An Alternate Method to Find the Confidence Interval for the Difference between Two Proportions of Rare Event

Ruji Yao, Amarjot Kaur, Qing Li Merck & Co., Inc., Rahway, NJ, USA

In a clinical trial, it is common to have an adverse event summary table to show the difference of event rates and their 95% confidence intervals (CI). The Miettinen, O. and Nurminen, M (M&N) [1] method is often used for this summary. When dealing with a difference of rare events, one possible concern is the normality assumption. In this presentation, we propose a new method for obtaining the CI, which is sometimes more suitable for computing the difference of two proportions of rare event. First, we will use the formula of Exact (Clopper-Pearson) [2] Confidence Limits to define the posterior distributions on observed data. This help us to avoid the need to pick up a Beta (a,b) prior in a Bayesian method. We then calculate the confidence interval directly from these posterior distributions without making a normality assumption for the critical values. Most importantly, our method only makes use of the binomial assumption on the observed data. Compared with the M&N method, we find that our method has very similar results when the differences of rates are in the normal range, but a much narrower widths for the CI when considering differences between rare events.

Introduction and Issue

First, let us examine an actual AE summary table, which has many CIs of differences of rare events (based on the M&N method).

	Active	Placeb	Difference in %			
		0	vs. Placebo [†]			
	n	n	Estimate (95%			
			$\mathrm{CI})^\dagger$			
Subjects in population	37	34				
with one or more	32	27	7.1 (-11.0, 25.6)			
adverse events						
with drug-related [‡]	3	2	2.2 (-12.3, 16.5)			
adverse events						
with serious adverse	11	8	6.2 (-14.8, 26.5)			
events						
with serious drug-	1	1	-0.2 (-12.7, 11.4)			
related adverse events						
who died	0	0	0.0 (-10.3, 9.5)			
discontinued [§] due to	2	0	5.4 (-5.1, 17.8)			
an adverse event						
discontinued due to a	1	0	2.7 (-7.7, 13.9)			
serious adverse event						
[†] Based on Miettinen & Nurminen method						

Analysis of Adverse Event Summary

Idea: With above examples, we would like to use the observed proportion \hat{p} to get an estimated posterior distribution of p. With posterior distributions for both active p_a and placebo p_p group, we can obtain the estimated distribution of differences $(p_a - p_a)$ of two proportions or any function of them and construct a confidence interval without making a normality assumption.

To avoid selecting a pair (α,β) for the Beta prior, used in the Bayesian method to derive a posterior on an observe proportion $\hat{p} = n_1/n$, we would like to use the formula for the exact Clopper-Pearson confidence limits to define a posterior distribution directly on the observe proportion \hat{p} .

Exact (Clopper-Pearson) Confidence Limits confidence limits for the binomial proportion are constructed by inverting the equal-tailed test based on the binomial distribution. This method is attributed to Clopper and Pearson (1934). The exact confidence limits pL and pU

$$pL = (1 + \frac{n - n_1 + 1}{n_1 F(\alpha/2, 2(n_1 + 1), 2(n - n_1 + 1))})^{-1}$$

$$pU = \left(1 + \frac{n - n_1 + 1}{(n_1 + 1)F(1 - \alpha/2, 2n_1, 2(n - n_1))}\right)^{-1}$$

The lower confidence limit equals 0 when event $n_1 = 0$, and the upper confidence limit equals 1 when event $n_1 = n$, where $F(\alpha/2, b, c)$ is the $\alpha/2$ percentile of the F distribution with b and c degrees of freedom.

If $\alpha/2 = 0.025$ with fixed n_1 and n, pL(0.025) is a proportion p that has 2.5% probability to observe n_1 or above.

There is a natural way to define a CDF from any formula of confidence limit, based on the observed data. Using pU as an example, with fixed n_1 and n, it is a function of $(1 - \alpha/2)$ and the corresponding CDF can be defined as $\{pU(X), X\}$ for X in (0,1) as a posterior distribution.

$$pU = (1 + \frac{n - n_1 + 1}{(n_1 + 1)F(1 - \alpha/2, 2n_1, 2(n - n_1))})^{-1}$$

We choose 100 points to illustrate the steps of how to define a discrete posterior distribution, but for any number of points, the procedure is the same.

Steps to define a discrete posterior distribution on the observed $\hat{p} = n_1/n$

1. Define a 100 point sequence of {a}={0.005, 0.015,...,0.995}.

2. Plug each value of {a} into the formula for pL to replace $\alpha/2$ to get the sequence $pL(\{a\})$.

3. This defines a discrete posterior distribution on $\hat{p} = n_1/n$. One percent probability is automatically assigned to each value in the sequence of $pL(\{a\})$.

4. Plug each value in {a} into the formula for pU to replace $(1 - \alpha/2)$ to get the sequence $pU(\{a\})$.

5. This defines another discrete posterior distribution on $\hat{p} = n_1/n$. One percent probability is again automatically assigned to each value in the sequence of $pU(\{a\})$.

6. Finally we define the discrete posterior distribution of 200 points on $\hat{p} = n_1/n$ as

 $p = \{pL(\{a\}), pU(\{a\})\}$

Each point has the same probability of 0.5% for this weighted discrete posterior distribution.

- 7. if $n_1 = 0$ then $p = pU(\{a\})$
- 8. if $n_1 = n$ then $p = pL(\{a\})$

Compare New Method with M&N method

Width of alternative	Acti	Place	Difference in %	Alternative
way over width of	ve	bo	vs. Placebo [†]	Method
M&N (ratio in %)	n	n	(95% CI) [†]	(95% CI)
Group total	37	34		
97.5%	32	27	7.1 (-11.0, 25.6)	(-10.7, 25.0)
92.3%	3	2	2.2 (-12.3, 16.5)	(-11.2, 15.4)
99.0%	11	8	6.2 (-14.8, 26.5)	(-14.6, 26.3)
85.9%	1	1	-0.2 (-12.7, 11.4)	(-10.9, 9.8)
80.1%	0	0	0.0 (-10.3, 9.5)	(-8.4, 7.6)
89.5%	2	0	5.4 (-5.1, 17.8)	(-5.8, 14.7)
84.3%	1	0	2.7 (-7.7, 13.9)	(-7.6, 10.6)
100.2%	25/5	25/50	(-19.32, 19.32)	(-19.36, 19.36)
	0			
[†] Based on Miettinen a				

Analysis of Adverse Event Summary Results

Example: How to get the confidence limits of (2/37 - 0/34):

Step 1. Get $p = \{pL(\{a\}), pU(\{a\})\}$ for $n_1 = 2$ and n = 37, a K points posterior distribution. Here K=2,000.

Step 2. Get $p = \{pU(\{a\})\}$ for $n_1 = 0$ and n = 34, a M points posterior distribution. Here M=1,000. And K*M=2,000,000.

Step 3. From K*M pairs data, we get K*M values of differences.

Step 4. $(0.025*K*M)^{th}$ and $(0.975*K*M)^{th}$ values are -5.8 and 14.7.

It takes about 1.8 seconds to get the confidence interval.

Compare with M&N method (only for upper boundary)

Width are narrower for rare events.

Width of alternative	А	Р	Difference in %	Alternative
way over width of			vs. Placebo [†]	Method
M&N (ratio in %)	n	n	(95% CI) [†]	(95% CI)
size	50	50	Upper bound	Upper bound
100.2%	25	25	0.19324	0.19359
100.0%	20	20	0.18988	0.18997
99.6%	15	15	0.17943	0.17871
98.5%	10	10	0.16051	0.15816
95.6%	5	5	0.12945	0.12381
94.4%	4	4	0.12102	0.11427
92.6%	3	3	0.11152	0.10332
89.9%	2	2	0.10060	0.09043
84.9%	1	1	0.08779	0.07452
80.0%	0	0	0.07201	0.05758
[†] Based on Miettinen a	& Nurn	ninen me	thod	

Conclusion:

- We proposed a new method to construct a confidence interval for the difference of two proportions of rare events.
- It uses the formula of exact Clopper-Pearson confidence limits to define discrete posterior distributions for both observed proportions and with these two posterior distributions, a confidence interval of their difference can easily be constructed.
- Compared to the conventional M&N method, our approach does not require a normality assumption to get critical values of the confidence limits; compared to the Bayesian method, it does not need to select a prior distribution.
- As an example, we applied our method to the data in a real adverse event summary table and the result showed that it exhibits a much narrower width of confidence intervals.

References:

[1] Miettinen, O. and Nurminen, M. (1985), "Comparative Analysis of Two Rates," Statistics in Medicine, 4, 213–226.
[2] Clopper, C. J. and Pearson, E. S. (1934), "The Use of Confidence or Fiducial Limits Illustrated in the Case of the Binomial," Biometrika, 26, 404–413.