Ioana Schiopu-Kratina, Kyle Trépanier ¹ and Christina Maria Zamfirescu² ¹University of Ottawa, Department of Mathematics and Statistics

²Hunter College and Graduate Center-CUNY, Department of Computer science and

Mathematics

QDET2 Miami, Florida November 9-13, 2016

www.uOttawa.ca

Introduction

The probability space

The transformations

Conclusion and future work

References

Overview

2 The probability space

Introduction

The probability space

The transformations

Conclusion and future work

References

- Data collection is the most expensive part of running a survey.
- The quality of the published data depends on the design and length of the questionnaire.

1.1 Motivation for this research

- The use of computers has opened the door to the development of large and complex questionnaires, which should be well structured.
- Theoretical research on the structure of questionnaires was done by Picard (1965) and Parkhomenko (2010). More research is required.

1.2 The challenge

Introduction

The probability space

The transformations

Conclusion and future work

References

• Our examples are based on a version of the module "Most Recent Employment" (EM), of the 2008 "Access and Support to Education and Training Survey" (ASETS). ASETS has 47 modules with 4 - 25 questions/module.

• The content and number of questions of ASETS was determined by many analysts, who had different interests.

• The logical link among questions was not always apparent.

• It is difficult to place a variety of questions within a common questionnaire.

• We propose practical rules to structure questionnaires using graphs.

1.3 Our requirements

Introduction

The probability space

The transformations

Conclusion and future work

- The coverage (target) of each question should be apparent.
- For each surveyed subpopulation, the questions should be sequenced in a logical order.
- The paths followed by important subpopulations should be apparent in the questionnaire.
- While the structure may change, the content of the questions should be preserved.
- The burden on respondents should be minimal.
- We apply a set of transformations to attain the above stated goals.

^{1.4} 1.4 Survey charts as graphs: Example 2

Survey questionnaires and graphs

Introduction

The probability space

The transformations

Conclusion and future work

References

The survey chart A is a directed, acyclic graph, with root R = Q₄ and a node END_A. The path Q₅Q₇Q₈ is empty.
The directed tree on the right represents A. Here Q₇, with two parents in A, appears twice in the tree.

2.1 Basic definitions

Introduction

The probability space

The transformations

Conclusion and future work

References

Definition 1. A flow $f_i = RQ_{i1}...Q_{in}F_i$ in \mathscr{A} is a string of questions (nodes) connected by arcs, which starts at the root R and continues to $END_{\mathscr{A}}$. The conditions defining all its arcs are consistent, so a surveyed population could travel through the flow.

The *elementary event* F_i stands for the category of individuals that travel through f_i . It is part of $END_{\mathcal{A}}$.

Definition 2. An *analytical outcome* ω of a questionnaire q is a minimal group of individuals defined by their specific answers to questions in a flow.

The set of all analytical outcomes Ω_q is the *analytical potential* of q.

Introduction

The probability space

The transformations

Conclusion and future work

References

2.1 Basic definitions: Example 3

Example 3. Consider a questionnaire q with two questions:

 Q'_2 : During the R.P., what was your <u>main</u> activity?: working at a J/B, doing volunteer work, going to school, taking care of family or household responsibilities, other... If $\{Q'_2 \neq J/B\}$, go to Q_3 . Else go to $END_{\mathscr{A}}$.

 Q_3 : Did you work at a J/B at any time during the R.P.? Go to END_{CC} .

Introduction

The probability space

The transformations

Conclusion and future work

References

• Consider $(\Omega_q, \sigma_A(F_i, i = 1, \dots, N), P_A)$, where the elementary event F_i is assigned a probability p_i of occurrence, $\sum_{i=1}^{N} p_i = 1$.

• Important particular case: $p_i = \frac{1}{N}$, i = 1, ..., N. This is useful when there are many elementary events, but can be misleading otherwise.

Definition 3. The coverage of a question Q is: $cover_A(Q) := \bigcup_{\{1 \le i \le N: Q \in f_i\}} f_i$, and

2.2 Probabilities of flows and events

(1)
$$P_A(Q) = \sum_{\{1 \le i \le N: Q \in f_i\}} p_i,$$

where p_i is the probability of f_i .

2.2 Probabilities of flows and events

Introduction

The probability space

- The transformations
- Conclusion and future work
- References

• If q has M questions, the expected number of questions is:

(2)
$$E_A = \sum_{j=0}^{M-1} P_A(Q_j)$$

• We minimize (2). When every path can be travelled,

(3)
$$P_A(Q) = \sum_{i \in IN(Q)} \sum_{j \in OUT(Q)} P_A(f_{ij}(Q))$$

where $f_{ij}(Q) = RQ_{i1} \cdots Q_{ik}QQ_{j,k+2} \cdots F_{ij}$. Here the flow $f_{ij}(Q)$ is put together from an "incoming" flow $f_i(Q)$ and an "outgoing" flow $f_j(Q)$.

2.2 Probabilities of flows and events

Introduction

The probability space

The transformations

Conclusion and future work

When
$$p_i = \frac{1}{N}$$
, $i = 1 \cdots N$, (4) becomes:

$$P_A(Q) = rac{card(IN(Q)) imes card(OUT(Q))}{N}$$

- Survey charts visually pack information, but may contain empty paths.
- One must partition the flows into *categories of flows*, within which all paths are travelled.
- In calculating $P_A(Q)$, one must account for categories of flows.
- The categories correspond to analytically significant subpopulations.

3.1 Overview of transformations

Introduction

The probability space

The transformations

Conclusion and future work

References

• Transformation 1: Reverses the order of Q_a and Q_b , when Q_b is a descendent of Q_a in \mathscr{A} , which collects more information than Q_a . The transformed survey chart \mathscr{A}' has $E_{\mathscr{A}'} \leq E_{\mathscr{A}}$.

- Transformation 2: When possible, joins two similar questions with disjoint coverage in \mathscr{A} , and moves the new question "closer" to the root in \mathscr{A}' .
- The transformations preserve the analytical potential.
- These transformations bring a survey chart closer to a tree, so more information is collected earlier in the survey.

3.2 Consequences of transformations

Introduction

The probability space

The transformations

Conclusion and future work

- The number of categories of flows can be reduced and it is easier to follow important subpopulations through \mathscr{A}' (s.e., e., f.b.).
- $E_{\mathcal{A}'} \leq E_{\mathcal{A}}$
- The transformed survey chart points to questions that could be removed.
- We may move questions with high indegree closer to the root (e.g., Q_{25}) of **EM From Survey**.

Introduction

The probability space

The transformations

Conclusion and future work

References

• Starting with a flow chart used in practice, we construct a new type of graph, the survey chart.

• We perform transformations on a survey chart to make the corresponding questionnaire more amenable to analysis.

• We minimize the expected number of questions in a questionnaire, while preserving its analytical content.

• Future research includes devising an algorithm for finding categories, and collecting information more efficiently.

Introduction

The probability space

The transformations

Conclusion and future work

References

Thank you!

References

Introduction

The probability space

The transformations

Conclusion and future work

- Picard, C., *Théorie des Questionnaires*, Gauthier-Villars Paris, Les Grands Problmes des Sciences XX, 1965.
- Schiopu Kratina, Ioana; Zamfirescu, Christina Maria; Trépanier, Kyle; Marques, Lennon. Survey questionnaires and graphs.
 Electron. J. Statist. 9 (2015), no. 2, 2202–2254.
 doi:10.1214/15-EJS1067.
 http://projecteuclid.org/euclid.ejs/1444308086.

