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Abstract

While a variable may not be predictable in mean using many macroeconomic and financial predic-

tors, it may well be predictable in some quantiles especially in tails or in the mode. While the mode

has its own merits relative to mean and median regressions, it has not been explored much in all

disciplines. In this paper, we develop a test for Granger-Causality (GC) in the predictive regression

for the conditional mode. The GC test is based on the seminal paper by Kemp and Silva (2012)

and a recent paper on by Dimitriadis et al. (2019). It is in line with the recommendation of Ashley

et al. (1980) to test for GC in out-of-sample prediction. We show that ENC statistic is asymptoti-

cally standard normal with zero mean under the null hypothesis of no GC in mode. Monte Carlo

simulation shows ENC has a good size and power in finite samples.

Key Words: Mode, Modal midpoint, Scoring function, Elicitability, Granger Causality

1. Introduction

In recent years, the increasing number of researchers focus on the modal regression. Kemp

and Silva (2012) introduce a semi-parametric conditional mode regression estimator when

the dependent variable has a continuous conditional density. They also show that the pro-

posed estimator is consistent and has a asymptotic distribution. Kemp et al. (2020) propose

a semiparametric estimation of the conditional mode of a random vector that has a continu-

ous conditional joint density. However, mode is not 1-elicitable because there doesn’t exist

a strictly consistent scoring function for mode. Thus, there is no possibility to compare and

rank the mode forecasts of in terms of the realized score. Dimitriadis et al. (2019) formalize

those ideas from Kemp and Silva (2012) and Kemp et al. (2020) in the decision theoretical

framework. They define the generalized modal midpoint that is the minimizer of the ex-

pected loss function for mode and prove that the generalized modal midpoint tends to mode

when the the bandwidth tends to zero. Thus, they define mode is asymptotically elicitable

when the bandwidth tends to zero. In this paper, we want to test Granger-Causality (GC)

for the conditional mode.

Out-of-sample forecast comparison is widely used in many fields because it is sug-

gested to test Granger causality, which is used to determine whether some independent

variables can predict the dependent variable (Ashley et al., 1980; Diebold & Mariano,

1995). Many papers focus on out-of-sample tests for equal predictive accuracy (Diebold

& Mariano, 1995; Clark & McCracken, 2001; Clark & West, 2006, 2007). Diebold and

Mariano (1995) introduce a Diebold-Mariano (DM) statistic for comparing predictive ac-

curacy. DM statistic bases on loss differential between two models. However, for modal

regression, the strictly consistent scoring function is Kernel density, then DM statistic is not

feasible because two models have two different objective functions. Clark and McCracken

(2001) and Clark and West (2006, 2007) show the ENC statistic has a zero mean under the

null hypothesis for mean regression. In this paper, we develop the ENC statistic of modal

regression to test out-of-sample GC in mode.

The paper is organized as follow. In section 2, we discuss the definitions and theorems

of the elicitability. In section 3, we discuss the elicitability of the mode. In section 4,
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we develop the ENC statistic in the conditional modal regression. We show that the DM

statistic has a bias and the ENC statistic has zero mean under the null hypothesis. In section

5, by conducting Monte Carlo simulation, we show that the ENC statistic has good size and

has standard normal distribution in finite sample.

2. Elicitability

In this section, we review some definitions and theorems of the elicitability. We denote an

observation domain O for y, x ∈ O ⊆ R
d1+d2 , d1 = dim(y) and d2 = dim(x), the condi-

tional distribution F ≡ FY |X for Y given X. Let F be a class of distribution function on

the observation domain O, and let A be an action domain, γ ∈ A. We define Γ : F → A be

a functional. For example, Γ(F (y|x)) may be E(Y |X), Q(Y |X), V (Y |X), Mode(Y |X)
or ES(Y |X), where E(Y |X) is the conditional mean, Q(Y |X) is the conditional quantile,

V (Y |X) is the conditional variance, Mode(Y |X) is the conditional mode and ES(Y |X)
is the conditional Expected Shortfall. Note that Γ can be a vector of several of these.

Definition 1: (Gneiting, 2011; Fissler & Ziegel, 2016) A scoring function is an F−integrable

function S : A × O → R. S is said to be F-consistent for a functional Γ : F → A if

EFS(Γ(F ), Y ) ≤ EFS(γ, Y ) for all F ∈ F and for all γ ∈ A. Furthermore, S is strictly

F-consistent for Γ if it is F-consistent for Γ and if EFS(Γ(F ), Y ) = EFS(γ, Y ) implies

that γ = Γ(F ) for all F ∈ F and for all γ ∈ A.

Definition 2: (Gneiting, 2011; Fissler & Ziegel, 2016) A functional Γ : F → A ⊆ R
k is

called k-elicitable, if there exists a strictly F-consistent scoring function for Γ.

A statistical functional is elicitable if there exists a scoring function that the correct

forecast of the functional is unique minimizer of the expected score. We can compare or

rank the forecasts of the elicitable functional with their realized scores (Fissler & Ziegel,

2016). Many statistical functionals are 1-elicitable such as expectation, ratios of expecta-

tions, quantiles (Value-at-Risk) and expectiles. However, some are not 1-elicitable such as

variance, mode or Expected Shortfall (Gneiting, 2011).

3. Elicitability of Mode

In this section, we discuss scoring rule, asymptotic elicitability and identification function

for the mode.

3.1 Scoring Rule for the Mode and the Modal Midpoint

The scoring function of the mode can be written as one minus kernel or minus kernel. See

Lee (1989, 1993), Kemp and Silva (2012) and Dimitriadis et al. (2019).

Definition 3: (Kemp & Silva, 2012) The scoring function for the mode is

SK
δ (γ, y) = −1

δ
K

(

y − γ

δ

)

, (1)

where δ is the strictly positive bandwidth and K(·) denotes a smooth kernel function.

Definition 4: (Dimitriadis et al., 2019) Γδ(F ) is the conditional modal midpoint that is

 
263



the minimizer of the (expected) scoring function in equation (1)

Γδ(F ) = argmin
γ∈R

EF

[

SK
δ (γ, Y )

]

. (2)

Assumption 1: F is a unimodal distribution, so that SK
δ (γ, y) in equation (1) is strictly

F-consistent scoring function.

Therefore, the conditional modal midpoint Γδ(F ) is 1-elicitable. However, note that

the conditional mode Γ(F ) is not elicitable.

3.2 Asymptotic Elicitability

Gneiting (2011) mentions informally that the mode is an optimal forecast under the zero-

one scoring function Sδ(γ, y) = 1(|γ − y| > δ). Γδ(F ) is defined as the modal midpoint

functional. The scoring function Sδ(γ, y) is consistent for Γδ(F ). Thus, the mode func-

tional can be defined as Γ(F ) = limδ→0 Γδ(F ) (Gneiting, 2011). Dimitriadis et al. (2019)

formalize the idea from Gneiting (2011), Kemp and Silva (2012) and Kemp et al. (2020)

and introduce the concept of a “asymptotic elicitability”.

Definition 5: (Gneiting, 2011; Dimitriadis et al., 2019) The functional Γ : F → A ⊆ R is

asymptotically elicitable if there exists a sequence of elicitable functional Γδ : F → A ⊆ R

such that limδ→0 Γδ(F ) = Γ(F ) for all F ∈ F .

The following theorem shows that the mode is asymptotically elicitable when the band-

width δ tends to 0.

Theorem 1: (Dimitriadis et al., 2019) For the class of distributions F consists of abso-

lutely continuous unimodal distributions with bounded density and for any kernel function

K which is positive, smooth,
∫

K(u)du = 1 and log(K(u)) is a concave function, the

functional Γδ induced by the scoring function (1) is well-defined for all δ > 0, it holds that

lim
δ→0

Γδ(F ) = Γ(F ), (3)

for all F ∈ F , where Γ(F ) is the conditional mode of the conditional distribution F ≡
FY |X .

The mode is not 1-elicitable but 1-elicitable when the bandwidth δ tends to 0, i.e., the

mode is asymptotically 1-elicitable.

4. Granger-Causality Test in Predictive Modal Regression

In this section, we discuss the estimation of the modal regression and develop a new test

for Granger Causality in the conditional modal regression.

4.1 Models

We have two models. One model is without conditioning on x and the other model is with

conditioning on x. The unconditional mode of the unconditional distribution F1 = FY (Y )
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is Γ(F1). The conditional mode of the conditional distribution F2 = FY |X(Y |X) is the

functional Γ(F2). The two nested mode models are

Model 1 : yt+1 = a1 + u
(1)
t+1 ≡ x′1,tβ1 + u

(1)
t+1, (4)

Model 2 : yt+1 = a2, + bxt + u
(2)
t+1 ≡ x′2,tβ2 + u

(2)
t+1, (5)

where γ
(1)
t = x′1,tβ1 and γ

(2)
t = x′2,tβ2.The dependent variable yt+1 is a scalar random

variable. The independent variable xt is stationary variable. x1,t is a strict subset of x2,t.

x′1,t = 1, β1 = a1, x
′
2,t = (1, xt) , β2 = (a2, b). Thus, we estimate û

(1)
t+1 and û

(2)
t+1 by

following û
(1)
t+1 = yt+1 − â1,t and û

(2)
t+1 = yt+1 − â2,t − b̂txt.

4.2 Estimation of Modal Regression

The scoring function of mode includes the Kernel function, so we need to choose the band-

width δR. Following Kemp and Silva (2012), we define

δn = kMADn−1/7. (6)

For the value of k, we choose k = 0.8, 1.6. According to Kemp and Silva (2012), k = 1.6 is

inspired by Silverman (1986) rule-of-thumb. k = 0.8 is chosen to show under-smoothing.

MAD denotes the median of the absolute deviation from the median ordinary least squares

residual,

MAD = medt
[

abs
((

yt+1 − x′i,tβi
)

−medt
(

yt+1 − x′i,tβi
))]

, (7)

where β is the ordinary least squares (OLS) estimator.

In this paper, we choose the standard normal density kernel, that is

K

(

y − γ

δ

)

=
1√
2πδ

exp

(

−(y − γ)2

2δ2

)

. (8)

In order to find out the moment condition, taking the derivative of the expectation of equa-

tion (1) with respect to βi, we get

∂EFS
K
δ (γ, Y )

∂βi
= EF







n
∑

t=1

exp






−

(

yt+1 − x′i,tβi

)2

2δ2n







(

yt+1 − x′i,tβi
)

x′i,t






= 0.

To find out the estimators, we solve the following moment condition

EF

[

n
∑

t=1

wt (βi)
(

yt+1 − x′i,tβi
)

x′i,t

]

= 0, (9)

where the weight is

wt (βi) = exp






−

(

yt+1 − x′i,tβi

)2

2δ2n






. (10)

Solving the moment equation (9) gives the estimator of the mode regression when δn tends

to zero. Solving the moment equation (9) gives the estimator of the mean regression when
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δn tends to ∞. The estimator β̂i can be computed as iterated weighted least squares esti-

mators, i.e., as the solution to the equation:

β̂i =

[

n
∑

t=1

wt

(

β̂i

)

xi,tx
′
i,t

]−1 n
∑

t=1

wt

(

β̂i

)

xi,tyt+1, (11)

where wt

(

β̂i

)

= exp

(

−(yt+1−x′
i,tβ̂i)

2

2δ2n

)

.

Taking the derivative of scoring function with respect to βi,t, we get the score 1

hi,t =
∂SK

δ (γ, y)

∂βi,t
= − 1

δ2n
K ′

(

u
(i)
t

δn

)

xi,t−1. (12)

Then, let Hi(t) as follows:

Hi(t) =
1

R

t
∑

j=t−R+1

hi,t = − 1

R

t
∑

j=t−R+1

1

δ2R
K ′

(

u
(i)
t

δ

)

xi,t−1. (13)

Taking the derivative of hi,t with respect to βi,t, the Hessian is obtained as follows:

Λi,t =
∂hi,t

∂β
=

1

δ3n
K ′′

(

u
(i)
t

δn

)

xi,t−1x
′
i,t−1. (14)

According to Kemp and Silva (2012), we get that

1

n

n
∑

t=1

Λi,t =
1

n

n
∑

t=1

1

δ3n
K ′′

(

û
(i)
t

δn

)

xi,t−1x
′
i,t−1 = B−1

i + op(1), (15)

where

B−1
i = EF

[

f ′′

u
(i)
t |X

(0|xi,t)xi,tx′i,t
]

= lim
n→∞

EF

[

1

δ3n

{

K ′′

(

u
(i)
t

δn

)}

xi,tx
′
i,t

]

, (16)

where f ′′
u(i)|X

(0|xt) = ∂2L
∂β∂β

∣

∣

∣

β0

and EF f
′′
u(i)|X

(0|xt) is negative definite. Kemp and Silva

(2012) shows that the asymptotic distribution of β̂i,t is

√

nδ3n

(

β̂i,t − βi

)

= −B−1
i

[

1√
nδn

n
∑

t=1

K ′

(

ui,t

δn

)

xi,t

]

+ op(1)
d→ N

(

0, B−1
i AiB

−1
i

)

,

(17)

where Ai = limn→∞ EF

[

1
δn

{

K ′
(

ui

δn

)}2
xix

′
i

]

. Equation (17) shows that the mode re-

gression estimator converges to a normal distribution.

4.3 A New Test for Granger Causality in Modal Regression

In this paper, we develop a new test for Grander Causality based on the combined mode

γ(c) = (1− λ)γ(1) + λγ(2). (18)

1We note that hi,t is called the score (the first order condition of S(γ, Y )), while S(γ, Y ) is called the

scoring function or scoring rule.
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The null and alternative hypotheses are

H0 : λ = 0, and H1 : λ 6= 0. (19)

Under H0 : λ = 0, there is no Granger Causality between X and Y . Under H1 : λ 6= 0,

there exists Granger Causality between X and Y .

Denote the ENC statistic as ĈP . Under H0,

C ≡ EF

[

1

δ2R
K ′

(

u
(1)
t+1

δR

)

(

u
(1)
t+1 − u

(2)
t+1

)

]

= 0, (20)

ĈP ≡ P−1
T
∑

t=R

[

1

δ2R
K ′

(

û
(1)
t+1

δR

)

(

û
(1)
t+1 − û

(2)
t+1

)

]

p→ C = 0 (21)

as P→∞.

We compare the DM statistic and the ENC statistic with the CCS statistic that is the

test statistic by Chao et al. (2001). Chao et al. (2001) show that the CCS statistic is

M̂P = P−1
∑T

t=R û
(1)
t+1xt. In order to compare the equal predictive accuracy of two

nested mode models, we standardize these three statistics. The DM statistic is DMP ≡
Ŝ−0.5
P

√
PD̂P , where SP = var

(√
PD̂P

)

and SP − ŜP
p→ 0. The ENC statistic is

ENCP ≡ Q̂−0.5
P

√
PĈP , where QP = var

(√
PĈP

)

and QP − Q̂P
p→ 0. The CCS

statistic is CCSP ≡ Ŵ−0.5
P

√
PM̂P , where WP = var

(√
PM̂P

)

and WP − ŴP
p→ 0.

It can be shown that ENCP is asymptotically standard normal under the null hypothe-

sis. Its proof is to be presented in the full version of the paper. Below, we examine the finite

sample properties of the ENC statistic, in comparison with the DM and CCS statistics. The

Monte Carlo results in the next section confirms that ENCP is asymptotically standard

normal under the null hypothesis, has a proper size and excellent power, while DM has a

size problem and CCS has a power problem.

5. Monte Carlo Simulation

In this section, we show that the ENCP has good size and the distribution of ENCP is

standard normal by using Monte Carlo Simulation.

5.1 Simulation Design

In order to show the distribution of ENC statistic, we simulate data from the following

DGP. We generate the additional variable xt in Model 2 to be an AR(1) process. We set

xt = φxt−1 + vt, (22)

where |φ| < 1, vt ∼ N(0, σ2
v). Following Dimitriadis et al. (2019), we generate the error

term ut+1
iid∼ SN(0, σ2

u, η), where SN(0, σ2
u, η) is a skewed normal distribution and η is

the skewness of the error term u.

Following Kemp and Silva (2012), we define the bandwidth δR as

δR = kMADR−1/7. (23)

For the value of k, we choose k = 0.8, 1.6. According to Kemp and Silva (2012), k = 1.6 is

inspired by Silverman (1986) rule-of-thumb. k = 0.8 is chosen to show under-smoothing.
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Table 1: Size of Test: k = 1.6, b = 0, φ = 0, σu = 1, at 5% nominal level, 2000 Repeats

P = 240 P = 480
Repeat=2000 DMP ENCP CCSP DMP ENCP CCSP

η = 0.25 R = 240 0.005 0.046 0.050 0.003 0.049 0.049

R = 480 0.008 0.044 0.053 0.004 0.041 0.047

η = 0.5 R = 240 0.010 0.042 0.055 0.004 0.049 0.054

R = 480 0.014 0.043 0.056 0.005 0.040 0.048

Table 2: Power of Test: k = 1.6, b = 0.1, φ = 0, at 5% nominal level, 2000 Repeats

P = 240 P = 480
Repeat=2000 DMP ENCP CCSP DMP ENCP CCSP

η = 0.25 R = 240 0.031 0.125 0.051 0.037 0.197 0.053

R = 480 0.039 0.122 0.056 0.043 0.235 0.052

η = 0.5 R = 240 0.029 0.115 0.052 0.022 0.150 0.050

R = 480 0.046 0.103 0.056 0.030 0.134 0.053

MAD denotes the median of the absolute deviation from the median ordinary least squares

residual,

MAD = medt
[

abs
((

yt+1 − x′i,tβi
)

−medt
(

yt+1 − x′i,tβi
))]

, (24)

where β is the OLS estimator.

We consider α ∈ {5, 0.05}, η ∈ {0.25, 0.5}, φ ∈ {0}, σv ∈ {1}, σu ∈ {1}, c2 ∈
{0.5}, and b ∈ {0, 0.1}.

We use the MATLAB to estimate and forecast the models. We choose to use standard

normal density Kernel. To find out the estimators, Kemp and Silva (2012) point out that we

can solve the following moment condition

EF

[

R
∑

t=1

wt (βi)
(

yt+1 − x′i,tβi
)

x′i,t

]

= 0, (25)

where the weight wt (βi) = exp

(

−(yt+1−x′
i,t

βi)
2

2δ2
R

)

. The equation (25) is for the mode

regression when δR tends to zero. The equation (25) is for the mean regression when δR
tends to ∞. The estimator β̂i can be computed as iterated weighted least squares estimators,

i.e, as the solution to the equation:

β̂i =

[

R
∑

t=1

wt

(

β̂i

)

xi,tx
′
i,t

]−1 R
∑

t=1

wt

(

β̂i

)

xi,tyt+1, (26)

where wt

(

β̂i

)

= exp

(

−(yt+1−x′
i,tβ̂i)

2

2δ2
R

)

.

For Model 1, we regress {ys}ts=t−R+1 on constant term to get ĉ1,t, where t = R, · · · , T .

For Model 2, we regress {ys}ts=t−R+1 on {1, xs−1}ts=t−R+1 to get â2,t and b̂t. The fore-

cast errors are û
(1)
t+1 = yt+1 − â1,t for Model 1 and û

(1)
t+1 = yt+1 − â2,t − b̂txt, where
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Figure 1: The distribution of DMP , ENCP , and CCSP , k = 1.6, η = 0.5, b = 0, φ = 0,

2000 Repeats..

Figure 2: The distribution of DMP , ENCP , and CCSP , k = 1.6, η = 0.5, b = 0.1, φ = 0,

2000 Repeats..

t = R, · · · , T . We choose to use rolling window for estimation. The in-sample observa-

tions R ∈ {240, 480} and the out-of-sample observations P ∈ {240, 480}. We repeat 2000

times to find out the distributions of DMP , ENCP and CCSP .

5.2 Simulation Results

Figures 1-2 and Tables 1-2 show the Monte Carlo simulation distribution and the size and

power of the DMP , ENCP and CCSP statistics with different skewness. Table 1 shows

the size of the test under H0 with different skewness η. This table demonstrates that DMP

is much less than 5% under 5% nominal level, which means that the DMP has a bias under

the null hypothesis. However, comparing to the DMP , the size of the ENCP and the CCSP
is good under the 5% nominal level. Table 2 shows the the power of test under H1 with

different skewness η. This table demonstrates that the ENCP has the highest power for

different in-sample observations R, out-of-sample forecasts P and skewness η. Moreover,

the power of the CCSP is lower than that of the ENCP but is higher than the power of the

DMP .

Figure 1 shows the distributions of the DMP , ENCP and CCSP statistics with the
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skewness η = 0.5 under H0. Figure 1 demonstrates that the DMP has the negative mean

and high kurtosis, which also implies that the DMP has a downward bias under H0. The

distributions of the ENCP , and the CCSP are close to the standard normal distribution

under the null hypothesis. Figure 2 shows the asymptotic distribution of the DMP , ENCP

and CCSP statistics with the skewness η = 0.5 under H1. From Figure 2, we can see that

the mean of the DMP is lower than means of the ENCP and the CCSP .

6. Conclusion

In this paper, we develop a new statistic for Granger-Causality test in the conditional modal

regression. The scoring function for the mode is based on the papers by Kemp and Silva

(2012) and Dimitriadis et al. (2019). We show that the ENC statistic has zero mean un-

der the null hypothesis of no GC in the mode. Monte Carlo simulation demonstrates that

the ENC statistic has good size and power and has standard normal distribution in finite

samples.
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