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Abstract

The choice of imputation model is often driven by the focus of the post imputation
analyses. However, this can be impractical especially when multiple imputation (MI)
inference is used in large-scale surveys or in applications with complex data structures.
This work investigates the impact of an imputation model on the mediation analysis
with clustered data. Specifically, we consider joint and variable-by-variable imputa-
tion models leading up to multi-level mediation analysis. We provide theoretical and
analytical assessment of the bias under each imputation method. A comprehensive
simulation study is conducted to understand the performance of imputation methods
in a repetitive sampling framework.

Key Words: multi-level mediation analysis, missing data, multiple imputation,
compatible imputation

1 Introduction

Missing data can easily complicate most analyses in many disciplines. Since the seminal
work by Dempster et al. (1977) missing data have been subject to many research topics
not only in statistics but also in many subject-matter areas. In particular, inference by
multiple imputation (MI) has been increasingly the norm in analysis of incomplete data
Rubin (1987). Another type of solution makes use Expectation-Maximization (EM) type
solutions leading to maximum-likelihood estimation in problem-specific settings. In this
work, we focus on how imputation model choice influences multilevel mediation analysis.

There are methods available in simpler problems of cross-sectional data that pertains
to joint modeling (JM) and fully conditional specification (FCS) modeling. There is a
relatively short history of applying JM and FCS to multilevel data, and less is known about
the performance of JM and FCS. Van Buuren (2011) extend the application of FCS to
multi-level data based on univariate linear mixed models. Carpenter & Kenward (2013)
incorporate cluster-level variable means as covariate to FCS imputation model. Schafer &
Yucel (2002) apply JM to multi-level missing data problem based on multivariate linear
mixed model.

Some researchers have conducted studies on the application of MI on multilevel dataset.
Multilevel imputation methods incorporate the clustering effects into the imputation pro-
cess. Imputation models that accounts for random effects can appropriately handle multi-
level data with missing data problem. Grund et al. (2018) apply MI to multilevel data and
summarize the comparison result of imputation models. They suggest that MI provide an
effective treatment of missing data in multilevel research. Mistler & Enders (2017) exam-
ine four multilevel multiple imputation approaches and conclude that their analytic work
and computer simulations show that FCS is more restrictive by imposing implicit equality
constraints on functions of the within- and between-cluster covariance matrices.
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Multi-level mediation analysis model is also impacted by missing data problem. Krull
& MacKinnon (2001) and other researchers introduce multi-level mediation model to ap-
propriately assess mediation effects in of a mediator in mediating the relationship between
independent variable and response variable for clustered data. However, limited researches
have been conducted to analyze the impact of imputation models on multi-level media-
tion analysis. In single-level mediation analysis model, Zhang and Wang (2013) introduce
and compare four approaches to deal with missing data in single-level mediation analysis
including listwise deletion, pairwise deletion, multiple imputation by Rubin (1976), and
a two-stage maximum likelihood (TS-ML) method under various missingness mechanisms
through simulation studies. They show that MI performed well when missingness mecha-
nism is independent of any of the observed variables (i.e. missing completely at random
(MCAR)) or when the missingness mechanism depends only on the observed variables but
not on the missing variables (missing at random (MAR)) in the sense defined by Rubin
(1976). Milletich II (2018) introduce bayesian bootstrap method to generate posterior in-
ferences for mediation effect and impute missing data using linear and logistic regression
models. They incorporate bayesian boostrap (BB) method with MI in the study, and claim
it has great performance in imputation. However, they do not extend their research or work
to multi-level mediation analysis model. Ye & Yucel (2020) compare the performance of im-
putation models (JM and FCS) for single-level mediation analysis model, and find JM and
FCS are similar in estimating mediation effect. However, the same result is not guaranteed
in the multi-level mediation analysis model structure. The multi-level mediation analysis
model is constructed by multiple univariate mixed model equations.

Many of the developments so far on MI have been made available to practitioners for
multi-level data. A joint modeling approach for clustered data has been developed by
Schafer & Yucel (2002) for linear mixed-effect model with an R package, ”Pan”. Mul-
tilevel joint modeling draw imputation from a multivariate mixed model. Van Buuren
(2011) develop the R package MICE which implements a wide variety of algorithms under
variable-by-variable imputation and provides additional options to draw from the poten-
tial conditional predictive distributions. Multilevel variable-by-variable imputation employs
multiple draw imputation for one incomplete variable at a time based on univariate mixed
model. There are also other programs available in other platforms. Raghunathan, Lep-
kowski, VanHoewyk, and Solenberger (2001) developed a SAS macro, “IveWare”, for the
application of variable-by-variable imputation in SAS. In STATA, we have the procedure
“ICE” by Royston and White (2011) to implement multiple imputation method for missing
data problem.

In this paper, we focus on analytically comparing joint model and variable-by-variable
imputation methods in multilevel mediation analysis with missing data problem. This
study starts by introducing how to estimate multilevel mediation effects, followed by how
imputation method works in this model. Then, the analytical comparison of two methods
is provided. Finally, we conduct a simulation study with finite samples to assess and
compare the performance of the methods under varying scenarios (different missingness
rate, mediation effect size, missingness mechanism and intracluster correlation coefficient
(ICC)).

2 Methods

2.1 Notation

Suppose K random variables D = (D1, ..., DK)T are intended to be observed on N subjects
with missing values. Subscripts p and q are used to index subjects and variables respectively
(p = 1, ..., N ; q = 1, ...,K). Let dpq denote an pth row and qth column element in an (N*K)
matrix. We denote the column q of matrix d by dq=(d1q, ..., dNq)

T . We denote the complete
data matrix U = (upq), the missing data indicator matrix R = (Rpq) and φ as the unknown
parameters in the section of introducing missingness mechanism. In multilevel mediation
analysis model, Y is denoted as the response variable, M is denoted as the mediator, and
X is denoted as the independent variable. Let yij denote a value of a random variable Y for
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subject j = 1, 2, ..., ni in cluster i = 1, 2, ...,m. For example, the independent variable Xij

indicates the value for jth subject at ith hospital. Three variables (Xij ,Mij and Yij) are
included in the data matrix D. η is the matrix includes M and Y , δ represents mediation
effect, β is the matrix of regression coefficients on mediator. For the purpose of missing
data imputation, we will have to model all variables regardless of covariates and response
as variables to be modeled.

2.2 1-1-1 Multilevel Mediation Analysis Model

In this study, the analysis is based on a specified multilevel mediation analysis model. Multi-
level mediation analysis examines the indirect effect (mediation effect) of an independent
variable on response variable by a mediator. Different from single-level mediation analysis
model, we consider interventions that occurs in cluster, such as hospitals, schools and etc
(Ellickson et al. (2003)) in multilevel mediation model. The aim of the multilevel mediation
analysis is to determine whether the relationship between the independent variable and
the response variable is mediated by the mediator. We are considering a two-level 1-1-1
mediation model example (Krull & MacKinnon (2001)), in which level 1 are nested within
level 2. In the 1−1−1 multilevel mediation model, the independent variable (Xij), mediator
(Mij), and response variable (Yij) are all evaluated at level 1 (individual-level).The ij
subscript on each variable refers to an individual j within i group. We focus on 1 − 1 − 1
multilevel mediation analysis model in this study.

We present a typical display from the Equation 1 to Equation 3 to form the mixed model
equations for the 1-1-1 multi-level mediation model:

Yij = α1i + cXij + ε1ij , (1)

Mij = α2i + aXij + ε2ij , (2)

Yij = α3i + c′Xij + bMij + ε3ij , (3)

where Yij is a representative of the response variable, and it is a continuous variable in
this study. Mij is a representative of the mediator, and it is a continuous variable in this
study. Xij refers to the independent variable and it could be either discrete or continuous
variable. All three variables, Yij , Mij and Xij are observed in the individual-level. c, a, c′

and b are fixed effects. ε1ij , ε2ij and ε3ij are error terms, and α1i, α2i and α3i are random
effects for corresponding models. We assume normal distributions for the error terms and
random effects: ε1ij ∼ N(0, σ2

ε1ij ), ε2ij ∼ N(0, σ2
ε2ij ), ε3ij ∼ N(0, σ2

ε3ij ), α1i ∼ N(0, σ2
α1i

),

α2i ∼ N(0, σ2
α2i

) and α3i ∼ N(0, σ2
α3i

) for i = 1, 2, ...,m and j = 1, 2, ..., ni. c is the total
effect of X on Y . c′ is the direct effect of X on Y . a × b is the indirect effect (Mediation
effect) of X on M . Figure 1 and Figure 2 shows a diagram of a 1− 1− 1 mediation analysis
model. Figure 1 represents the total effect of X on Y. In Figure 2, we partition the total
effect into direct effect and indirect effect, as indirect effect goes through variable M .

We have underlying missingness mechanisms assumptions in this study as defined by Ru-
bin (1976) and have been extensively discussed in missing data literature. We discuss three
missingness mechanisms in this paper. The first missingness mechanism is missing com-
pletely at random (MCAR), which means that missingness probabilities are independent of
any observed data; The second missingness mechanism is missing at random (MAR), which
means that missingness probabilities may depend on observed data but not on variables
subject to missing data and, finally, missing not at random (MNAR) means that probabil-
ities of missingness depend on the missing values and hence they need to be modeled. In
this paper, we focus on investigating performance under MCAR and MAR.

2.3 Multiple Imputation

Multiple imputation (MI) is a very useful method to impute missing values. MI is a practice
of replacing missing values that are typically drawn from a posterior predictive distribution
of missing data. We denote Yij(obs) as the observed outcome variable Yij , and denote Yij(mis)
as the unobserved outcome variable Yij . Yij includes Yij(obs) and Yij(mis). Let φ denotes the
unknown parameters. MI obtains multiple independent draws from the posterior predictive
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distribution and generate M complete data sets. The missing values are drawn from its
posterior predictive distribution as follows:

P (Yij(mis)|Yij(obs)) =

∫
P (Yij(mis)|Yij(obs), φ)P (φ|Yij(obs))dφ (4)

After imputation, we have M complete data sets. We use standard MI combination
rule to pool all results by Rubin (1987). Due to the reason that P (φ|Yij(obs)) is difficult
to estimate, we utilize a Markov Chain Monte Carlo (MCMC) method. Specifically, we
focus on a Gibbs sampler, which is a bayesian simulation technique that samples from the
conditional distributions Van Buuren et al. (2006).

Firstly, we draw φ from the conditional distribution of P (φ|α, Y ). This process includes
three steps. We start to draw α(t+1) by the following conditional distribution:

α(t+1) ∼ P (α|Yij(obs), Y tij(mis), φ
(t)) (5)

Then, we draw θ(t+1) as follows:

φ(t+1) ∼ P (φ|Yij(obs), Y tij(mis), α
(t+1)) (6)

After that, we draw Y t+1
ij(mis) as follows:

Y
(t+1)
ij(mis) ∼ P (Yij(mis)|Yij(mis), φt+1, α(t+1)) (7)

Based on the initial values of (α, φ, Yij(mis))
(0), we can use the above steps to finalize

a full cycle of Gibbs sampler. And the cycle will keep generating sequences for θ and

Yij(mis), i.e., we have {θ(1), θ(2), θ(3), ...} and {Y (1)
ij(mis), Y

(2)
ij(mis), Y

(3)
ij(mis), ...}. The samples

in the sequences follow a Marcov chain.
This predictive distribution of missing data can be modeled using parametric or non-

parametric methods. Multiple imputation can be done completely non-parametrically or
parametrically using either joint model or fully conditional specification.

In parametric methods, there are two commonly used modeling strategies. Joint model-
ing (Carpenter & Kenward (2013); Schafer & Yucel (2002)) and conditional (or sequential
or variable-by-variable) (Van Buuren (2011)) imputation models are two widely applied
methods for multi-level data with missing data problem.

Multilevel joint modeling draw imputations from a multivariate mixed model (two-level
hierarchical model). Specifically, JM employs bayesian theory to generate imputations
from two distributions. The missing values are drawn from a multivariate distribution that
conditions on the complete variable, random effects and fixed effects. The random effects
are drawn from a multivariate distribution with zero means and corresponding variances.

Multilevel fully conditional specification (FCS) imputation employs multiple draw impu-
tation for one incomplete variable at a time based on univariate mixed model. Specifically,
the FCS imputation procedure employs similar bayesian procedure as JM. For each vari-
able with missing data problem, imputations are drawn from a univariable distribution that
conditions on the all other variables, fixed effects and random effect. The random effect is
drawn from a univariate distribution with zero mean and corresponding variance.

3 Analytic comparison of joint versus variable-by-variable
imputation model

3.1 Population joint distribution

Consider three variables Y , M , and X distributed as multivariate normal distribution:YM
X

 ∼ N3(µ,Σ) (8)
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where the mean vector (µ) and covariace matrice (Σ) are:

µ =

µYµM
µX

 (9)

Σ = ΣW + ΣB

=

 σ2
Y (W ) σYM(W ) σY X(W )

σMY (W ) σ2
M(W ) σMX(W )

σXY (W ) σMX(W ) σ2
X(W )

+

 σ2
Y (B) σYM(B) σY X(B)

σMY (B) σ2
M(B) σMX(B)

σXY (B) σMX(B) σ2
X(B)


=

 σ2
Y (W ) + σ2

Y (B) σYM(W ) + σYM(B) σY X(W ) + σY X(B)

σMY (W ) + σMY (B) σ2
M(W ) + σ2

M(B) σMX(W ) + σMX(B)

σXY (W ) + σXY (B) σMX(W ) + σMX(B) σ2
X(W ) + σ2

X(B)


(10)

where µY , µM and µX are expectations of Y , M and X, respectively. We partition the
variance-covariance matrix Σ into within- and between-cluster components (ΣW and ΣB)
as shown in Equation 10. For example, σ2

Y and σY X are variance and covariance of Y , and
Y and X. σ2

Y and σY X are partitioned into within-cluster variance and covariance (i.e.,
σ2
Y (W ) and σY X(W )), and between-cluster variance and covariance (i.e., σ2

Y (B) and σY X(B)).

Then, we build up a joint distribution of Y , M , X and random effects (αY and αM )
based on the joint distribution of Y , M and X with partitioned variance-covariance matrix.
The between-cluster variance of Y (σ2

Y (B)) is assumed to be equal to the variance of random

effect of Y (αY ). The between-cluster variance of M (σ2
M(B)) is assumed to be equal to the

random effect of M (αMi). And we assume that αY and αMi are independent. Therefore,
we have the joint distribution of Y , M , X and random effects (αY and αM ) as follows:

Yij
Mij

Xij

αYi
αMi

 ∼ N3(µ,Σ)

where the mean vector and covariace matrice are:

µ =


µY
µM
µX
0
0



Σ =


σ2
Y (W ) + σ2

Y (B) σYM(W ) + σYM(B) σY X(W ) + σY X(B) σ2
Y (B) σ2

YM(B)

σYM(W ) + σYM(B) σ2
M(W ) + σ2

M(B) σMX(W ) + σMX(B) σMY (B) σ2
M(B)

σXY (W ) + σXY (B) σMX(W ) + σMX(B) σ2
X(W ) + σ2

X(B) σXY (B) σMX(B)

σ2
Y (B) σMY (B) σXY (B) σ2

Y (B) 0

σYM(B) σ2
M(B) σMX(B) 0 σ2

M(B)


In the following content, the processes of constructing conditional distributions for JM

and FCS are based on the joint distribution of Yij ,Mij , Xij , αYi , αMi
as shown above.

3.2 Implied conditional distributions under joint modeling

We first formulate the population joint distribution as a conditional distribution in terms
of mixed model parameters. The linear mixed model can be rewritten as a two-level hier-
archical model in Equation 11 and 12:
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[
Yij
Mij

]
|Xij , αY , αM ∼ N

([
αYi + βY |XXij

αMi
+ βM |XXij

]
,ΣY,M |X,αY ,αM

)
(11)

[
αYi
αMi

]
∼ N

([
0
0

]
,

[
σ2
Y (B) 0

0 σ2
M(B)

])
(12)

where αYi and αMi
are random effects. βY |X , βM |X are fixed values (typically under-

lying computational algorithms are MCMC type algorithms which operates on conditional
distributions fixing these unknown values at a previous iteration). The prior distribu-
tion for αi is multivariate normal distribution with zero means and variances (σ2

αYi
and

σ2
αMi

). ΣY,M |X,αY ,αM is the variance-covariance matrix for the conditional distribution of

Y,M |X,αY , αM , and it is calculated as:

ΣY,M |X,αY ,αM = Σ11 −Σ12Σ
−1
22 Σ21 (13)

where Σ11, Σ12 and Σ22 are shown as below:

Σ11 =

[
σ2
Y (W ) + σ2

Y (B) σYM(W ) + σYM(B)

σYM(W ) + σYM(B) σ2
M(W ) + σ2

M(B)

]
,

Σ12 =

[
σY X(W ) + σY X(B) σ2

Y (B) σYM(B)

σMX(W ) + σMX(B) σYM(B) σ2
M(B)

]
,

Σ22 =

σ
2
X(W ) + σ2

X(B) σXY (B) σMX(B)

σXY (B) σ2
Y (B) 0

σMX(B) 0 σ2
M(B)

 ,
Σ21 =

σY X(W ) + σY X(B) σMX(W ) + σMX(B)

σ2
Y (B) σMY (B)

σMY (B) σ2
M(B)


There are multiple steps we take to develop the formula of Σ−122 . The details of devel-

opment of estimating Σ−122 and ΣY,M |X,αY ,αM display in Appendix section 8.1.

3.3 Individual distributions under fully conditional specification

In this study, parametric FCS would employ mixed models as foundation to impute missing
values in Y and M . The model is specified as a two-level hierarchical model, and the
distribution of the incomplete variable Yij given the complete variables (Mij and Xij) and
random effect (αYi), and the prior distribution of αYi is:

Yij |Mij , Xij , αYi ∼ N(αYi + βY |XXij + βY |MMij , σ
2
Y |M,X) (14)

αYi ∼ N(0, σ2
Y (B)) (15)

where Y represents the drawn missing value from its posterior predictive distribution
whose parameters are fixed at the previous iteration, and αYi is a random effect. βY |X ,
βY |M are fixed values(typically underlying computational algorithms are MCMC type algo-
rithms which operates on conditional distributions fixing these unknown values at a previous
iteration). The procedure of imputing missing values of M is specified as a two-level hierar-
chical model, which includes a conditional distribution of the incomplete variable M given
the complete variables (Yij and Xij) and random effect (αMi), and the prior distribution of
αMi is:

Mij | Yij , Xij , αMi
∼ N(αYi + βM |XXij + βM |Y Yij , σ

2
M |Y,X) (16)

αMi
∼ N(0, σ2

M(B)) (17)
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where M represents the drawn missing value from its posterior predictive distribution
whose parameters are fixed at the previous iteration, and αMi

is a random effect. βM |X ,
βM |Y are fixed values(typically underlying computational algorithms are MCMC type algo-
rithms which operates on conditional distributions fixing these unknown values at a previous
iteration).

3.4 Application in multi-level mediation analysis model

In this section, we assess the impact of imputation models on multi-level mediation effect
(δ). The estimation of individual level mediation effect is a more complicated scenario than
estimating simpler scenario with i.i.d random samples mediation effect. The analytical
development of estimation for cluster level mediation effect can be found at Ye & Yucel
(2020). We firstly formulate the MLE estimator of δ, and then we analytically estimate the
bias generated by corresponding imputation models.

We implement the imputation models as described in section 3.1, 3.2 and 3.3 with three
variables Y , M and X. As we have stated the multi-level mediation analysis model formulas
from Equation 1 to Equation 3. By the properties of multi-level mediation analysis model,
the direct effect is estimated by the coefficient of Xij on Yij (c′) in Equation 3. δ is estimated
by the multiplication of the coefficient of Xij on Mij (a in Equation 2) and the coefficient of
Mij on Yij (b in Equation 3), i.e., δ = a×b. The total effect is estimated by the coefficient of
Xij on Yij (c in Equation 1). MacKinnon et al.(1995) have shown the algebraic equivalence
of the a×b and c−c′ of the three mediation regression equations by normal theory ordinary
least squares and maximum likelihood estimation .

For each linear mixed model (LMM) equation in 1, 2 and 3, we rewrite LMM as two-
level hierarchical model. We have maximum likelihood estimator (MLE) or weighted least
squares estimator (LSE) of ĉ in Equation 1 as follows:

ĉ = (XTV −11 X)−1XTV −11 Y

where we have

Y =

Y1...
Yn

 ∈ <n×1,where n =
m∑
i=1

ni, X =

X1

...
Xn

 ∈ <n×1, V1 = InGα1i
ITn +R1

Gα1i
is a diagonal matrix of the variance of α1i (σ2

α1i
), In is an identity matrix of size n

and R1 is a n×n variance matrix of residues for regression model in Equation 1. Similarly,
we have the MLE or weighted LSE of â in Equation 2 as follows :

â = (XTV −12 X)−1XTV −12 M

where we have

M =

M1

...
Mn

 ∈ <n×1, V2 = InGα2i
ITn +R2

Gα2i is a diagonal matrix of the variance of α2i, and R2 is a n × n variance matrix of
residues for regression model in Equation 2. We have the MLE or weighted LSE of ĉ′ and
b̂ as follows:

(ĉ′, b̂)T = (XT
[M ]V

−1
3 X[M ])

−1XT
[M ]V

−1
3 Y

where we have

X[M ] =

X1 M1

...
...

Xn Mn

 ∈ <n×2, V3 = InGα3i
ITn +R3
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Gα3i
is a diagonal matrix of the variance of α3i, and R3 is a n × n variance matrix of

residues for regression model in Equation 3.
All parameters in the following content are estimated by MLE. We implement the in-

variance property of MLE in the following content to estimate the parameters. Therefore,
we have the MLE estimator of δ̂ is as follows:

δ̂ = âb̂ = Z(XTV −12 X)−1XTV −12 M(XT
[M ]V

−1
3 X[M ])

−1XT
[M ]V

−1
3 Y (18)

where Z is a 1 × 2 matrix, i.e., Z = (0, 1). Computational details of formulating MLE

of â, b̂, ĉ, ĉ′ and δ̂ for sample data are provided in Appendix 8.2.

3.4.1 Mediation effect estimate under JM and FCS

We first start from a simpler scenario that we only have one incomplete variable, and then
we extend to the scenario that we have two incomplete variables under the framework of
multi-level mediation analysis model.

When we only have one incomplete variable (Y ) and two fully observed variables (M and
X) in the dataset D, we find that both JM and FCS models employ the same imputation
formula (Equation 14 and 15) as the imputation model to generate imputed values for
Y , and the association between Y and M is governed by the same parameter, βY |M in

Equation 14. The formulated expression of δ̂ is consistent for both joint and variable-by-
variable imputation methods. Thus, JM and FCS are consistent in estimating mediation
effect when we have only one incomplete variable under the multi-level mediation analysis
model framework.

In the second scenario, we suppose that there are two incomplete variables (Y and M)
and one fully observed variable (X) in the dataset D. We formulate the MLE estimates of
mediation effect by employing imputation models’ parameters, and calculate the estimates
of bias generated by imputation models at the end of this section.

Firstly, we choose FCS as the imputation model, and we restate that FCS employs the
conditional distributions of Yij given Mij , Xij and αY i with the prior distribution of αYi ,
and Mij given Yij , Xij and αMi with the prior distribution of αMi

to impute incomplete
values for Yij and Mij , respectively. The conditional distribution of Yij given Mij , Xij and
αY i, and prior distribution of αYiare shown from Equation 14 to 15. We firstly multiply
the conditional distribution of Yij given Mij , Xij , αYi with the prior distribution of αYi . We
find the conditional distribution of Yij and αYi given Mij and Xij as follows (details are
shown in Appendix 8.3):

f(Yij , αYi |Mij , Xij) = f(Yij |Mij , Xij , αYi)× f(αYi)

Then, we integrate the conditional distribution of Yij and αYi given Mij and Xij re-
garding αYi , and we have the conditional distribution of Yij given Mij and Xij , which is
free of random effect αYi . The detailed process of developing the distribution of Yij given
Mij and Xij is shown at Appendix 8.3. The distribution of Yij given Mij and Xij is shown
as follows:

f(Yij |Mij , Xij) =
1

√
2π
√
σ2
Y |M,X + σ2

αY

e

− (Y − βY |XX − βY |MM)2

2(σ2
Y |M,X + σ2

αY )

In this case, we find that Yij given Mij and Xij is a normal distribution with mean
βY |XXij + βY |MMij and variance σ2

Y |M,X + σ2
αY . The conditional expectation of Yij given

Mij and Xij (E(Y |M,X)) is βY |XX + βY |MM , and we find the estimate of β̂Y |M (b̂ in
mediation analysis model) as follows:

b̂ = β̂Y |M =
σ̂2
M σ̂Y X − σ̂MX σ̂MY

σ̂2
M σ̂

2
X − σ̂2

MX

Next, we determine the estimate of â, which corresponds to the coefficient of Mij on
Xij in multi-level mediation analysis model (Equation 2). We multiply the conditional
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distribution of Mij given Yij , Xij and αMi with the prior distribution of αMi
in Equation

16 and 17. We find the conditional distribution of Mij , αM given Yij and Xij as follows
(details are shown in Appendix 8.3):

f(Mij , αMi
|Yij , Xij) = f(Mij | Yij , Xij , αMi

)× f(αMi
)

Then, we integrate the conditional distribution of Mij and αMi
given Yij and Xij with

regard to αMi
, and we have the conditional distribution of Mij given Yij and Xij , which is

free of αMi . The details of developing the distribution of Mij given Yij and Xij is shown
at Appendix 8.4. The distribution of Mij given Yij and Xij is shown as follows:

f(Mij |Yij , Xij) =
1

√
2π
√
σ2
M |Y,X + σ2

αM

e

− (Mij − βM |XXij − βM |Y Yij)2

2(σ2
M |Y,X + σ2

αM )

We find that the conditional distribution of Mij given Yij and Xij is a normal dis-
tribution with mean βM |XXij + βM |Y Yij and variance σ2

M |Y,X + σ2
αM . Then, we find

the conditional distribution of Mij and Yij given Xij by multiplying the conditional dis-
tribution of Mij given Yij and Xij with the distribution of Yij . Yij is distributed as
Yij ∼ N(µY , σ

2
Y (W ) + σ2

Y (B)). Next, we find the distribution of Mij given Xij by inte-
grating the conditional distribution of Mij given Yij and Xij with respect to Yij . The
process is shown as follows:

f(Mij |Xij) =

∫
f(Mij |Yij , Xij)f(Yij)dY

=

∫
f(Mij , Yij |Xij)dY

We show the derivation details at Appendix 8.5. Therefore, we find the conditional
distribution of Mij given Xij as a shifted normal distribution as follows:

f(Mij |Xij) =
1√

π(β2
M |Y σ

2
Y + σ2

M |Y,X + σ2
αM )

eA2M
2+B2M+C2

where A2, B2 and C2 are functions of σ2
Y , σ2

αM , βM |Y and etc. The expressions for
A2, B2 and C2 are provided in Appendix 8.5. Therefore, we find that the distribution of
Mij given Xij is a shifted normal distribution. We determine the coefficient of Mij on Xij

by calculating the expectation of Mij given Xij (E(M |X)), and we have the formula of
E(M |X) (details of development are shown in Appendix 8.5) as follows:

E(M |X) = −
(βM |Xσ

2
M |Y,X + σ2

αβM |X)X + c′

2πA(β2
M |Y σ

2
Y + σ2

M |Y,X + σ2
α)(σ2

M |X,Y + σ2
α)
√

2A(β2
M |Xσ

2
Y + σ2

M |Y,X + σ2
α)

where c′ is a constant with respect to X. Therefore, we find the estimate of â, which is
the coefficient of X in the formula above, we have

â = [
σ̂2
Y β̂

2
M |Y β̂M |X

(β̂2
M |Y σ̂

2
Y + σ̂2

M |Y,X + σ̂2
α)(σ̂2

M |X,Y + σ̂2
α)
−

β̂M |X

σ̂2
M |X,Y + σ̂2

α

]×

1

2πÂ
√

2Â(β̂2
M |X σ̂

2
Y + σ̂2

M |Y,X + σ̂2
α)

Therefore, the estimate of mediation effect after applying FCS to data with missing
values is as follows:

29



δ̂FCS = âb̂ = [
σ̂2
Y β̂

2
M |Y β̂M |X

(β̂2
M |Y σ̂

2
Y + σ̂2

M |Y,X + σ̂2
α)(σ̂2

M |X,Y + σ̂2
α)
−

β̂M |X

σ̂2
M |X,Y + σ̂2

α

]×

β̂M |X

2πÂ
√

2Â(β̂2
M |X σ̂

2
Y + σ̂2

M |Y,X + σ̂2
α)

(19)

Then, we implement the similar strategy to evaluate the δ̂JM for JM as we did in
previous content for FCS. JM draws incomplete variables, Yij and Mij , together from the
joint conditional distribution of Yij and Mij given Xij , αY and αM with the prior joint
distribution of αY and αM in Equation 11 and 12. However, different from FCS, a and
b are not independently generated, we cannot estimate δ directly by multiplying a and
b. Therefore, we employ the theorem from MacKinnon (1995) to estimate δ̂ based on the
following equivalence:

δ̂ = â× b̂ = ĉ− ĉ′

We employ the following techniques to find the estimation of mediation effect by c and
c′. We determine ĉ by calculating E(Y |X) and assessing the association between Y and X.
We estimate ĉ′ by assessing the coefficient of X on Y within the expression of E(Y |M,X).
We firstly calculate the distribution of Yij ,Mij , αYi , αMi

given Xij by multiplying the con-
ditional distribution of Yij ,Mij given Xij , αYi , αMi and the prior distribution of αYi , αMi

as follows:

f(Yij ,Mij , αYi , αMi
|Xij) = f(Yij ,Mij |Xij , αYi , αMi

)× f(αYi , αMi
)

=
exp(−

1

2
(x− µ)TΣc

−1(x− µ))√
(2π)2|Σc|

×
exp(αTΣα

−1α)√
(2π)2Σα

We find the conditional distribution of Yij ,Mij given Xij by integrating conditional
distribution of Yij ,Mij , αYi , αMi

given Xij regarding αYi and αMi
as follows:

f(Yij ,Mij |Xij) =

∫∫
f(Yij ,Mij , αYi , αMi |Xij)dαYidαMi

Therefore, we find the formula of f(Yij ,Mij |Xij) as follows (details of development are
provided at Appendix 8.6):

f(Yij ,Mij |Xij) =

√
(fk − gh)σ2

Y

π
√

2(kσ2
Y + fk − gh)ΣCΣαA4

e−HY
2+JY+K

where H, J and K are constants with respect to Y . The expressions for H, J and K
are provided at Appendix 8.6. Then, we integrate the conditional distribution of Yij and
Mij given Xij with regard to Mij , and we obtain pdf of Yij given Xij as follows:

f(Yij |Xij) =

∫
f(Yij ,Mij |Xij)dM

Therefore, we have the expression of f(Yij |Xij) as follows (details of development are
provided at Appendix 8.7):

f(Yij |Xij) =

√
σ2
Y (fk − gh)√

π(kσ2
Y + fk − gh)ΣCΣαA4H

eUM
2+VM+W

where U , V and W are constant to Xij . The conditional distribution of Yij given Xij

is a shifted normal distribution, and we find the expression of E(Y |X) by the property
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of shifted normal distribution. We have E(Y |X) (details of development are provided at
Appendix 8.7) as follows:

E(Y |X) =
2
√

2(fk − gh)σ2
YH√

(kσ2
Y + fk − gh)ΣCΣα(P 2 − 4QH)

×
2HR− LRX
P 2 − 4HQ

c equals to the coefficient of X in the expression of E(Y |X). We find the expression of
ĉ as follows:

ĉ = −
2
√

2(f̂ k̂ − ĝĥ)σ̂2
YH√

(k̂σ̂2
Y + f̂ k̂ − ĝĥ)Σ̂CΣ̂α(P̂ 2 − 4Q̂Ĥ)

×
L̂R̂

P̂ 2 − 4ĤQ̂

We show the details of deriving ĉ at Appendix 8.7. Then we find the conditional dis-
tribution of Yij given Mij , Xij using bayes theorem as follows (details of developing the
conditional distribution of Yij given Mij , Xij are given at Appendix 8.8):

f(Yij |Mij , Xij) =
f(Yij ,Mij |Xij)

f(Mij |Xij)

We find the expression of ĉ′ by assessing the coefficient ofXij on Yij within the expression
of E(Y |M,X). We find Yij given Mij and Xij is a shifted normal distribution, therefore,
we have the formula of E(Y |M,X) as follows:

E(Y |M,X) =
E
√

(fk − gh)σ2
Y (β2

M |Y σ
2
Y + σ2

M |Y,X + σ2
α)√

(kσ2
Y + fk − gh)ΣCΣαA4

[(
F

E
βM |X − βY |X)X −

FM

E
]

And we find the expression of ĉ′ as follows:

ĉ′ =
Ê
√

(f̂ k̂ − ĝĥ)σ̂2
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M |Y σ̂
2
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α)√
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(
F̂

Ê
β̂M |X − β̂Y |X)

Thus, the estimate of mediation effect after applying FCS to data with missing values
is as follows:

δ̂JM = ĉ− ĉ′

= −
2
√

2(f̂ k̂ − ĝĥ)σ̂2
YH√

(k̂σ̂2
Y + f̂ k̂ − ĝĥ)Σ̂CΣ̂α(P̂ 2 − 4Q̂Ĥ)

×
L̂R̂

P̂ 2 − 4ĤQ̂
−

Ê
√
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Y + σ̂2

M |Y,X + σ̂2
α)√

(k̂σ̂2
Y + f̂ k̂ − ĝĥ)Σ̂CΣ̂αÂ4
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F̂

Ê
β̂M |X − β̂Y |X)

(20)

θ is denoted as the bias (difference between the expected value of the estimator and
true value) of the estimate of mediation effect after applying imputation models, we first
estimate θFCS by calculating the difference between the expectation of δ after implementing
FCS and its corresponding true value, and we have

θ̂FCS = E(δ̂FCS)− δ̂ (21)

where δ̂FCS is shown in Equation 19. Then, we employ the same process to estimate
θJM by implementing the same approach, and we have

θ̂JM = E(δ̂JM )− δ̂ (22)

where δ̂JM is shown in Equation 20. The true value of δ̂ in Equation 21 and Equation
22 is estimated based on MLE or Weighted LSE estimate of δ in Equation 18 before we
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apply any imputation models. MLE has the consistency property that it converges to
true parameter in probability as n → ∞. Then, we apply Slutsky’s Theorem to find the
expectation of E(δ̂FCS) and E(δ̂JM ). Based on Slutsky’s Theorem, we have YnXn → aX
in distribution, if Xn → X in distribution and Yn → a in probability, where a is a constant.

Both formulas are very complex and include components such as variances, covariance
and etc. However, we can factor out βM |X (the coefficient of µM |X,Y,αM for X) in the bias
estimate for FCS. The relationship between M and X is directly related to the expected
bias generated by FCS. As for JM, we fail to easily factor out a common term, and there is
no specific term that affect the bias directly.

4 Simulation assessment

We conduct a simulation study to test the performance of different Multiple Imputation
(MI) methods on the multi-level mediation analysis. This study compares PAN and MICE
package in RStudio version (Version 1.1.463 – 2009-2018 RStudio, Inc). PAN package sam-
ples from multivariate linear mixed models for incomplete data, and MICE package imputes
continuous two-level data based on univariate linear mixed model for each incomplete data.

4.1 Data generation

Our data generation process first simulates the independent variable Xij , which is generated
from an independent normal distribution, i.e., Xij ∼ N(0, σ2

X). Next, the mediator M , is
simulated from the following mixed-effects formulation:

Mij = aXij + α1i + ε1ij ,

where α1i is a cluster random-effect assumed to follow a normal distribution, i.e., α1i ∼
N(0, σ2

α1
) for any i. εij refers to residual error term and is assumed to be generated from

a normal distribution, i.e., ε1ij ∼ N(0, σ2
ε1) for any i and j. α1 and ε1ij are assumed to be

independent.
Next, we simulated Yij conditional on Mij , Xij using the following mixed-effects formu-

lation:

Yij = c′Xij + bMij + α3i + ε3ij

where α3i and ε3ij refer to random effect and residual error, respectively. α3i and ε3ij
are assumed to be generated from independent normal distributions, i.e., α3i ∼ N(0, σ2

α3
)

and ε3ij ∼ N(0, σ2
ε3). We use this framework to simulate a population of 1,000 observations

under 100 clusters. We repeat this process for 100 times to study the performance criteria
stated in section 4.2.

In the first simulation experiment, we set δ to 0.01 (i.e., a = b = 0.1, δ = 0.01 and
c′ = 0.5) to test the performance of imputation methods with low mediation effect. In the
second simulation experiment, we set δ to 0.1521 (i.e., a = b = 0.39, δ = 0.1521, c′ = 0.5)
and study the impact of imputation methods on medium mediation effect. In the third
simulation experiment, we set δ to 0.3481 (i.e., a = b = 0.59, δ = 0.3481, c′ = 0.5) to
examine the compatibility of imputation models on high mediation effect scenario.

The next step of data generation is imposing missing values under MCAR, MAR and
MNAR mechanisms (Rubin (1976)). We impose the missing values on the response variable
Y and the mediator M under different missingness mechanisms. Let rY and rM denote
missingness indicators for Y and M , respectively. Under MCAR mechanism, both rY and
rM are simulated from a bernoulli distribution. We set the success probability to 10 percent,
20 percent and 30 percent to study the behavior under these rates of missingness for Y and
M . Under MAR mechanism, the probability of missingness of Y and M depend on the
fully observed variable X:

logit(P (rY = 1|x)) = γY0 + γY1 X,

logit(P (rM = 1|x)) = γM0 + γM1 X,
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where the γ (γ0 and γ1) for both Y andM are chosen to lead to approximately 10 percent,
20 percent, and 30 percent rates of missingness. Under MNAR mechanism, missingness in Y
and M depends on Y and M themselves, respectively. If Y is smaller than its sth percentile,
Y is missing, and if M is smaller than its sth percentile, M is missing. We set s to be 10,
20 and 30 to control the missingness rates of Y and M at 10%, 20% and 30%, respectively.

We repeat this simulation process for three times to investigate the impact of different
intracluster correlations (ICC), we allow σα1

to vary 0.5 from to 2, and σε1 from 2 to 4. We

have ICC=
σ2
α

σ2
α + σ2

ε

, and we only report results for the scenario when ICC equals 0.05, 0.1,

and 0.2.

4.2 Estimation and evaluation criteria

For each simulation scenario, we create a total of 5 imputations under each MI method. MI
theory suggests that three to five imputations could yield excellent results. Our choice of
five imputations is considered based on imputation precision. The general choice number of
imputations is discussed in Graham et al. (2007), Royston (2005) and Bodner (2008). The
estimates and their standard errors are combined using Rubin’s rule (Rubin (1976)).

Comparisons of different imputation methods are conducted based on different effect size
of mediation effects, which are always focal to mediation analysis. We use the prespecified
four different mediation effects (δ) as the ”true values” to test the accuracy of different
imputation methods. We use four different criteria to assess the consistency and accuracy
for each imputation methods. Let l̂r and ûr denote the lower and upper limits of the
95% confidence interval for the mediation effect in the rth imputed data. We also denote
δ̂r = âr b̂r as the mediation effect estimate for the rth replication, where r = 1, ..., 100.

The first criterion to assess the performance is the coverage rate (CR):

CR =

∑100
r=1 Ir(l̂r < δ < ûr)

100
,

where Ir is an indicator function such that:

Ir =

{
1 δ ∈ (l̂r, ûr)

0 δ /∈ (l̂r, ûr).

CR evaluates the proportion of confidence intervals that contain the true mediation
effect value. In this study, we set the actual coverage of nominal 95% intervals. The actual
rate is supposed to be close to nominal rate for good imputation method. Collins et al.
(2001) suggest that the performance of imputation method is poor if the CR is below 90
percent for a 95 percent nominal rate. Secondly, we estimate the standardized bias for
imputation models. Standardized bias (SB) is calculated as:

SB = 100×
¯̂
δ − δ
SE

,

where SE is the standard error of the estimates, and
¯̂
δ is the average estimate of the

mediation effect. Collins et al. (2001) comment that once the standardized bias exceeds
40%, the bias may have a noticeable negative impact on imputed parameter. In this study,
we consider standardized bias as significant when its absolute value is greater than 40%.

The third criterion is mean square error (MSE). The formula of how to calculate MSE
is provided as follows:

MSE =
1

100

100∑
r=1

(δ̂ − δ)2,

MSE is a measure for accuracy and precision. MSE is a measure for accuracy and
precision. We also calculate average width (AW) as:

AW =

∑1000
r=1 (ûr − l̂r)

1000
,
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Among four different criteria to assess the consistency and accuracy for each method
under all conditions, CR and SB are the most important criteria to show the performance
of imputation methods under multi-level mediation analysis model.

The same evaluation criteria will also be measured for complete-case-only (CC) analysis.
For complete-case-only analysis, we exclude all units for which the outcomes variable and
mediator (Y and M) are missing and keep the remaining complete observations. Then, we
apply the mediation analysis model to obtain the estimate of mediation effect and compare
the results with other datasets applied with imputation models.

4.3 Summary of the results

We compare the performance of FCS and JM methods for incomplete dataset under medi-
ation analysis model. From table 1 to table 3, we show the different coverage rate (CR),
mean square error (MSE), average width (AW), and standardized bias (SB) for the scenario
when we have low mediation effect condition (a = b = 0.1, δ = ab = 0.01, c′ = 0.5). We
report the result when ICC is fixed at 0.05, 0.1 and 0.2. From table 4 to 6, we show results
for high mediation (a = b = 0.59, δ = ab = 0.3481, c′ = 0.5) condition and ICC is fixed at
0.05, 0.1 and 0.2. We show medium mediation condition (a = b = 0.39, δ = ab = 0.1521,
c′ = 0.5) with fixed ICC as 0.05, 0.1 and 0.2 from figure 3 to figure 5. For each table, we
compare CRs, MSEs, AWs and SBs of the estimated mediation effect under complete-case-
only analysis and imputation models. Different missingness mechanisms (MCAR, MAR and
MNAR) are considered with a sample size of 1,000, and variations in the missingness rates
(10%, 20% and 30%). As for figures, we focus on comparing SBs with respect to varying
joint missingness rate.

Table 1 presents the result under the scenario of low mediation effect. The missingness
rates for M and Y are fixed at 10%, 20% and 30% marginally for each variable, and from
10% to 52.2% jointly. CRs and SBs that are above acceptable limits are shown in bold. We
find that FCS and JM are consistent in estimating the effect size of mediation effect under
MCAR and MAR mechanisms. Under MCAR, CRs range from 92% to 94% for FCS, and
from 92% to 96% for JM. Under MAR, CRs range from 90% to 91% for FCS, and from
92% to 96% for JM. However, FCS, JM and CC do not perform well for MNAR mechanism,
and we observe low CRs values (below 90%). We find that SBs are below 40% when the
missingness mechanism are MCAR and MAR mechanisms (except for the case when we
apply CC and have 30% JMR). We find a significant SB (above 40%) when we apply FCS
under MNAR mechanism with 19.3%. SBs are all significant when we have 36.8% or higher
JMR under MNAR mechanism regardless of imputation model. Table 2 and Table 3 show
the result when we increase ICC (0.1 and 0.2).

Table 4, Table 5 and Table 6 display results for High mediation effect with varying ICC
(0.05, 0.1 and 0.2). We find that FCS and JM perform well under MCAR and MAR. The
compatibility between FCS and JM remains consistent when joint missing rate increases.
However, none of the methods perform well under MNAR.

We show the comparison between exact bias and estimated bias by imputation methods
in figure 6. We find that the bias generated by imputation methods is very close to the
exact bias especially when the missingness mechanism is MCAR. When the missingness
mechanism is MAR or MNAR, we find that the estimated bias by imputation methods is
larger than the exact bias.

5 Application

We are studying the mediation effect of attendance rate in the association between the
Environmental related program (EPA) and students grades under the multi-level mediation
analysis model framework. Two datasets were used in the analysis (Building Condition
Survey (BCS) and academic data for students in school-level).

New York State (NYS) Building Condition Survey (BCS) in 2015 is mandated by New
York State Education Law and regulations that all NYS public schools submit the BCS
to New York State Education Department (NYSED) every 5 years to assess the school
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environment with respect to building condition and students’ learning environment. The
BCS aims to measure building systems and school environment using a group of licensed
engineers or architects through physical inspection. The BCS also includes information on
school building age, size, and ratings of the overall building condition, and of the 53 individ-
ual building systems including the building envelope, plumbing systems, heating ventilation
and air conditioning (HVAC) systems, roofing and implementation of environmental pro-
grams. Since 2005, a new section assessing environmental parameters related to comfort
and health, including IAQ, cleanliness, acoustics, and lighting has been added. The other
dataset comes from NY State Education Department and includes all school-level academic
information of students (Regent test results for high school students, English Language
Arts, Mathematics (“NY STATE - NEW YORK STATE REPORT CARD [2018 - 19],”
n.d.), Science for high school students) in 2016. The city of where school locates is also
included. Both datasets contain geographical information of schools, which was used to link
the data records.

Previous researchers (Lorraine E. Maxwell and Suzanne L. Schechtman, 2012) have
investigated the impact of EPA tools for school (TfS) on students grades and attendance.
Also, Maxwell (2016) reported a significant impact of attendance rate on ELA score (direct
effect is 0.39 under mediation analysis model) for middle school student at NYC. However,
the mediation effect of attendance rate remains unknown from a multi-level mediation
model perspective. We utilize ”mlma” package by Yu and Li (2021) in R to estimate the
mediation effect, indirect effect and percentage mediated for each test at elementary school
(Table 7) and high school (Table 8). City is regarded as the cluster level variable. We
find mediation effect of attendance rate in mediating the association between EPA tools
for school (TfS) and elementary students’ academic performance (mediation effect ranges
from -0.33 to -0.48). We find mediation effect of attendance rate on the EPA TfS and high
school students’ academic performance (mediation effect ranges from 0.002 to -0.51).

6 Discussion

The objective of this simulation study is to verify the analytically-derived formula of bias,
and determine the compatibility of FCS and JM imputation models in multi-level mediation
analysis model. We find that the choice of imputation models does not have an impact on
the multi-level mediation analysis model and the bias is verified.

We recommend researchers to apply imputation methods to assess mediation effect for
incomplete dataset when the missingness mechanism is assumed as MCAR or MAR. When
we apply imputation methods to incomplete dataset with varying mediation effect (low,
medium and high mediation effect), we do not find a significant standardized bias when the
missingness mechanism is MCAR with varying ICC (from 0.05 to 0.2). Although JM and
FCS are performing as well as complete-case-only analysis for MCAR regarding the bias,
MSE, coverage rate and etc, we lose sample size, efficiency and power if we complete-case-
only analysis. Mediation analysis is mostly dealing with multivatiate conditions, there-
fore, losing sample size may have negative impact on the model. When the missingness
mechanism is MAR, MI inference outperforms complete-case-only analysis regardless of the
imputation methods and ICC as expected. CC will bias the whole sample, because the
missing value depends on the covariates. None of the methods perform well under MNAR,
in particular, CC led to substantial biases. Our simulation based study find that the results
generated by imputation models are significantly better than CC under MCAR and MAR,
because MI do not necessarily have the assumption for MNAR and we specify the model to
impute missing values under MNAR.

This study has several limitations. First, comparison of JM and FCS is based on a
pseudo-random simulation study, aimed to mimic a real-world problem. We supplemented
this simulation with analytical assessment of the bias induced by each of imputation method.
To the best of our knowledge, our work is the first to make such an assessment. Second, we
only consider a mediation analysis model in the sense that we have only one mediator. We
did not investigate different types of response variables or types of covariates/mediators.
These aspects will be subject of our future research topics.
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7 Tables and Figures

7.1 Mediation analysis model visualization

Figure 1: The total effect of the independent variable on the dependent variable

Figure 2: The indirect effect of the independent variable on the dependent variable through
the mediator variable
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Table 1: Simulation Results for Low Mediation Effect (δ=0.01, ICC=0.05)

MM Imputation Model JMR CR MSE AW SB
mcar FCS Regresion 0.190 0.94 0.00013 0.033 0.142

JM 0.90 0.00011 0.022 0.326
CC 0.96 0.00005 0.033 0.171
FCS Regresion 0.361 0.92 0.00009 0.036 0.366
JM 0.96 0.00011 0.032 0.267
CC 0.92 0.00007 0.036 0.151
FCS Regresion 0.510 0.93 0.00009 0.037 0.369
JM 0.93 0.00013 0.051 0.100
CC 0.91 0.00011 0.040 0.266

mar FCS Regresion 0.100 0.91 0.00013 0.054 0.111
JM 0.92 0.00008 0.035 0.281
CC 0.95 0.00007 0.036 0.391
FCS Regresion 0.200 0.91 0.00014 0.061 0.070
JM 0.96 0.00012 0.055 0.213
CC 0.92 0.00009 0.042 0.292
FCS Regresion 0.300 0.90 0.00010 0.063 0.264
JM 0.93 0.00015 0.072 0.094
CC 0.96 0.00014 0.050 0.460

mnar FCS Regresion 0.193 0.54 0.00008 0.020 0.505
JM 0.86 0.00006 0.014 0.220
CC 0.74 0.00006 0.023 0.255
FCS Regresion 0.368 0.43 0.00008 0.019 0.428
JM 0.73 0.00008 0.020 0.429
CC 0.63 0.00007 0.022 0.594
FCS Regresion 0.522 0.43 0.00009 0.020 0.526
JM 0.50 0.00010 0.025 0.424
CC 0.53 0.00008 0.021 0.417

note. MM: Missingness Mechanism; MR: Missingness Rate; JMR: Joint Missingness Rate; CR:
Coverage Rate; MSE: Mean Square Error; AW: Average Width; SB: Standardized Bias; FCS: fully
conditional specification; JM: joint modeling; CC: complete-case-only only analysis; mcar: missing
completely at random; mar: missing at random; mnar: missing not at random.
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Table 2: Simulation Results for Low Mediation Effect (δ=0.01, ICC=0.1)

MM Imputation Model JMR CR MSE AW SB
mcar FCS Regresion 0.190 0.91 0.00068 0.068 0.129

JM 0.94 0.00128 0.085 0.225
CC 0.93 0.00133 0.144 0.300
FCS Regresion 0.360 0.91 0.00034 0.083 0.316
JM 0.97 0.00111 0.138 0.271
CC 0.94 0.00165 0.162 0.343
FCS Regresion 0.510 0.95 0.00027 0.088 0.189
JM 0.97 0.00160 0.182 0.273
CC 0.94 0.00208 0.193 0.333

mar FCS Regresion 0.100 0.97 0.00063 0.133 0.268
JM 0.95 0.00184 0.166 0.222
CC 0.95 0.00174 0.159 0.225
FCS Regresion 0.200 0.99 0.00043 0.147 0.381
JM 0.96 0.00263 0.233 0.286
CC 0.91 0.00258 0.185 0.381
FCS Regresion 0.300 0.96 0.00024 0.140 0.259
JM 0.97 0.00271 0.312 0.669
CC 0.87 0.00266 0.213 0.664

mnar FCS Regresion 0.193 0.79 0.00020 0.045 0.144
JM 0.83 0.00033 0.053 0.343
CC 0.85 0.00037 0.088 0.356
FCS Regresion 0.668 0.81 0.00013 0.042 0.454
JM 0.88 0.00032 0.073 0.685
CC 0.85 0.00040 0.090 0.500
FCS Regresion 0.522 0.79 0.00010 0.043 0.666
JM 0.87 0.00030 0.091 0.553
CC 0.85 0.00044 0.097 0.425

note. MM: Missingness Mechanism; MR: Missingness Rate; JMR: Joint Missingness Rate; CR:
Coverage Rate; MSE: Mean Square Error; AW: Average Width; SB: Standardized Bias; FCS: fully
conditional specification; JM: joint modeling; CC: complete-case-only only analysis; mcar: missing
completely at random; mar: missing at random; mnar: missing not at random.
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Table 3: Simulation Results for Low Mediation Effect (δ=0.01, ICC=0.2)

MM Imputation Model JMR CR MSE AW SB
mcar FCS Regresion 0.190 0.94 0.00230 0.129 0.204

JM 0.93 0.00309 0.141 0.106
CC 0.94 0.00352 0.243 0.196
FCS Regresion 0.359 0.93 0.00136 0.152 0.244
JM 0.93 0.00394 0.214 0.280
CC 0.95 0.00444 0.284 0.304
FCS Regresion 0.510 0.96 0.00078 0.147 0.341
JM 0.96 0.00357 0.287 0.300
CC 0.94 0.00613 0.314 0.218

mar FCS Regresion 0.100 0.95 0.00164 0.259 0.265
JM 0.93 0.00686 0.327 0.282
CC 0.91 0.00621 0.294 0.288
FCS Regresion 0.200 0.97 0.00100 0.254 0.329
JM 0.97 0.00768 0.449 0.286
CC 0.94 0.00695 0.345 0.384
FCS Regresion 0.300 0.98 0.00070 0.241 0.383
JM 0.98 0.00922 0.586 0.393
CC 0.95 0.01025 0.390 0.511

mnar FCS Regresion 0.193 0.76 0.00086 0.070 0.477
JM 0.88 0.00170 0.104 0.479
CC 0.85 0.00162 0.178 0.320
FCS Regresion 0.367 0.93 0.00066 0.087 0.346
JM 0.87 0.00125 0.136 0.502
CC 0.86 0.00127 0.165 0.577
FCS Regresion 0.521 0.89 0.00021 0.098 0.728
JM 0.88 0.00118 0.161 0.507
CC 0.86 0.00159 0.176 0.513

note. MM: Missingness Mechanism; MR: Missingness Rate; JMR: Joint Missingness Rate; CR:
Coverage Rate; MSE: Mean Square Error; AW: Average Width; SB: Standardized Bias; FCS: fully
conditional specification; JM: joint modeling; CC: complete-case-only only analysis; mcar: missing
completely at random; mar: missing at random; mnar: missing not at random.
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Table 4: Simulation Results for High Mediation Effect (δ=0.3481, ICC=0.05)

MM Imputation Model JMR CR MSE AW SB
mcar FCS Regresion 0.190 0.93 0.00011 0.034 0.280

JM 0.97 0.00007 0.021 0.485
CC 0.93 0.00007 0.033 0.268
FCS Regresion 0.360 0.88 0.00007 0.040 0.332
JM 0.94 0.00009 0.034 0.391
CC 0.96 0.00010 0.038 0.346
FCS Regresion 0.510 0.94 0.00008 0.043 0.433
JM 0.95 0.00010 0.044 0.352
CC 0.92 0.00011 0.042 0.454

mar FCS Regresion 0.100 0.91 0.00014 0.055 0.068
JM 0.90 0.00010 0.040 0.352
CC 0.89 0.00008 0.037 0.366
FCS Regresion 0.200 0.94 0.00012 0.062 0.118
JM 0.95 0.00013 0.057 0.181
CC 0.88 0.00010 0.042 0.302
FCS Regresion 0.300 0.96 0.00010 0.064 0.271
JM 0.97 0.00019 0.070 0.083
CC 0.88 0.00013 0.088 0.467

mnar FCS Regresion 0.193 0.55 0.00010 0.031 0.264
JM 0.59 0.00006 0.055 0.377
CC 0.74 0.00006 0.053 0.423
FCS Regresion 0.367 0.45 0.00010 0.070 0.243
JM 0.56 0.00007 0.089 0.582
CC 0.64 0.00007 0.071 0.556
FCS Regresion 0.523 0.45 0.00010 0.051 0.693
JM 0.55 0.00008 0.085 0.449
CC 0.64 0.00008 0.092 0.487

note. MM: Missingness Mechanism; MR: Missingness Rate; JMR: Joint Missingness Rate; CR:
Coverage Rate; MSE: Mean Square Error; AW: Average Width; SB: Standardized Bias; FCS: fully
conditional specification; JM: joint modeling; CC: complete-case-only only analysis; mcar: missing
completely at random; mar: missing at random; mnar: missing not at random.
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Table 5: Simulation Results for High Mediation Effect (δ=0.3481, ICC=0.1)

MM Imputation Model JMR CR MSE AW SB
mcar FCS Regresion 0.190 0.94 0.00045 0.066 0.160

JM 0.92 0.00084 0.071 0.179
CC 0.92 0.00092 0.130 0.139
FCS Regresion 0.360 0.95 0.00036 0.084 0.164
JM 0.94 0.00128 0.120 0.210
CC 0.92 0.00157 0.150 0.257
FCS Regresion 0.510 0.97 0.00019 0.073 0.054
JM 0.98 0.00111 0.161 0.257
CC 0.97 0.00153 0.173 0.327

mar FCS Regresion 0.100 0.96 0.00045 0.121 0.237
JM 0.96 0.00138 0.165 0.232
CC 0.94 0.00137 0.152 0.319
FCS Regresion 0.200 0.98 0.00044 0.142 0.292
JM 0.99 0.00205 0.241 0.335
CC 0.93 0.00229 0.180 0.324
FCS Regresion 0.300 0.99 0.00026 0.138 0.276
JM 0.98 0.00310 0.316 0.695
CC 0.91 0.00286 0.211 0.662

mnar FCS Regresion 0.193 0.84 0.00023 0.051 0.190
JM 0.85 0.00045 0.060 0.352
CC 0.76 0.00046 0.096 0.381
FCS Regresion 0.368 0.81 0.00013 0.041 0.369
JM 0.93 0.00029 0.068 0.347
CC 0.78 0.00032 0.087 0.475
FCS Regresion 0.522 0.89 0.00013 0.042 0.360
JM 0.87 0.00035 0.085 0.490
CC 0.75 0.00043 0.091 0.549

note. MM: Missingness Mechanism; MR: Missingness Rate; JMR: Joint Missingness Rate; CR:
Coverage Rate; MSE: Mean Square Error; AW: Average Width; SB: Standardized Bias; FCS: fully
conditional specification; JM: joint modeling; CC: complete-case-only only analysis; mcar: missing
completely at random; mar: missing at random; mnar: missing not at random.
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Table 6: Simulation Results for High Mediation Effect (δ=0.3481, ICC=0.2)

MM Imputation Model JMR CR MSE AW SB
mcar FCS Regresion 0.190 0.95 0.00169 0.124 0.279

JM 0.98 0.00375 0.143 0.278
CC 0.96 0.00461 0.260 0.194
FCS Regresion 0.360 0.98 0.00107 0.134 0.293
JM 0.92 0.00446 0.244 0.223
CC 0.95 0.00495 0.287 0.297
FCS Regresion 0.509 0.97 0.00052 0.147 0.466
JM 0.96 0.00687 0.301 0.305
CC 0.93 0.00803 0.343 0.372

mar FCS Regresion 0.100 0.95 0.00168 0.239 0.153
JM 0.86 0.00560 0.297 0.121
CC 0.91 0.00613 0.286 0.214
FCS Regresion 0.200 0.98 0.00115 0.244 0.218
JM 0.93 0.00879 0.424 0.347
CC 0.93 0.00813 0.331 0.389
FCS Regresion 0.300 0.99 0.00082 0.222 0.393
JM 0.91 0.00990 0.605 0.290
CC 0.94 0.00936 0.387 0.489

mnar FCS Regresion 0.193 0.87 0.00083 0.079 0.253
JM 0.79 0.00170 0.090 0.269
CC 0.65 0.00183 0.169 0.302
FCS Regresion 0.368 0.87 0.00030 0.088 0.260
JM 0.85 0.00110 0.424 0.529
CC 0.77 0.00116 0.556 0.543
FCS Regresion 0.522 0.83 0.00023 0.679 0.669
JM 0.88 0.00093 0.551 0.528
CC 0.79 0.00098 0.564 0.529

note. MM: Missingness Mechanism; MR: Missingness Rate; JMR: Joint Missingness Rate; CR:
Coverage Rate; MSE: Mean Square Error; AW: Average Width; SB: Standardized Bias; FCS: fully
conditional specification; JM: joint modeling; CC: complete-case-only only analysis; mcar: missing
completely at random; mar: missing at random; mnar: missing not at random.
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Figure 3: Estimated standardized bias versus joint missingness rate under different miss-
ingness mechanisms (ICC=0.05, medium effect size of mediation effect)
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Figure 4: Estimated standardized bias versus joint missingness rate under different miss-
ingness mechanisms (ICC=0.1, medium effect size of mediation effect)
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Figure 5: Estimated standardized bias versus joint missingness rate under different miss-
ingness mechanisms (ICC=0.2, medium effect size of mediation effect)
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Figure 6: Comparison between exact bias and estimated bias by imputation methods
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Table 7: Mediation effect of attendance rate for Elementary school students

Test Mediation effect Direct Total
ELA -0.329 -1.465 -1.794

Math -0.446 0.383 -0.063
Science -0.483 0.735 0.253

note. ELA: English Language Arts
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Table 8: Mediation effect of attendance rate for high school students

Test Mediation Direct Total
Algebra I 0.002 -3.325 -3.323

Chemistry -0.121 -2.063 -2.185
Earth Science -0.022 -4.143 -4.165

English -0.209 -1.708 -1.917
Living Environment -0.335 -2.652 -2.987

Geometry -0.251 -2.646 -2.897
Global history -0.510 -7.332 -7.842

Physics -0.044 -1.560 -1.604
Trigonometry -0.158 -6.766 -6.924
U.S. History -0.178 -0.526 -0.705
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8 Appendix

8.1 Derivation for Σ−122 , ΣYij ,Mij |Xij ,αY ,αM

We take four steps to calculate the Σ−122 . We restate Σ22 as follows:

Σ22 =

σ
2
X(W ) + σ2

X(B) σXY (B) σMX(B)

σXY (B) σ2
Y (B) 0

σMX(B) 0 σ2
M(B)

 (23)

In the first step, we calculate the matrix of minors of Σ22, and we have the matrix of
minors for each cell as follows:

 σ2
Y (B)σ

2
M(B) σXY (B)σ

2
M(B) −σ2

Y (B)σMX(B)

σXY (B)σ
2
M(B) (σ2

X(B) + σ2
X(W ))σ

2
M(B) − σ

2
MX(B) −σXY (B)σMX(B)

−σ2
Y (B)σMX(B) −σXY (B)σMX(B) (σ2

X(B) + σ2
X(B))σ

2
Y (B) − σ

2
XY (B)


Then, we employ the second step to turn the matrix of minors into the Matrix of

Cofactors as follows:

 σ2
Y (B)σ

2
M(B) −σXY (B)σ

2
M(B) −σ2

Y (B)σMX(B)

−σXY (B)σ
2
M(B) (σ2

X(B) + σ2
X(W ))σ

2
M(B) − σ

2
MX(B) σXY (B)σMX(B)

−σ2
Y (B)σMX(B) σXY (B)σMX(B) (σ2

X(B) + σ2
X(B))σ

2
Y (B) − σ

2
XY (B)


The third step is to transpose the matrix. We have a symmetric matrix and it remains

the same. The fourth step is to multiple the matrix by corresponding
1

|Σ|
. The determinant

|Σ| is calculated as

|Σ| = −σ2
MX(B)σ

2
Y (B) + σ2

M(B)(σ
2
X(W )σ

2
Y (B) + σ2

X(B)σ
2
Y (B) − σ

2
XY (B)) (24)

Therefore, we have the |Σ−122 | as follows:

Σ−122 =
1

|Σ|
× σ2

Y (B)σ
2
M(B) −σXY (B)σ

2
M(B) −σ2

Y (B)σMX(B)

−σXY (B)σ
2
M(B) (σ2

X(B) + σ2
X(W ))σ

2
M(B) − σ

2
MX(B) σXY (B)σMX(B)

−σ2
Y (B)σMX(B) σXY (B)σMX(B) (σ2

X(B) + σ2
X(B))σ

2
Y (B) − σ

2
XY (B)


After we calculate the Σ−122 , we employ the following formula of calculating conditional

variance:

ΣY,M |X,αY ,αM = Σ11 −Σ12Σ
−1
22 Σ21 (25)

As we have shown the Σ11, Σ12, Σ−122 and Σ21, we have ΣY,M |X,αY ,αM as follow:

ΣY,M |X,αY ,αM =

[
f g
h k

]
(26)

where
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f = σ2
Y (W ) + σ2

Y (B) −
1

|Σ|
[σY X(W )σ

2
Y (B)σ

2
M(B)σXY (W ) + σ2

Y (B)σ
2
M(B)(σ

2
X(W ) + σ2

X(B))

− 2σYM(B)σMX(B)σ
2
Y (B)σXY (W ) − σ4

Y (B)σ
2
MX(B) − σ

2
Y X(B)σ

2
M(B)σ

2
Y (B)

+ σ2
YM(B)σ

2
Y (B)(σ

2
X(W ) + σ2

X(B)]− σ
2
YM(B)σ

2
XY (B)

g = σYM(W ) + σYM(B) + σY X(W )σ
2
Y (B)σ

2
M(B)σMX(W ) − σYM(B)σMX(B)σ

2
Y (B)σMX(W )

− σYM(B)σ
2
MX(B)σ

2
Y (B) − σY X(W )σXY (B)σ

2
M(B)σMY (B) − σ2

Y X(B)σ
2
M(B)σMY (B)

σ2
MY (B)σMX(B)σXY (B) + σ2

M(B)σYM(B)σ
2
Y (B)σ

2
X(W ) + σ2

M(B)σYM(B)σ
2
Y (B)σ

2
X(B)

− σ2
M(B)σYM(B)σ

2
XY (B)

h = σYM(W ) + σYM(B) + σMX(W )σ
2
Y (B)σ

2
M(B)σXY (W ) − σYM(B)σXY (B)σ

2
M(B)σXY (W )

− σYM(B)σXY (B)σ2
M(B)σXY (B) + σ2

Y (B)σYM(B)σ
2
X(W )σ

2
M(B) + σ2

Y (B)σYM(B)σ
2
X(B)σ

2
M(B)

− σ2
Y (B)σYM(B)σ

2
MX(B) − σYM(B)σMX(W )σ

2
Y (B)σMX(B) − σYM(B)σMX(B)σ

2
Y (B)σMX(B)

+ σ2
YM(B)σXY (B)σMX(B) + σYM(B)σ

2
M(B)σ

2
Y (B) + σYM(B)σ

2
X(W ) + σYM(B)σ

2
X(B)

− σYM(B)σ
2
XY (B)σ

2
M(B)

k = σ2
M(W ) + σ2

M(B) + σMX(W )σ
2
Y (B)σ

2
M(B)σMX(W ) − σYM(B)σXY (B)σ

2
M(B)σMX(W )

− σMY (B)σMX(W )σXY (B)σM(B) + σ2
MY (B)σ

2
X(W )σ

2
M(B) + σ2

MY (B)σ
2
X(B)σ

2
M(B)

− σ2
MY (B)σ

2
MX(B) − σ

2
M(B)σ

2
MX(B)σ

2
Y (B) + σ4

M(B)σ
2
Y (B) + σ2

M(B)σ
2
X(W ) + σ2

M(B)σ
2
X(B)

− σ2
M(B)σ

2
XY (B)σ

2
M(B)

(27)

8.2 Derivation of MLE estimator for ĉ, â, b̂ and δ̂

We have the mixed model as follows:

Y = Xβc +α1 + ε1 (28)

We rewrite the mixed model as Y = Xβc + ε∗1, where ε∗1 = α1 + ε1, and ε∗1 ∼ N(0,V ),

with V = G + R. We have V = V
1
2 (V

1
2 )T . We multiply V −

1
2 on the both side of

Y = Xβc + ε∗1, and we have:

V −
1
2Y = V −

1
2Xβ + V −

1
2 ε∗1 (29)

where

V −
1
2 ε∗1 ∼ N(0, In) (30)

Therefore, we generate the equation for β̂ as follows:

V −
1
2Y = V −

1
2Xβ̂ (31)

We multiply XT (V −
1
2 )T on both sides of the equation above, and we have:

XT (V −
1
2 )TV −

1
2Y = XT (V −

1
2 )TV −

1
2Xβ̂ (32)

Thus, we find MLE or weighted LSE of β̂ by multiplying XT (V −
1
2 )TV −

1
2X on both

sides of the Equation above, and we have

β̂ = (XTV −1X)−1XTV −1Y (33)

X is a n×1 matrix, and β̂ in this case is a scalar, and we have ĉ = β̂. Similar procedures
are employed to estimate â and b̂ based on different mixed models as follows:

M = Xβa +α2 + ε2 (34)

Y = X ′βbc +α3 + ε3 (35)

50



8.3 Derivation of f(Y |M,X) and E(Y |M,X) for FCS

We have the distribution of Yij given αYi ,Mij and Xij , and the corresponding prior distri-
bution of αYi . We find the distribution of Yij , αYi given Mij , Xij as follows:

f(Yij , αYi |Mij , Xij) = f(Yij |Mij , Xij , αYi)× f(αYi)

=
1

√
2πσY |M,X

× e

− (Yij − αYi − βY |XXij − βY |MMij)
2

2σ2
Y |M,X ×

1
√

2πσαYi
× e

− α2
Yi

2σ2
αYi

(36)

We reformulate the distribution of Yij , given αYi ,MijXij into a function of αYi , and we
have:

f(Yij , αYi |Mij , Xij) =
e

−(
1

2σ2
Y |M,X

+
1

2σ2
αYi

)(α2
Yi
−
βY |XXij + βY |MMij − Yij

1

2
+
σ2
Y |M,X

2σ2
αYi

αYi )

2πσY |M,XσαYi
×

1

2πσY |M,XσαYi
e

−
(βY |XXij + βY |MMij − Yij)2

2σ2
Y |M,X

=
1

2πσY |M,XσαYi
e
−( 1

2σ2
Y |M,X

+ 1
2σ2αYi

)[αYi−
σ2αYi

(βY |XX+βY |MM−Y )

σ2αYi
+σ2
Y |M,X

]2+G

(37)

where

G =
(βY |XX + βY |MM − Y )2

2σ2
Y |M,X +

2σ4
Y |M,X

σ2
αYi

−
(βY |XX + βY |MM − Y )2

2σ2
Y |M,X

(38)

Then, we develop the conditional distribution of Y given M,X by integral the distribu-
tion f(Yij , αYi |Mij , Xij) with regard to αYi , and we have f(Y |M,X) as follows:

f(Y |M,X) =

∫
f(Yij , αYi |Mij , Xij)dαYi

=
1

√
2πσY |M,XσαYi

×

√√√√ σ2
Y |M,Xσ

2
αYi

σ2
Y |M,X + σ2

αYi

e

(βY |XX + βY |MM − Y )2

2σ2
Y |M,X +

2σ4
Y |M,X

σ2
αYi ×

e

−
(βY |XX + βY |MM − Y )2

2σ2
Y |M,X

=
1√

2π(σ2
Y |M,X + σ2

αYi
)
e

−
(Y − βY |XX − βY |MM)2

2(σ2
αYi

+ σ2
Y |M,X)

(39)

Therefore, we find that f(Y |M,X) is a normal distribution with mean βY |XX+βY |MM
(i.e., E(Y |M,X) = βY |XX + βY |MM) and variance σ2

αYi
+ σ2

Y |M,X .
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8.4 Derivation of f(M |Y,X) for FCS

We have the distribution of Mij given αMi , Yij and Xij and the corresponding prior distri-
bution of αMi . We find the distribution of Mij , αMi given Yij and Xij as follows:

f(Mij , αMi
|Yij , Xij) = f(Mij | Yij , Xij , αMi

)× f(αMi
)

=
1

√
2πσM |Y,X

× e

− (Mij − αMi
− βM |XXij − βM |Y Yij)2

2σ2
M |Y,X ×

1
√

2πσαMi
× e

− α2
Mi

2σ2
αMi

(40)

Similarly as we did for the distribution of Mij given αMi
, Yij and Xij , we reconstruct

the distribution of Mij , αMi
given Yij and Xij into a function of αMi

, and we have:

f(Mij , αMi
|Yij , Xij) =

e

−(
1

2σ2
M |Y,X

+
1

2σ2
αMi

)(α2
Mi
−
βMXXij + βM |Y Yij −Mij

1

2
+
σ2
M |Y,X

2σ2
αMi

αMi )

2πσM |Y,XσαMi
×

1

2πσM |Y,XσαMi
e

−
(βM |XXij + βM |Y Yij −Mij)

2

2σ2
M |Y,X

=
1

2πσM |Y,XσαMi
e
−( 1

2σ2
M|Y,X

+ 1
2σ2αMi

)[αMi−
σ2αMi

(βM|XX+βM|Y Y−M)

σ2αMi
+σ2
M|Y,X

]2+G1

(41)

where

G1 =
(βM |XX + βM |Y Y −M)2

2σ2
M |Y,X +

2σ4
M |Y,X

σ2
αMi

−
(βM |XX + βM |Y Y −M)2

2σ2
M |Y,X

(42)

Then, we develop the conditional distribution of M given Y,X by integral the distribu-
tion f(Mij , αMi |Yij , Xij) with regard to αMi , and we have f(M |Y,X) as follows:

f(M |Y,X) =

∫
f(Mij , αMi |Yij , Xij)dαMi

=
1

√
2πσM |Y,XσαMi

×

√√√√ σ2
M |Y,Xσ

2
αMi

σ2
M |Y,X + σ2

αMi

e

(βM |XX + βM |Y Y −M)2

2σ2
M |Y,X +

2σ4
M |Y,X

σ2
αMi ×

e

−
(βM |XX + βM |Y Y −M)2

2σ2
M |Y,X

=
1√

2π(σ2
M |Y,X + σ2

αMi
)
e

−
(M − βM |XX − βM |Y Y )2

2(σ2
αMi

+ σ2
M |Y,X)

(43)

Therefore, we find that f(M |Y,X) is a normal distribution with mean βM |XX+βM |Y Y
(i.e., E(M |Y,X) = βM |XX + βM |Y Y ) and variance σ2

αMi
+ σ2

M |Y,X .
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8.5 Derivation of f(M |X) and E(M |X) for FCS

Firstly, we find the expression of the conditional distribution of M given Y and X as follows:

f(M,Y |X) = f(M |Y,X)f(Y )

=
1√

2π(σ2
M |Y,X + σ2

αM )
e

−
(M − βM |XX − βM |Y Y )2

2(σ2
M |Y,X + σ2

α) ×

1
√

2πσY
e
−

(Y − µY )2

2σ2
Y

(44)

Then, we reformulate the distribution of Y,M given X as a function of Y , we have:

f(M,Y |X) =
1

2πσY
√
σ2
M |Y,X + σ2

αM

e−A1(Y−B1)
2

+ C1 (45)

where

A1 =
β2
M |Y

2σ2
M |Y,X + 2σ2

αM

+
1

2σ2
Y

B1 =
µY (σ2

M |Y,X + σ2
α)− βM |Y (βM |XX −M)σ2

Y

β2
M |Y σ

2
Y + σ2

M |Y,X + σ2
αM

C1 =
σ2
Y (σ2

M |Y,X + σ2
αM )

2(β2
M |Y σ

2
Y + σ2

M |Y,X + σ2
αM )

(
µY

σ2
Y

−
βM |X(βM |X −M)

σ2
M |Y,X + σ2

αM

)2−

(βM |XX −M)2

2(σ2
M |Y,X + σ2

αM )
−

µ2
Y

2σ2
Y

(46)

Therefore, we integrate the f(M,Y |X) with respect to Y , and we have the distribution
of M given X as follows:

f(M |X) =

∫
f(M,Y |X)dY

=
1√

π(β2
M |Y σ

2
Y + σ2

M |Y,X + σ2
αM )

eA2M
2+B2M+C2

(47)

where

A2 =
β2
M |Y σ

2
Y

2(β2
M |Y σ

2
Y + σ2

M |Y,X + σ2
αM )(σ2

M |Y,X + σ2
αM )
−

1

2(σ2
M |Y,X + σ2

αM )

B2 =
µY βM |Y

β2
M |Y σ

2
Y + σ2

M |Y,X + σ2
αM

−
σ2
Y β

2
M |Y βM |XX

(β2
M |Y σ

2
Y + σ2

M |Y,X + σ2
αM )(σ2

M |Y,X + σ2
αM )

+

βM |XX

σ2
M |Y,X + σ2

αM

C2 = −
µ2
Y

2σ2
Y

−
β2
M |XX

2

2(σ2
M |Y,X + σ2

αM )
+

µ2
Y (σ2

M |Y,X + σ2
αM )

2σ2
Y (β2

M |Y σ
2
Y + σ2

M |Y,X + σ2
αM )
−

µY βM |Y βM |XX

β2
M |Xσ

2
Y + σ2

M |Y,X + σ2
αM

+
σ2
Y β

2
M |Y β

2
M |XX

2

2(βM |Y σ
2
Y + σ2

αM + σ2
M |Y,X)(σ2

M |Y,X + σ2
αM )

(48)
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8.6 Derivation of f(Y,M |X) for JM

We find the distribution of Yij ,Mij , αYi , αMi given Xij by multiplying the conditional dis-
tribution of Yij ,Mij given Xij , αYi , αMi and the prior distribution of αYi , αMi as follows:

f(Yij ,Mij , αYi , αMi
|Xij) = f(Yij ,Mij |Xij , αYi , αMi

)× f(αYi , αMi
)

=
1

4π2
√

ΣCΣα

e−
k(Y−αY −βY |XX)2+f(M−αM−βM|XX)2

2(fk−gh) ×

e
−

(g + h)(M − αM − βM |XX)(Y − αY − βY |XX)

2(fk − gh) ×

e

1

2σ2
Y σ

2
M

(σ2
Mα

2
Y +σ2

Y α
2
M )

(49)

In the above derivation, we have the expression of ΣC (ΣYij ,Mij |αYi ,αMi ,Xij in Equation
13, we use ΣC to simplify the notation), and the expression of Σα is shown in Equation 12.
We find the conditional distribution of Y,M given X by integrating conditional distribution
of Yij ,Mij , αYi , αMi

given Xij regarding αYi and αMi
to obtain the conditional distribution

of Y,M given X (f(Y,M |X)) as follows:

f(Yij ,Mij |Xij) =

∫∫
f(Yij ,Mij , αYi , αMi

|Xij)dαYidαMi
(50)

We firstly reformulate the f(Yij ,Mij , αYi , αMi
|Xij) into a function of αY , therefore, we

have:

f(Yij ,Mij , αYi , αMi
|Xij) =

1

4π2
√

ΣCΣα

eA3α
2
Y +B3αY +C3 (51)

where

A3 = −
k

2(fk − gh)
−

1

2σ2
Y

B3 = −
k(βY |XX − Y ) + (g + h)(M − αM − αM |XX)

fk − gh

C3 = −
k(βY |XX − Y )2 − (g + h)(M − αM − βM |XX)(Y − βY |XX)

2(fk − gh)
−

f(M − αM − βM |XX)2

2(fk − gh)

(52)

Then we find the expression of f(Yij ,Mij , αM |Xij) and reformulate it into a function of
αM as follows:

f(Yij ,Mij , αM |X) =

√
(fk − gh)σ2

Y

2π
√
π(kσ2

Y + fk − gh)ΣCΣα

eA4α
2
M+B4αM+C4 (53)

where
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A4 =
(g + h)2(fk − gh)σ2

Y

2(kσ2
Y + fk − gh)(fk − gh)2

B4 =
(g + h)[k(βY |XX − Y ) + (g + h)(M − βM |XX)]2σ2

Y (fk − gh)

(kσ2
Y + fk − gh)(fk − gh)2

+

(g + h)(Y − βY |XX)− 2a(M − βM |xX)

2(fk − gh)

C4 =
[k(βY |XX − Y ) + (g + h)(M − βM |XX)]2σ2

Y (fk − gh)

2(kσ2
Y + fk − gh)(fk − gh)

−

k[βY |XX − Y ]2 − (g + h)(M − βM |XX)(Y − βY |XX) + f(M − βM |XX)2

2(fk − gh)

(54)

Then, we find the expression of f(Y,M |X) by integrating the conditional distribution
f(Y,M,αM |X) with regard to αM . We show f(Y,M |X) as a function of Y as follows:

f(Yij ,Mij |Xij) =

∫
f(Yij ,Mij , αM |Xij)dαM

=

√
(fk − gh)σ2

Y

π
√

2(kσ2
Y + fk − gh)ΣCΣαA4

e−HY
2+JY+K

(55)

where

H = [
(g + h)kσ2

Y

(kσ2
Y + fk − gh)(fk − gh)

−
g + h

2(fk − gh)
]2 −

k2σ2
Y

2kσ2
Y + 2(fk − gh)

+

k

2(fk − gh)

J = [
(g + h)kσ2

Y

(kσ2
Y + fk − gh)(fk − gh)

− g + h

2(fk − gh)
]22βY |XX −

2d2σ2
Y βY |XX

2kσ2
Y + 2(fk − gh)

+
2βY |XXd

2(fk − gh)
− [

k(g + h)σ2
Y

kσ2
Y + 2(fk − gh)

+
g + h

2(fk − gh)
](M − βM |XX)+

2(
(g + h)kσ2

Y

(kσ2
Y + fk − gh)(fk − gh)

−
g + h

2(fk − gh)
)(

(g + h)2σ2
Y

(kσ2
Y + fk − gh)(fk − gh)

−
f

(fk − gh)
)×

(M − βM |XX)

K = [
k(g + h)σ2

Y

kσ2
Y + 2(fk − gh)

+
g + h

2(fk − gh)
](M − βM |XX)βY |XX−

2(
(g + h)kσ2

Y

(kσ2
Y + fk − gh)(fk − gh)

−
g + h

2(fk − gh)
)(

(g + h)2σ2
Y

(kσ2
Y + fk − gh)(fk − gh)

−
f

fk − gh
)×

(M − βM |XX)βY |XX − (M − βM |XX)2×

[(
(g + h)2σ2

Y

(kσ2
Y + fk − gh)(fk − gh)

−
f

fk − gh
)2 −

2(g + h)2σ2
Y

kσ2
Y + fk − gh

+
f

2(fk − gh)
]

(56)

8.7 Derivation of f(Y |X), E(Y |X) and f(M |X) for JM

In order to find the expression of f(Y |X), we reformulate f(Y,M |X) as a function of M as
follows:

f(Yij ,Mij |Xij) =

√
(fk − gh)σ2

Y

π
√

2(kσ2
Y + fk − gh)ΣCΣαA4

e−H1M
2+J1M+K1 (57)
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where

H1 =
(g + h)σ2

Y

2(kσ2
Y + fk − gh)

+
f

2(fk − gh)

J1 =
(g + h)[k(βY |XX − Y )− (g + h)βM |XX]2

(kσ2
Y + fk − gh)

−
(g + h)(Y − βY |XX)

2(fk − gh)
−
fβY |XX

fk − gh

K1 =
[k(βY |XX − Y )− (g + h)βM |XX]2σ2

Y

2(kσ2
Y + fk − gh)

−
k(βY |X − Y )2 + (g + h)βM |XX(Y − βY |XX)

2(fk − gh)
(58)

We find the expression of f(Yij |Xij) by integrating f(Yij ,Mij |Xij) with respect to Mij ,
and we show f(Yij |Xij) as a function of Yij as follows:

f(Yij |Xij) =

∫
f(Yij ,Mij |Xij)dM

=

√
2σ2

Y (fk − gh)√
π(kσ2

Y + fk − gh)ΣCΣαA4H1

e
K1−

J2
1

4H1

(59)

We find the expression of f(Mij |Xij) by integrating f(Yij ,Mij |Xij) with respect to Yij ,
and we show f(Mij |Xij) as a function of Mij as follows:

f(Mij |Xij) =

∫
f(Yij ,Mij |Xij)dY

=

√
σ2
Y (fk − gh)√

π(kσ2
Y + fk − gh)ΣCΣαA4H

eUM
2+VM+W

=

√
σ2
Y (fk − gh)√

π(kσ2
Y + fk − gh)ΣCΣαA4H

e
U(M+

V

2U
)2+W−

V 2

4U

(60)

where

U = Q2 −R
V = (2βY |XP −QβM |X)QX −QβY |XX + 2RβM |XX

W = [(2βY |XP −QβM |X)X]2 +QβM |XX
2βY |X −Rβ2

M |XX
2

P = [
(g + h)kσ2

Y

(kσ2
Y + fk − gh)(fk − gh)

−
g + h

2(fk − gh)
]2 − 2k2σ2

Y

2kσ2
Y + 2(fk − gh)

+
k

2(fk − gh)

Q = [2(
(g + h)kσ2

Y

(kσ2
Y + fk − gh)(fk − gh)

−
g + h

2(fk − gh)
)(

(g + h)2σ2
Y

(kσ2
Y + fk − gh)(fk − gh)

−
f

fk − gh
)

−
k(g + h)σ2

Y

kσ2
Y + fk − gh

−
g + h

2(ad− bc)
]2

R = [
(g + h)2σ2

Y

(kσ2
Y + fk − gh)(afk − gh)

+
f

(fk − gh)
]2 −

f

2(fk − gh)
−

2(g + h)2σ2
Y

dσ2
Y + fk − gh

(61)

Therefore, we find M given X is a shifted normal distribution, and we find the expression
for E(M |X) as follows:

E(M |X) =
− V

√
σ2
Y (fk − gh)√

2U(kσ2
Y + fk − gh)ΣCΣαA4H

e
W−

V 2

2U (62)
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8.8 Derivation of f(Y |M,X) and E(Y |M,X)for JM

We apply bayes’ theorem to generate the formula of f(Y |M,X) as follows:

f(Yij |Mij , Xij) =
f(Yij ,Mij |Xij)

f(Mij |Xij)

=
1

√
2πH

e
−H(Y−

J

2H
)2+

J2

4H
+K−UM2−VM−W

(63)

Therefore, the conditional distribution of Y given M,X is a shifted normal distribution,
and we have the expression of E(Y |M,X) as follows:

E(Y |M,X) =
J

2H
e

J2

4H
+K−UM2−VM−W

(64)
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