Survey questionnaires and graphs

Ioana Schiopu-Kratina, Kyle Trépanier ${ }^{1}$ and Christina Maria Zamfirescu ${ }^{2}$
${ }^{1}$ University of Ottawa, Department of Mathematics and Statistics
${ }^{2}$ Hunter College and Graduate Center-CUNY, Department of Computer science and Mathematics

QDET2

Miami, Florida November 9-13, 2016

Overview

(1) Introduction
(2) The probability space
(3) The transformations
(4) Conclusion and future work
(5) References

⿴囗m u Ottawa

1.1 Motivation for this research

- Data collection is the most expensive part of running a survey.
- The quality of the published data depends on the design and length of the questionnaire.
- The use of computers has opened the door to the development of large and complex questionnaires, which should be well structured.
- Theoretical research on the structure of questionnaires was done by Picard (1965) and Parkhomenko (2010). More research is required.

1.2 The challenge

- Our examples are based on a version of the module "Most Recent Employment" (EM), of the 2008 "Access and Support to Education and Training Survey" (ASETS). ASETS has 47 modules with 4-25 questions/module.
- The content and number of questions of ASETS was determined by many analysts, who had different interests.
- The logical link among questions was not always apparent.
- It is difficult to place a variety of questions within a common questionnaire.
- We propose practical rules to structure questionnaires using graphs.

1.3 Our requirements

- The coverage (target) of each question should be apparent.
- For each surveyed subpopulation, the questions should be sequenced in a logical order.
- The paths followed by important subpopulations should be apparent in the questionnaire.
- While the structure may change, the content of the questions should be preserved.
- The burden on respondents should be minimal.
- We apply a set of transformations to attain the above stated goals.

Survey questionnaires and graphs

Introduction
The probability space

The
transformations
Conclusion and
future work
References
1.4 Survey charts as graphs: Example 1

EM From Survey

u Ottawa

 graphs1.4 Survey charts as graphs: Example 2

- The survey chart \mathscr{A} is a directed, acyclic graph, with root $R=Q_{4}$ and a node $E N D_{\mathscr{A}}$. The path $\mathbf{Q}_{5} \mathbf{Q}_{7} \mathbf{Q}_{8}$ is empty.
- The directed tree on the right represents \mathscr{A}. Here Q_{7}, with two parents in \mathscr{A}, appears twice in the tree.

2.1 Basic definitions

Definition 1. A flow $f_{i}=R Q_{i 1} \ldots Q_{i n} F_{i}$ in \mathscr{A} is a string of questions (nodes) connected by arcs, which starts at the root R and continues to $E N D_{\mathscr{A}}$. The conditions defining all its arcs are consistent, so a surveyed population could travel through the flow.

The elementary event F_{i} stands for the category of individuals that travel through f_{i}. It is part of $E N D_{\mathscr{A}}$.

Definition 2. An analytical outcome ω of a questionnaire q is a minimal group of individuals defined by their specific answers to questions in a flow.

The set of all analytical outcomes Ω_{q} is the analytical potential of q. graphs

2.1 Basic definitions: Example 3

Example 3. Consider a questionnaire q with two questions:
Q_{2}^{\prime} : During the R.P., what was your main activity?: working at a J/B, doing volunteer work, going to school, taking care of family or household responsibilities, other... If $\left\{Q_{2}^{\prime} \neq J / B\right\}$, go to Q_{3}. Else go to $E N D_{\mathscr{A}}$.
Q_{3} : Did you work at a J/B at any time during the R.P.? Go to $E N D_{\mathscr{A}}$.

2.2 Probabilities of flows and events

- Consider $\left(\Omega_{q}, \sigma_{A}\left(F_{i}, i=1, \cdots, N\right), P_{A}\right)$, where the elementary event F_{i} is assigned a probability p_{i} of occurrence, $\sum_{i=1}^{N} p_{i}=1$.
- Important particular case: $p_{i}=\frac{1}{N}, i=1, \ldots, N$. This is useful when there are many elementary events, but can be misleading otherwise.

Definition 3. The coverage of a question Q is: $\operatorname{cover}_{A}(Q):=\underset{\left\{1 \leq i \leq N: Q \in f_{i}\right\}}{ } f_{i}$, and
(1) $P_{A}(Q)=\sum_{\left\{1 \leq i \leq N: Q \in f_{i}\right\}} p_{i}$,
where p_{i} is the probability of f_{i}. graphs

The

2.2 Probabilities of flows and events

- If q has M questions, the expected number of questions is:
(2) $E_{A}=\sum_{j=0}^{M-1} P_{A}\left(Q_{j}\right)$
- We minimize (2). When every path can be travelled,
(3) $P_{A}(Q)=\sum_{i \in \operatorname{IN}(Q)} \sum_{j \in O \cup T(Q)} P_{A}\left(f_{i j}(Q)\right)$
where $f_{i j}(Q)=R Q_{i 1} \cdots Q_{i k} Q Q_{j, k+2} \cdots F_{i j}$. Here the flow $f_{i j}(Q)$ is put together from an "incoming" flow $f_{i}(Q)$ and an "outgoing" flow $f_{j}(Q)$.

2．2 Probabilities of flows and events

$$
\text { When } p_{i}=\frac{1}{N}, i=1 \cdots N \text {, (4) becomes: }
$$

$$
P_{A}(Q)=\frac{\operatorname{card}(\operatorname{IN}(Q)) \times \operatorname{card}(\operatorname{OUT}(Q))}{N}
$$

－Survey charts visually pack information，but may contain empty paths．
－One must partition the flows into categories of flows，within which all paths are travelled．
－In calculating $P_{A}(Q)$ ，one must account for categories of flows．
－The categories correspond to analytically significant subpopulations．

⿴囗玉 u Ottawa

Survey questionnaires and graphs

Introduction

The probability space

The
transformations
Conclusion and future work

References

2.3 Categories of flows: Example 4

EM From Survey - $\mathbf{2}$ categories
Colour representation of categories
Color codes for categories:

Survey questionnaires and graphs

Introduction

The probability space

The
transformations
Conclusion and
future work
References

2.3 Categories of flows: Example 4

EM From Survey
Category 1 : e. or f.b. or no J/B

Survey questionnaires and graphs

The probability space

The

transformations
Conclusion and future work

2.3 Categories of flows: Example 4

EM From Survey

Category 2 : s.e.

3.1 Overview of transformations

Introduction
The probability space

The

- Transformation 1: Reverses the order of Q_{a} and Q_{b}, when Q_{b} is a descendent of Q_{a} in \mathscr{A}, which collects more information than Q_{a}. The transformed survey chart \mathscr{A}^{\prime} has $E_{\mathscr{A}^{\prime}} \leq E_{\mathscr{A}}$.
- Transformation 2: When possible, joins two similar questions with disjoint coverage in \mathscr{A}, and moves the new question "closer" to the root in \mathscr{A}^{\prime}.
- The transformations preserve the analytical potential.
- These transformations bring a survey chart closer to a tree, so more information is collected earlier in the survey.

3.2 Consequences of transformations

- The coverage of each question is easily read off \mathscr{A}^{\prime}.
- The number of categories of flows can be reduced and it is easier to follow important subpopulations through \mathscr{A}^{\prime} (s.e., e., f.b.).
- $E_{\mathscr{A}^{\prime}} \leq E_{\mathscr{A}}$
- The transformed survey chart points to questions that could be removed.
- We may move questions with high indegree closer to the root (e.g., Q_{25}) of EM From Survey.

Survey questionnaires and graphs

Introduction

The probability space

The transformations

Conclusion and
future work
References

3.2 Consequences of transformations: Example 4

EM From Survey - $\mathbf{2}$ categories $E_{A}=14.889$
Colour representation of categories
Color codes for categories:

Survey questionnaires and graphs

Introduction

The probability space

The transformations

Conclusion and future work

References

3.2 Consequences of transformations: Example 5

EM Analytical - 1 category

Colour representation of populations
 graphs
3.2 Consequences of transformations: Example 5 $E M$ Simplified $\quad E_{A}=10.857$

Introduction
The probability space

The
transformations
Conclusion and future work

References

Removed:
$Q_{2}, Q_{4}, Q_{5}, Q_{8}$

Combined:
$Q_{20} \& Q_{21} \rightarrow Q_{20}^{\prime}$ $Q_{9} \& Q_{22} \rightarrow Q_{22}^{\prime}$

4.1 Conclusion and future work

 type of graph, the survey chart.- Starting with a flow chart used in practice, we construct a new
- We perform transformations on a survey chart to make the corresponding questionnaire more amenable to analysis.
- We minimize the expected number of questions in a questionnaire, while preserving its analytical content.
- Future research includes devising an algorithm for finding categories, and collecting information more efficiently.

The probability space

The
transformations
Conclusion and future work

Thank you!

 124-134.R Parkhomenko, P.P. (2010). Questionnaires and Organizational Hierarchies. Automation and Remote Control 71(6), pp

R Picard, C., Théorie des Questionnaires, Gauthier-Villars Paris, Les Grands Problmes des Sciences XX, 1965.

目 Schiopu Kratina, Ioana; Zamfirescu, Christina Maria; Trépanier, Kyle; Marques, Lennon. Survey questionnaires and graphs. Electron. J. Statist. 9 (2015), no. 2, 2202-2254. doi:10.1214/15-EJS1067. http://projecteuclid.org/euclid.ejs/1444308086.

