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Abstract
In this work, we investigate order-restricted Bayesian cost constrained design optimization for pro-
gressively Type-I censored simple step-stress accelerated life tests with exponential lifetimes under
continuous inspections. Previously we showed that using a three-parameter gamma distribution as
a conditional prior ensures order restriction for parameter estimation and that the conjugate-like
structure provides computational simplicity. Adding on to our Bayesian design work, we explore
incorporating a cost constraint to various criteria based on Shannon information gain and the poste-
rior variance-covariance matrix. We derive the formula for expected termination time and expected
total cost and propose estimation procedures for each. We conclude with results and a comparison
of the efficiencies for the constrained vs. unconstrained tests from an application of these methods
to an extension of our previous simulation study.

Key Words: accelerated life tests, Bayesian analysis, design of experiments, cost constrained,
progressive Type-I censoring, step-stress loading

1. Introduction

Accelerated life testing (ALT) is known to be a useful technique to determine the life distri-
bution of products and devices that have high reliability, e.g.) when running a test at normal
operating conditions would be too time consuming to perform and/or would yield little use-
ful information. The term accelerated generally refers to running a life test at higher levels
of stress. This could be higher temperature, voltage, pressure, etc. Once performed, an-
other model is used to relate the life characteristics back to the use stress. These tests can
be executed in various ways, monitoring the failures continuously or on intervals, imposing
k-levels of stress in a constant, step, ramp or random fashion, and by possibly censoring
the data, such as with progressive Type-I, Type-II or hybrid censoring. Deciding which
settings to use can be an experiment in itself, and these choices may be motivated by other
factors including cost.

When designing an experiment with a cost constraint in mind, one must set a pre-
specified budget. This budget should account for costs associated with setup, operation,
inspection and the test units. Therefore, other necessary choices to consider include the
sample size and design criterion. By setting the number of available units, the maximum
duration of time that a test can run can be identified. With this, design criteria choices
become relevant.

Regarding design criteria, most Frequentist research involves solving some function
of the Fisher information matrix. Using Bayesian statistics, analogous criteria can be de-
fined using the posterior variance-covariance matrix. In the work to follow, we will utilized
Bayesian statistics and in addition to criteria based on the variance-covariance matrix, we
will also detail another information-theoretic criterion based on Shannon information gain.
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This work will focus on adding a cost constraint to progressively Type-I censored simple
(k = 2) step-stress accelerated life tests (SSALTs) under continuous inspections assuming
that the lifetimes are exponential and that a cumulative exposure model holds. For more de-
tails related to this type of censoring, we recommend Balakrishnan and Cramer (2014). For
step-stress testing and the cumulative exposure model, we recommend reviewing Nelson
(1980) or Xu and Fei (2012).

Fundamental and intriguing work for constrained design optimization problems is seen
in the literature from various authors. Han (2015) compares constant-stress and step-stress
ALT cost and time constrained designs fork-levels under exponential failure time distribu-
tions and Type-I censoring. Lim (2015) examines constant-stress accelerated degradation
testing using a gamma process model. Xiang et al. (2017) use an adaptive plan from
Bayesian methods to approach cost constrained constant-stress ALT design problems for
log-location-scale failure time distributions. Hakamipour (2019) explores a Rayleigh life-
time distribution for progressively Type-I censored data from SSALTs. Han (2020) derives
the expected termination times of progressively Type-I censored step-stress accelerated life
tests under continuous and interval inspections. Hakamipour (2021) compares constant-
stress and step-stress ALTs under a Rayleigh lifetime distribution, and lastly Han (2021)
provides cost function derivations and considers non-uniform step durations for SSALTs.

To contribute to this growing collection, we introduce an attractive Bayesian approach
to the cost-constrained design optimization problem. The selected prior distribution is
based off of related work and is particularly valuable for order-restricted inference, see
Wiedner and Han (2020). This article is organized as follows. In Section 2 we provide the
model for simple SSALTs. In Section 3 we discuss the expected termination time, and in
Section 4 we discuss the expected total cost. In Section 5 we examine the specific design
criteria under consideration. In Section 6 we review the simulation results for this Bayesian
optimal design. And lastly, in Section 7 we conclude the paper and note our plans for future
work.

2. Model Description

Assuming that the lifetime of a test unit follows an exponential distribution, the rate parametrized
probability distribution function (PDF) and cumulative distribution function (CDF) at stress
levelxi are respectively given by

fi(t) = λi exp(−λit) and

Fi(t) = 1− Si(t) = 1− exp(−λit) (1)

for t ≥ 0.
In the following,Ni will represent the number of units entering stress levelxi, and

ni will represent the number of units that failed at stress levelxi. These stress levels are
run on the intervals[τ(i−1), τi), also denoted as∆i. Using continuous monitoring,yi,l will
represent thel-th ordered failure time of theni failed units withl = 1, 2, . . . , ni. c∗i is a
fixed number of units to be censored at the end of stress levelxi. The actual number of
censored units at timeτi will be denoted asci, which is equal tomin{c∗i , Ni − ni}.

Therefore for a simple step-stress ALT under progressive Type-I censoring,N1 ≡ n
units enter at stress levelx1, which is run untilτ1. At this time,c1 of the surviving units are
randomly removed from the test, leavingN2 = n−n1−c1 units to enter the new stress level
x2. At time τ2 the test is stopped and the remaining unitsc2 = N2−n2 = n−n1−n2−c1
are right censored. This is depicted in Figure 1.
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Figure 1: Simple SSALT with Progressive Type-I Censoring
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We can assume a model to relate the effects observed at the different stress levels. Here
we will choose the cumulative exposure model. The PDF and CDF of a test unit for a
simple step-stress ALT are respectively then

f(t) =

{

f1(t), 0 ≤ t < τ1

S1(τ1)f2(t− τ1), τ1 ≤ t <∞
(2)

F (t) =

{

1− S1(t), 0 ≤ t < τ1

1− S1(τ1)S2(t− τ1), τ1 ≤ t <∞.
(3)

The joint distribution of the failure counts,n, and times,y, is

fJ(y,n) =

[ 2
∏

i=1

Ni!

(Ni − ni)!

][ 2
∏

i=1

λni

i

]

exp

(

−

2
∑

i=1

λiUi

)

(4)

whereU1 =
∑n1

l=1 y1,l + (n − n1)τ1 andU2 =
∑n2

l=1(y2,l − τ1) + (n − n1 − n2 −
c1)(τ2 − τ1). This model has been used and described in other works including Gouno et
al. (2004).

Using a Bayesian framework we propose an order restricted conjugate-like prior,π(λ1, λ2),
that is a joint distribution of 3-parameter gamma (viz., Erlang) distributions as in Equation
5. Utilizing the shift parameter in this distribution allows us to ensure that the rate parame-
ter increases as the stress level increases.

π(λ1) =
γα1

1

(α1 − 1)!
(λ1)

α1−1 exp(−γ1λ1)

π(λ2|λ1) =
γα2

2

(α2 − 1)!
(λ2 − λ1)

α2−1 exp(−γ2(λ2 − λ1))

αi ∈ {1, 2, 3, ...} andγi > 0 i = 1, 2

(5)

The exact joint posterior distribution,π(λ1, λ2|y), was computed in Wiedner and Han
(2020).

3. Termination Time

For a simple step-stress accelerated life test under progressive type-I censoring, the termi-
nation time of a test can be expressed as

T1 =

{

min{Y1,N1
,∆1}, if N2 = 0

∆1 +min{Y2,N2
− τ1,∆2}, if N2 > 0

(6)
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whereYi,Ni
is the largest order statistic from a sample of sizeNi starting at timeτi−1.

As previously mentioned, Han (2020) has derived the expected termination time for the
Frequentist setting, which is

E[T1] =
1

λ1

N1
∑

l=1

(

N1

l

)

(−1)(l+1)

l
F1(l∆1) + F1(∆1)

N1

× 1(N2>0)

N1−c∗
1

∑

N2=1

(

N1

N2 + c∗1

)[

S1(∆1)

F1(∆1)

]N2+c∗
1 1

λ2

N2
∑

l=1

(

N2

l

)

(−1)(l+1)

l
F2(l∆2)

=
1

λ1

N1
∑

l=1

(

N1

l

)

(−1)(l+1)

l
F1(l∆1) +

1

λ2

n−c∗
1
−1

∑

m=0

m
∑

j=0

n−m−c∗
1

∑

l=1

(

n

m

)(

m

j

)(

n−m− c∗1
l

)

×
(−1)(j+l+1)

l
S1(∆1)

n−m+jF2(l∆2). (7)

Here1 represents the indicator function. Recallc∗1 was the fixed number of units to
be censored at the end of stress levelx1. In the special case wherec∗1 = 0, i.e.) Type-I
censoring, the expected termination time was given as

E[T1] =
n
∑

l=1

(

n

l

)

(−1)(l+1)

l

[

F1(l∆1)

λ1
+
S1(l∆1)F2(l∆2)

λ2

]

. (8)

In this Bayesian framework,λ1 andλ2 are random, so to compute the expected ter-
mination time, we need to take an additional expectation with respect to these parameters.
Specifically,EBayes[T1] = Eλ[E[T1|λ1, λ2]]. This result is complex and involves mixtures
of independent gamma random variables with unequal scales. To simplify, we can approx-
imate this expectation. Two approaches were considered. One was to simply use Monte
Carlo simulation, and the other was to use a moment-matching method which lets us use a
single gamma variable in place of a mixture, see Covo and Elalouf (2014). Equation 9 is
the result for the case of Type-I censoring. In this formula,γi∗ andαi∗, i = 1, 2, are the
parameters identified for two different single gammas andτ is the total test duration.

Eλ[E[T1|λ1, λ2]] =
n
∑

l=1

(

n

l

)

(−1)(l+1)

l

{

γ1
α1 − 1

[

1−

(

1 +
l∆1

γ1

)1−α1
]

(9)

+
γ
[l]
1∗

α
[l]
1∗ − 1

(

1 +
l∆1

γ1

)−α1

−
γ
[l]
2∗

α
[l]
2∗ − 1

(

1 +
lτ

γ1

)−α1
(

1 +
l∆2

γ2

)−α2
}

4. Total Cost

For a simple step-stress accelerated life test under progressive type-I censoring, the total
cost of a test is given by

CT = Cset + nCunit + C [1]
op + Cins(U1 + U2)

+ (n1 + n2)Cfail + (n− n1 − n2)Cunfail. (10)

HereCset denotes the set up cost for the experiment, andCunit is the cost of each unit.
If y1,N1

> τ1, then the total operating cost,C [1]
op , is Cop(x1)∆1 + Cop(x2)min{y2,N2

−
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∆1,∆2}, otherwise it will simply beCop(x1)min{y1,N1
,∆1}. Cop(xi) is the operating

cost at the corresponding stress level.Cins is the cost of inspection,Cfail is the cost
associated with a failed unit andCunfail is the cost associated with an unfailed unit.

With this we should ensure that the total cost does not exceed the experimental budget,
CB . However, the total cost is random, so to conservatively run the test, we should set the
largest possible cost,max{CT }, to be less than the budget.

Our previous work for progressive Type-I censoring used a predefined proportion of
units to censor at each stress level. Specifically,0 ≤ π∗1 < 1 and by designπ∗2 ≡ 1. To
follow these choices, we should determine the actual number of units censored, which we
can identify asci = Γ((Ni − ni)π

∗
i ), whereΓ is some discretizing function. We can say

ci ≈ ((Ni − ni)π
∗
i ), so to estimatemax{CT } we use

max{CT } = Cset + nCunit + Cop(x1)(∆1) + Cop(x2)(∆2)

+ nCins(∆1 + (1− π∗1)∆2) + n(1− π∗1)Cfail + nπ∗1Cunfail. (11)

It may be of interested to know the expected total cost, which is computed as

E[CT ] = Cset + nCunit + E[C [1]
op ] + Cins(E[U1] + E[U2])

+ Cfail(E[n1] +E[n2]) + Cunfail(n− E[n1]− E[n2]). (12)

These expectations are obtained as seen in Han (2021) and for our simple SSALT prob-
lem, they are

E[C [1]
op ] =

Cop(x1)

λ1

N1
∑

l=1

(

N1

l

)

(−1)(l+1)

l
F1(l∆1) + F1(∆1)

N1

× 1(N2>0)

N1
∑

l=1

(

N1

l

)[

S1(∆1)

F1(∆1)

]lCop(x2)

λ2

N2
∑

l=1

(

N2

l

)

(−1)(l+1)

l
F2(l∆2)

=
Cop(x1)

λ1

N1
∑

l=1

(

N1

l

)

(−1)(l+1)

l
F1(l∆1) +

Cop(x2)

λ2
(13)

×

n−c∗
1
−1

∑

m=0

m
∑

j=0

n−m−c∗
1

∑

l=1

(

n

m

)(

m

j

)(

n−m− c∗1
l

)

(−1)(j+l+1)

l
S1(∆1)

n−m+jF2(l∆2)

E[Ui] = E[ni]/λi andE[ni] = E[Ni]Fi(∆i) = nFi(∆i)
∏i−1

j=1 Sj(∆j)(1 − π∗j ).
Again1 represents the indicator function. We can express the expected total cost compactly
as

E[CT ] = Cset + n(Cunit + Cunfail) + E[C [1]
op ]

+ n
2

∑

i=1

(

Cins

λi
+ Cfail − Cunfail

)

Fi(∆i)
i−1
∏

j=1

Sj(∆j)(1 − π∗j ). (14)

In the case of Type-I censoring, the expected total cost is given as
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E[CT ] = Cset + n(Cunit + CfailF (τ2) +CunfailS(τ2)) + nCins(λ
−1
1 F1(∆1)

+ λ−1
2 S1(∆1)F2(∆2)) +

Cop(x1)

λ1

n
∑

l=1

(

n

l

)

(−1)(l+1)

l
F1(l∆1)

+
Cop(x2)

λ2

n
∑

l=1

(

n

l

)

(−1)(l+1)

l
S1(l∆1)F2(l∆2). (15)

These results were derived for the Frequentist setting, and to utilize our Bayesian frame-
work, we again must account for the randomness ofλ1 andλ2. Similar to the expected
termination time, we needEBayes[CT ] = Eλ[E[CT |λ1, λ2]]. For the study to follow in
Section 6, to obtain the expected total cost, we again relied on Monte Carlo simulations
and similarly computed an alternative moment-matching method estimate. Equation 16
shows this approximated expectation for the Type-I censoring case.

Eλ[E[CT |λ1, λ2]] = Cset + nCunit + nCfail

+ n(Cunfail − Cfail)

(

1 +
τ

γ1

)−α1
(

1 +
∆2

γ2

)−α2

+ nCins

{

γ1
α1 − 1

[

1−

(

1 +
∆1

γ1

)]1−α1

+
γ
[1]
1∗

α
[1]
1∗ − 1

(

1 +
∆1

γ1

)−α1

−
γ
[1]
2∗

α
[1]
2∗ − 1

(

1 +
τ

γ1

)−α1
(

1 +
∆2

γ2

)−α2
}

+ Cop(x1)

n
∑

l=1

(

n

l

)

(−1)(l+1)

l

γ1
α1 − 1

[

1−

(

1 +
l∆1

γ1

)]1−α1

+ Cop(x2)

n
∑

l=1

(

n

l

)

(−1)(l+1)

l

{

γ
[l]
1∗

α
[l]
1∗ − 1

(

1 +
l∆1

γ1

)−α1

−
γ
[l]
2∗

α
[l]
2∗ − 1

(

1 +
lτ

γ1

)−α1
(

1 +
l∆2

γ2

)−α2
}

(16)

5. Design Criteria

Bayesian methods are known to be a good alternatives to use for design optimization be-
cause they reduce the dependence on assumptions that are needed in the Frequentist setting
as well as the asymptotic results that are usually used. The utility functions that we consider
for design optimization include an information theoretic criterion, theH-optimal design,
and designs based off of the posterior variance-covariance matrix, theD, C, A, E and
M -optimal designs.

TheH-optimal design maximizes

UH(ζ) = E
[

log π(Λ|T )
]

− E
[

log π(Λ)
]

.

This specific function is used to measure the uncertainty aboutΛ in terms of Shannon
entropy. Specifically, this is defined as the prior-posterior differential gain in the Shannon
information content. We have this expressed above as the expectation of the log of the prior
distribution subtracted from the expectation of the log of the posterior distribution.
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TheD-optimal design maximizes

UD(ζ) =
1

2
log det

(

Σ0

)

−
1

2

∫

t

log det
(

Σ(t; ζ)
)

f
T
(t;α,γ) dt.

Σ0 is the variance-covariance matrix of the prior distribution, andΣ(t; ζ) is the variance-
covariance matrix of the posterior distribution. The square root of the determinant of the
posterior variance-covariance matrix is correlatable to the overall volume of the joint cred-
ible region, which gives us the basis of the formula given here for theD-optimal design.

TheC-optimal design maximizes

UC(ζ) =
1

2
log

(

c⊤Σ0c
)

−
1

2

∫

t

log
(

c⊤Σ(t; ζ)c
)

f
T
(t;α,γ) dt.

This design allows us to estimate a quantity of interest with maximum precision and
minimum variability. For our specific work, what we consider is the variance of our esti-
mator at normal usage conditions.

TheA-optimal design maximizes

UA(ζ) =
1

2
log tr

(

Σ0

)

−
1

2

∫

t

log tr
(

Σ(t; ζ)
)

f
T
(t;α,γ) dt.

This looks similar toD, but instead of the determinant we now are using the trace. The
trace gives us insight into the total marginal posterior variance ofΛ.

TheE-optimal design maximizes

UE(ζ) =
1

2
logψmax

(

Σ0

)

−
1

2

∫

t

logψmax

(

Σ(t; ζ)
)

f
T
(t;α,γ) dt.

This optimal design effectively minimizes the maximum variance of all possible nor-
malized linear combinations of parameter estimates; essentially, this is minimizing the
maximum eigenvalue.

TheM -optimal design maximizes

UM (ζ) =
1

2
logmax

j

{

eTj Σ0ej
}

−
1

2

∫

t

log max
j

{

eTj Σ(T ; ζ)ej
}

f
T
(t;α,γ) dt.

This design is used to minimize the maximum variance in the variance-covariance ma-
trix.

The simulation algorithm we used in the results to follow was adapted from Hong et al.
(2014) as seen in Algorithm 1.

Algorithm 1 Stochastic Algorithm

1. Simulatem samples ofλ from the prior in Equation 5.

2. For eachλi, simulaten random samples ofti from the likelihood.

3. For eachti, compute the posterior variance-covariance matrixΣi for λi (orβi based
on a linear link).

4. Compute the value of a respective utility functionU(∆) by obtaining the mean of
the simulated measures,

∑m
i=1 g(Σi)/m with an appropriate transformationg(·).

5. Identify the value of∆ which maximizesU(∆).
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6. Simulation Results

The results to follow are based off ofm = 1000 simulations withn = 24. Given the pro-
gressive Type-I censoring scheme, choices for the proportion of surviving units to censor
after the first level were chosen asπ∗1 = 0%, π∗1 = 10% andπ∗1 = 20%. Only equal step
durations were considered for this study. Forc∗1, we use the 1000 simulated values forλ1
and estimatec∗1 ≈ E[(N1 − n1)π

∗
1 ] as the rounded mean of(nS1(∆1)π

∗
1).

For the cost constraint, we used the following settings:Cset = 10, Cunit = 1, Cfail =
0.5, Cunfail = 0.2, Cins = 0.01, Cop(x1) = 0.1, Cop(x2) = 1.1 andCB = 48. With
these settings, the maximum allowed test durations are 2.380952, 2.415459 and 2.450980
respectively for the censoring proportions of0%, 10% and20%. The optimal test durations
for C,D andH-optimality are all longer than the maximum allowed due to the constraint.
In tables 1 and 2 we show the unconstrained as well as the constrained results for designs
considered based on the variance-covariance matrix forβ andλ.

In tables 1 and 2 we include the optimal test duration as well as the constrained duration
along with the corresponding utility function values. We additionally report the approxi-
mated expected termination times, approximated expected total costs and maximum total
costs. There were two approximations used, one using Monte Carlo simulations and the
other using the moment-matching method. These approaches result in fairly close values
for all utility / censoring proportion combinations. For the expected termination times, the
moment-matching results are all larger for Type-I censoring. Except for the unconstrained
C-optimal design, and one setting for theM -optimal design, the simulated results are larger
for the other two censoring proportions. For the expected total costs, the moment-matching
results are all larger for Type-I censoring. There isn’t a particular pattern observed when it
comes to the expected cost and the other censoring proportions. We previously noted that
our optimal test durations were somewhat erratic, which was attributed to the stochastic
nature of the simulation, finding local maximums. Here we see that the expected termina-
tion times appear to follow the patterns for the test durations. It’s a little harder to make
statements about the expected total costs, since it’s a function of several components. But
we do observe some erratic patterns here as well.

In tables 3 and 4 we include the efficiency calculations. The efficiency is computed
as the ratio of the utility function values. When unconstrained and constrained results are
the same, the efficiency is equal to one, and when imposing the constraint has an impact,
the efficiency decreases. By introducing the cost constraint, we see that the efficiency of
optimal designsC,D andH are reduced, with that forC being the most pronounced. This
observation related to theC-optimal design was also observed in the Frequentist work of
Han (2015).
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Table 1: Design Optimization Based on the Variance-Covariance Matrix ofβ0 andβ1.

Ui(ζ) UnconstrainedCB = ∞ ConstrainedCB = 48

i π∗ ∆∗ U∗ E[T1] E[CT ] max{CT } ∆∗ U∗ E[T1] E[CT ] max{CT }

A
0% 1.4983 0.6741 1.4090/1.4132 46.1333/46.1417 47.25861.4983 0.6741 1.4090/1.4132 46.1333/46.1417 47.2586
10% 1.3268 0.6495 1.2643/1.2628 45.5827/45.5828 47.09861.3268 0.6495 1.2643/1.2628 45.5827/45.5828 47.0986
20% 1.4499 0.6180 1.3505/1.3413 45.4766/45.4709 47.18311.4499 0.6180 1.3505/1.3413 45.4766/45.4709 47.1831

C
0% 7.8447 1.3018 3.7263/3.7315 47.2681/47.2730 52.58952.3810 1.1873 1.9944/2.0054 46.8678/46.8916 48.0000
10% 7.0694 1.2990 3.5520/3.5751 47.1792/47.2082 51.85352.4155 1.1865 1.9964/1.9734 46.6353/46.6227 48.0000
20% 7.9181 1.2943 3.6969/3.7454 47.0703/47.1289 52.46112.4510 1.1869 1.9876/1.9368 46.3944/46.3521 48.0000

D
0% 2.4230 1.8367 2.0179/2.0291 46.8878/46.9121 48.03532.3810 1.8359 1.9944/2.0054 46.8678/46.8916 48.0000
10% 3.1312 1.8145 2.3486/2.3081 46.9031/46.8717 48.59272.4155 1.8067 1.9964/1.9734 46.6353/46.6227 48.0000
20% 3.2743 1.7835 2.3747/2.3669 46.7123/46.7178 48.67182.4510 1.7764 1.9876/1.9368 46.3944/46.3521 48.0000

E
0% 1.2300 0.5857 1.1890/1.1918 45.7095/45.7117 47.03321.2300 0.5857 1.1890/1.1918 45.7095/45.7117 47.0332
10% 1.2414 0.5568 1.1931/1.1926 45.4322/45.4318 47.02791.2414 0.5568 1.1931/1.1926 45.4322/45.4318 47.0279
20% 1.2658 0.5237 1.2054/1.1853 45.1763/45.1556 47.03291.2658 0.5237 1.2054/1.1853 45.1763/45.1556 47.0329

M
0% 1.2177 0.5984 1.1783/1.1811 45.6863/45.6882 47.02281.2177 0.5984 1.1783/1.1811 45.6863/45.6882 47.0228
10% 1.0972 0.5656 1.0683/1.0689 45.1399/45.1380 46.90851.0972 0.5656 1.0683/1.0689 45.1399/45.1380 46.9085
20% 1.1321 0.5329 1.0931/1.0801 44.9142/44.8990 46.92381.1321 0.5329 1.0931/1.0801 44.9142/44.8990 46.9238
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Table 2: Design Optimization Based on the Variance-Covariance Matrix ofλ1 andλ2.

Ui(ζ) UnconstrainedCB = ∞ ConstrainedCB = 48

i π∗ ∆∗ U∗ E[T1] E[CT ] max{CT } ∆∗ U∗ E[T1] E[CT ] max{CT }

A
0% 1.2494 0.8370 1.2056/1.2085 45.7452/45.7479 47.04951.2494 0.8370 1.2056/1.2085 45.7452/45.7479 47.0495
10% 1.3470 0.8054 1.2807/1.2791 45.6159/45.6162 47.11531.3470 0.8054 1.2807/1.2791 45.6159/45.6162 47.1153
20% 1.3858 0.7715 1.3012/1.2740 45.3791/45.3526 47.13081.3858 0.7715 1.3012/1.2740 45.3791/45.3526 47.1308

D
0% 2.4230 1.8367 2.0179/2.0291 46.8878/46.9121 48.03532.3810 1.8359 1.9944/2.0054 46.8678/46.8916 48.0000
10% 3.1312 1.8145 2.3486/2.3081 46.9031/46.8717 48.59272.4155 1.8067 1.9964/1.9734 46.6353/46.6227 48.0000
20% 3.2743 1.7835 2.3747/2.3669 46.7123/46.7178 48.67182.4510 1.7764 1.9876/1.9368 46.3944/46.3521 48.0000

E
0% 1.2440 0.8316 1.2009/1.2038 45.7353/45.7378 47.04491.2440 0.8316 1.2009/1.2038 45.7353/45.7378 47.0449
10% 1.2403 0.7966 1.1922/1.1917 45.4302/45.4298 47.02691.2403 0.7966 1.1922/1.1917 45.4302/45.4298 47.0269
20% 1.2496 0.7599 1.1920/1.1729 45.1467/45.1268 47.01971.2496 0.7599 1.1920/1.1729 45.1467/45.1268 47.0197

H
0% 3.1832 1.5928 2.3913/2.4076 47.1287/47.1586 48.67392.3810 1.5830 1.9944/2.0054 46.8678/46.8916 48.0000
10% 3.0097 1.5705 2.2935/2.2562 46.8691/46.8413 48.49202.4155 1.5603 1.9964/1.9734 46.6353/46.6227 48.0000
20% 3.7734 1.5436 2.5732/2.5567 46.8230/46.8181 49.07912.4510 1.5307 1.9876/1.9368 46.3944/46.3521 48.0000

M
0% 1.2440 0.7841 1.2009/1.2038 45.7352/45.7378 47.04491.2440 0.7841 1.2009/1.2038 45.7352/45.7378 47.0449
10% 1.2414 0.7488 1.1931/1.1926 45.4323/45.4319 47.02791.2414 0.7488 1.1931/1.1926 45.4323/45.4319 47.0279
20% 1.1201 0.7111 1.0827/1.0703 44.8886/44.8737 46.91401.1201 0.7111 1.0827/1.0703 44.8886/44.8737 46.9140
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Table 3: Design Optimization Efficiencies Based on the Variance-Covariance Matrix ofβ0
andβ1.

Ui(ζ) U∗

i π∗ Unconstrained ConstrainedEfficiency

A
0% 0.6741 0.6741 1.0000
10% 0.6495 0.6495 1.0000
20% 0.6180 0.6180 1.0000

C
0% 1.3018 1.1873 0.9120
10% 1.2990 1.1865 0.9134
20% 1.2943 1.1869 0.9170

D
0% 1.8367 1.8359 0.9995
10% 1.8145 1.8067 0.9957
20% 1.7835 1.7764 0.9960

E
0% 0.5857 0.5857 1.0000
10% 0.5568 0.5568 1.0000
20% 0.5237 0.5237 1.0000

M
0% 0.5984 0.5984 1.0000
10% 0.5656 0.5656 1.0000
20% 0.5329 0.5329 1.0000

Table 4: Design Optimization Efficiencies Based on the Variance-Covariance Matrix ofλ1
andλ2.

Ui(ζ) U∗

i π∗ Unconstrained ConstrainedEfficiency

A
0% 0.8370 0.8370 1.0000
10% 0.8054 0.8054 1.0000
20% 0.7715 0.7715 1.0000

D
0% 1.8367 1.8359 0.9995
10% 1.8145 1.8067 0.9957
20% 1.7835 1.7764 0.9960

E
0% 0.8316 0.8316 1.0000
10% 0.7966 0.7966 1.0000
20% 0.7599 0.7599 1.0000

H
0% 1.5928 1.5830 0.9938
10% 1.5705 1.5603 0.9935
20% 1.5436 1.5307 0.9916

M
0% 0.7841 0.7841 1.0000
10% 0.7488 0.7488 1.0000
20% 0.7111 0.7111 1.0000

7. Conclusion

Using a 3-parameter gamma distribution as a conditional prior, in this work we have per-
formed order-restricted Bayesian cost constrained design optimization for progressively
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Type-I censored simple step-stress accelerated life tests with exponential lifetimes under
continuous inspections. Under this framework, we examined the formula for the expected
termination time and expected total cost and proposed estimation procedures for each.
From the simulation results, we saw that the two estimation procedures yield similar re-
sults.

Our future work will include the cost constrained results under constant stress so that
we can compare efficiencies. Other considerations are to explore other constraints, explore
the generalk-level accelerated life test, to consider other censoring schemes and to explore
cost savings.
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