Introduction

Technology is changing how respondents and interviewers interact with surveys – Choice of device.

Usability Testing for Survey Research

Survey

To what extent do you agree or disagree with the following items:

- Completely agree
- Mostly agree
- Neither agree nor disagree
- Mostly disagree
- Completely disagree

1. I think that I would like to use this book frequently.
2. I found the book unnecessarily complex.
3. I thought the book was easy to use.
4. I thought the book was not easy to use.
5. I thought that the book was not well organized.
6. I thought that the various parts of the book were well integrated.
7. I thought that the book was very high quality.
8. I thought that the book was very low quality.
9. I thought that the book was very important.
10. I thought the book was very useful.

Survey

To what extent do you agree or disagree with the following items:

- Completely agree
- Mostly agree
- Neither agree nor disagree
- Mostly disagree
- Completely disagree

1. I think that I would like to use this book frequently.
2. I found the book unnecessarily complex.
3. I thought the book was easy to use.
4. I thought the book was not easy to use.
5. I thought that the book was not well organized.
6. I thought that the various parts of the book were well integrated.
7. I thought that the book was very high quality.
8. I thought that the book was very low quality.
9. I thought that the book was very important.
10. I thought the book was very useful.
Introduction

- Technology is changing how respondents and interviewers interact with surveys:
 - Choice of device
 - Survey functionality
Technology is changing how respondents and interviewers interact with surveys
- Choice of device
- Survey functionality
- Pretesting methodologies

What’s the impact on survey quality?
- Some known effects
 - Longer completion times, nonresponse (Antoun, 2015)
- Many unknown effects or unknown reasons for known effects
Purpose

- Compare traditional pretesting methods with emerging methods for evaluating “modern” surveys
 - Traditional methods (expert review, cognitive interviewing, pilot testing)
 - Limitations
 - Effect of technology on these methods
 - Emerging methods (usability testing, eye tracking, crowdsourcing)
 - Overview
 - Advantages
 - Examples
Traditional Pretesting Methods
- Content evaluation by substantive expert or survey methodologist
 - Subjective based on reviewer’s knowledge experience
 - Standardized guidelines
 - QAS focuses mainly on cognitive process, not on visual design, navigation, etc
 - Web survey guidelines (Dillman, Smyth, & Christian, 2009; Couper, 2008): Constantly changing – some become obsolete, some not addressed

- Researchers must design aspects of questionnaires where no guidelines exist.
Cognitive Interviewing

- Identifies potential problems in surveys by evaluating the cognitive processes used to answer questions.
 - If testing not done on programmed instrument, does not evaluate visual design or respondent-survey interaction
 - Primarily focuses on cognitive processes

- Technology’s impact on cognitive testing
 - Recruitment strategies (newspaper advertisements vs craigslist and Facebook)
 - Remote and virtual cognitive testing
Pilot Testing

- A “dry-run” to test out the procedures that are being considered for the full study
 - Paradata: time spent per question, error/warning messages activated, number of times back button was pushed, proportion of mobile respondents
 - Item missing rates, question distributions

- Otherwise, limited for determining issues with respondent-survey interaction
 - Does not identify all questions that are not performing well
 - For questions with poor performance indicators, don’t know what the problem is (usability, comprehension)
Emerging Pretesting Methods
Usability Testing (UT) Overview

- Watching a user (respondent or interviewer) as they complete a task or goal
 - Obtain observational data, self-report, implicit data
 - Evaluate accuracy, efficiency and satisfaction
 - Revise and test again (iterative, use to guide design)

- Used in late 1990s as use of CAI increased, mainly for interviewer-administered (IA) surveys (Hansen, Fuchs, & Couper, 1997; Marquis, Nichols, & Tedesco 1998; Couper, 2000)

- Particularly useful for self-administered (SA) surveys, web-based surveys and mobile surveys to address quality concerns
Now, easy and inexpensive to apply UT
- Screen recording software
- Screening sharing
- Web camera
- Mobile sleds

Supports
- Lab or field testing
- remote testing
- Off-site observers
Usability Model for Surveys

- **Interpreting the design:**
 - What meaning do respondents assign to visual design and layout?
 - How do respondents believe the survey works?
- **Completing actions and navigating:**
 - How well does the survey support respondents’ ability to complete tasks and goals?
 - How well do respondents follow navigational cues and instructions?
- **Processing feedback:**
 - How do respondents interpret and react to the survey feedback in response to their actions?
 - How well does the survey help respondents identify, interpret, and resolve errors?

Source: Geisen and Romano Bergstrom, 2017
UT Examples

Romano Bergstrom & Strohl (2013)

<table>
<thead>
<tr>
<th>Activity</th>
<th>1 Never</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5 All of the time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teach others about something you have learned</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Get better at doing something</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Give updates throughout the day</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have fun</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>See/hear something entertaining</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Geisen, Olmsted, Goerman, Lakhe (2014)

- On mobile, screens with multiple questions had high omission rates or error rates
- Important information was skipped or ignored
- For questions with text entry, screen blocked questions

Romano & Chen, 2011

- Next/Previous buttons
- Participants prefer “Next” on right
- When previous on right, got used more
Eye Tracking Overview

- Tracks where an individual looks within a visual field
- Modern eye tracking is unobtrusive – technology built into computer monitors and stand-alone devices
- Records fixations and saccades

Image source: Geisen & Romano Bergstrom (2017)
Eye Tracking Advantages & Limitations

- What does it tell us (Olmsted-Hawala, et al. 2014):
 - What people look at when completing a survey
 - How many times they look at various things
 - The order in which they look at things
 - How long they look at things

- Does not work well when participant’s gaze and attention are not together (Jarrett & Gaffney, 2008)
 - Thinking up answers on the spot
 - Need to look up answer (e.g., refer to a receipt)
 - Third-party (“Dear, how much is our monthly mortgage?”)
People don’t read instructions (Romano & Chen, 2011)

People read pages with questions differently from other pages (Jarrett & Romano Bergstrom, 2016)

Participants do not read linearly, and skipped around the survey (Redline and Lankford, 2001)

Participants spend more time looking at options on the top of a list of responses (Galesic, Tourangeau, Couper, and Conrad, 2008)

Longer fixation time on question stems indicates comprehension issues (Lenzner, Kaczmirek, and Galesic, 2011)
“Tapping into the collective intelligence of the public to complete a task”

- King, 2009
What is it?
- Remote, unmoderated usability or cognitive testing
- Willing pool of individuals (crowd)
- Participant panel or direct outreach
- Perform tasks that researcher provides
- Embedded scripted probes to assess tasks
- All items are self-administered
- Examples platforms include Mechanical Turk, TryMyUI, userzoom
Crowdsourcing advantages

Edgar, Murphy & Keating (2016)

- Lower costs (incentives, travel, set up)
- Timeliness: Some platforms can recruit 1000+ participants per day
- Wide geographic reach

Image source: Murphy, Keating, Edgar, 2014
Crowdsourcing examples

- Edgar, Murphy, & Keating (2016):
 - Worked as well as cog testing for simple tasks
 - Examples of sportswear
 - Define flu season
 - Cog testing better for complex tasks: explaining thought process for remembering clothes purchased recently
 - Major drawback: no spontaneous probing

- Murphy, Mayclin, Richards, & Roe (2015)
 - Used crowdsourcing to test alternative versions of a question that did not perform well in pilot test
 - Can obtain quantitative data
Summary and Conclusions
<table>
<thead>
<tr>
<th>Approach</th>
<th>Advantages</th>
<th>Limitations</th>
</tr>
</thead>
</table>
| Usability Testing | • Iterative process that guides design
 • Behavioral data
 • Performance measures
 • Evaluate mobile surveys | • Small sample sizes
 • Findings are mostly qualitative |
| Eye-tracking | • Implicit data not affected by self-report
 • Evaluate mobile surveys | • Requires specialized equipment to conduct
 • Does not work when participants’ gaze and attention are not together |
| Crowd-sourcing | • Geographic diversity
 • Larger samples
 • Obtain quantitative data
 • Quick to conduct and implement
 • Less expensive | • Not great for complex tasks / tasks must be short
 • Potential for bias depending on how respondents recruited
 • No spontaneous probing |
Emerging methods are not intended to replace existing methods; a multimethod approach works best.

How different pretesting methods interact to identify potential issues with survey quality.

Depending on the survey, 1 or 2 methods may offer more advantage compared with others.
Emily Geisen
Survey Methodologist
919-541-6566
egeisen@rti.org

Joe Murphy
Survey Methodologist
312-456-5261
jmurphy@rti.org