight bounds on perturbations

• Theorem: Greedy unimodality-preserving local perturbations
obtain arg max(π,p)|=f J(π, p) in O(ucat · |mesh|) iterations
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Topological density estimation (TDE)

• Approximate X at various scales h > 0 by f̂h;X

• Compute the topological invariant uX (h) := ucat(f̂h;X )

• Highlight the most persistent value:

m̂ := arg maxm µ(u−1
X (m))

• Topological bandwidth estimate

ĥ := medianµ(u−1
X (m̂))
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(De/re)blurring

• TDE and TME are better together than apart

• For convenience take K = Gaussian
• Gives semigroup Kµ,h ∗ Kµ′,h′ = Kµ+µ′,(h2+h′2)1/2

• Any other choice of K yielding a semigroup would also work

• Deblur by replacing median (or similar) with inf (or similar)

• Reblur by convolving with K0,∆h to recover original density
• Preserves topological optimality
• Sensibly trades information-theoretical, smoothness objectives
• Could do something similar directly on a density via Fourier

deconvolution, but this is delicate and of more limited utility
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Putting it all together: n = 272 Old Faithful data
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Putting it all together: n = 2107 color index data
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d > 1 is hard to get but would be nice to have

• For d = 2 computing ucat is hard
• ucat(f ) determined by the combinatorial type of the Reeb

graph of f labeled by critical values (not true for d > 2)
• No explicit efficient algorithm known
• Partial bound established in unpublished work of Hickok,

Villatoro, and Wang

• For d � 1 computing ucat is undecidable
• Will have to restrict notion of unimodality and/or employ

heuristics, probably tomographic in spirit and using
sheaves/Morse theory

• Determining the number of clusters/mixture components in
data is an important but delicate art, with subjective results

• Obvious that this should be informed by topology
• Not obvious how to account for variable density and overlap
• Random projections can help
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Current and future directions

• d = 1:
• Recursive TME/variable bandwidth estimation
• Enhanced LODA algorithm
• Component-aware fusion
• ...

• d > 1: topological mixture tomography
• Glue together 1D mixtures using some combination of random

projections, sheaves, Morse theory, etc.
• Need a decidable restriction of unimodality for nice theory;

need an efficient restriction for nice practice
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Thanks

steve.huntsman@baesystems.com
FAST Labs (goo.gl/zWw5HQ)

MATLAB code available at goo.gl/KoBtHb
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Comparative analysis: n = 2107 color index data
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Performance of TDE vs CV on a multimodal family

Densities fkm for 1 ≤ k ≤ 3 and 1 ≤ m ≤ 6 over [−0.5, 1.5].
Rows and column indices are k and m, respectively; upper left and lower right panels respectively show f11 and f36.
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TDE: broad observations

• TDE requires no nontrivial information or parameters

• TDE’s estimated lower bound on modes is itself very useful

• TDE can sense if its output is appropriate to use
• f has ≥ 2 clearly resolvable modes ⇒ TDE is a good choice
• Otherwise TDE is the wrong choice

• TDE works well on multimodal distributions because unimodal
decompositions are stable w.r.t. perturbations and persist
over bandwidths that correctly resolve extrema

• Maybe there is a nice theorem (exercise for the audience)

• TDE is usually faster than CV for large n
• Both spend most of their time evaluating and summing kernels
• CV: 2nhn

2 evals; TDE: nhnxn evals; typically nx � n if n large
• Unimodal decompositions contribute a marginal O(nhnx〈m〉h)
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