eventscribe

The eventScribe Educational Program Planner system gives you access to information on sessions, special events, and the conference venue. Take a look at hotel maps to familiarize yourself with the venue, read biographies of our plenary speakers, and download handouts and resources for your sessions.

close this panel

SUBMIT FEEDBACKfeedback icon

Please enter any improvements, suggestions, or comments for the JSM Proceedings.

Comments


close this panel
support

Technical Support


Phone: (410) 638-9239

Fax: (410) 638-6108

GoToMeeting: Meet Now!

Web: www.CadmiumCD.com

Submit Support Ticket


close this panel
‹‹ Go Back

Michael Rawson

University of Maryland at College Park



‹‹ Go Back

Please enter your access key

The asset you are trying to access is locked for premium users. Please enter your access key to unlock.


Email This Presentation:

From:

To:

Subject:

Body:

←Back IconGems-Print

319 – 319 - SLDS CSpeed 6

Deep Upper Confidence Bound Algorithm for Contextual Bandit Ranking of Information Selection

Sponsor:
Keywords: contextual bandit, deep learning, neural networks, recommendation, ranking, machine learning

Michael Rawson

University of Maryland at College Park

Contextual multi-armed bandits (CMAB) have been widely used for learning to filter and prioritize information according to a user’s interest. In this work, we analyze top-$K$ ranking under the CMAB framework where the top-$K$ arms are chosen iteratively to maximize a reward. The context, which represents a set of observable factors related to the user, is used to increase prediction accuracy compared to a standard multi-armed bandit. Contextual bandit methods have mostly been studied under strict linearity assumptions, but we drop that assumption and learn non-linear stochastic reward functions with deep neural networks. We introduce a novel algorithm called the Deep Upper Confidence Bound (UCB) algorithm. Deep UCB balances exploration and exploitation with a separate neural network to model the learning convergence. We compare the performance of many bandit algorithms varying K over real-world data sets with high-dimensional data and non-linear reward functions. Empirical results show that the performance of Deep UCB often outperforms though it is sensitive to the problem and reward setup. Additionally, we prove theoretical regret bounds on Deep UCB giving convergence to optimality for the weak class of CMAB problems.

"eventScribe", the eventScribe logo, "Cadmium", and the Cadmium logo are trademarks of Cadmium LLC, and may not be copied, imitated or used, in whole or in part, without prior written permission from Cadmium. The appearance of these proceedings, customized graphics that are unique to these proceedings, and customized scripts are the service mark, trademark and/or trade dress of Cadmium and may not be copied, imitated or used, in whole or in part, without prior written notification. All other trademarks, slogans, company names or logos are the property of their respective owners. Reference to any products, services, processes or other information, by trade name, trademark, manufacturer, owner, or otherwise does not constitute or imply endorsement, sponsorship, or recommendation thereof by Cadmium.

As a user you may provide Cadmium with feedback. Any ideas or suggestions you provide through any feedback mechanisms on these proceedings may be used by Cadmium, at our sole discretion, including future modifications to the eventScribe product. You hereby grant to Cadmium and our assigns a perpetual, worldwide, fully transferable, sublicensable, irrevocable, royalty free license to use, reproduce, modify, create derivative works from, distribute, and display the feedback in any manner and for any purpose.

© 2021 Cadmium