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Abstract 

Cognitive decline is common with ageing, but other risk factors may influence this 

process. Cognitive decline can have profound implications for individuals' well-being and 

its prediction and early detection can prevent and improve lives and decrease 

hospitalization cost. We compared the performance of linear mixed effects model and 

RE-EM tree on predicting cognitive decline. Data from five waves of the English 

Longitudinal Study of Aging (ELSA) were analyzed. RE-EM trees using 1 and 6 

iterations and three linear mixed effects models, with predictors selected by RE-EM trees 

and with all predictors, with random intercept and a slope for time variable, were fitted 

on training data. Models’ prediction abilities were evaluated on test data using root mean 

squared error (RMSE). Data were unbalanced and comprised of 12, 212 participants with 

a total of 42, 560 records. All liner mixed effects models resulted with better prediction 

performance compared to the fitted RE-EM trees (RMSE=3.57, RMSE=3.60, 

RMSE=3.63 vs. RMSE=3.67 and RMSE=3.68, respectively).  

Key Words: Linear mixed effects model, RE-EM tree, 

prediction, cognitive decline. 

 

1. Introduction 

Cognitive decline is common with ageing, however other risk factors including family 

history, education level, brain injury, medications, physical inactivity, Parkinson’s 

disease, Alzheimer’s disease, heart disease and stroke, diabetes, and depression may 

influence this process as well (CDC & Alzheimer’s Disease and Healthy Aging Program 

Home). Cognitive decline, ranging from mild cognitive impairment to dementia, can have 

profound implications for an individual’s overall health and well-being (CDC & 

Alzheimer’s Disease and Healthy Aging Program Home).  The prediction and 

identification of people who are showing early signs of cognitive decline can prevent and 

improve the lives of many adults as well as decrease hospitalization cost (CDC & 

Alzheimer’s Disease and Healthy Aging Program Home).  

Longitudinal studies are particularly useful when studying development and lifespan 

issues (Caruana et al., 2015; Singer & Willett, 2003). Longitudinal studies collect 

measures for subjects at multiple follow-ups over a period (Caruana et al., 2015; Singer 

& Willett, 2003). In the recent years, longitudinal studies of ageing in multiple countries 

have emerged (Stanziano et al., 2010). Longitudinal studies of aging allow researchers to 
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collect broad range of factors, to characterize the change in individuals at different points 

in life, to provide some of the reasons of these developmental shifts, as well as 

identification of periods in the lifespan when interventions will potentially have their 

greatest impact (Caruana et al., 2015; Zaninotto et al., 2018). 

Special methods of statistical longitudinal data analysis are needed to take into account 

the within-subject measurements correlation over time and the change in variance of 

longitudinal data with time. Ignoring within-subject correlation leads to underestimation 

of the variance of time-independent predictor variables and overestimation of variance 

for time-dependent predictor variables (Dunlop, 1994). Potential correlation and variation 

may be combined in a covariance structure that must be considered in the analysis to 

draw valid statistical inferences. 

Popular methods for the analysis of longitudinal data are the general linear mixed models 

for continuous response variable and generalized linear mixed models for non-normal 

response variable (Verbeke et al., 2010). These mixed models (known variously as 

individual growth models, random coefficient models, multilevel models, and 

hierarchical linear models) are extensions of the general linear models and generalized 

linear models, respectively, by the addition of random effect parameters and by allowing 

a more flexible specification of the covariance matrix of the random errors (Singer & 

Willett, 2003; Verbeke et al., 2010). In mixed model the random effects are subject-

specific regression parameters, reflecting how the response evolves over time for each 

subject, while the fixed effects are population specific regression parameters, assumed to 

be the same for all subjects. The mixed effects model handles unbalanced data with 

unequally spaced time points and subjects observed at different time points (Singer & 

Willett, 2003). 

Data mining methodology, such as decision trees, artificial neural networks, and support 

vector machines has increasingly been applied for analysis and prediction to health 

sciences and clinical research (Bellazzi & Zupan, 2008; Islam et al., 2018). A new data 

mining tool for analysis of longitudinal data, called the RE-EM tree, was proposed by 

Sela and Simonoff (2012) (Sela & Simonoff, 2012). RE-EM tree combines the structure 

of mixed effects models for longitudinal data with the flexibility of tree-based estimation 

methods (Sela & Simonoff., 2012). More specifically, the focus of the RE-EM tree is 

using regression trees, implemented with R package rpart and incorporating the object 

specific random effects to take into account the longitudinal nature of the data (Breiman 

et al., 1984; Sela & Simonoff, 2012; Therneau & Atkinson, 2010). If the random effects 

in the model are known the tree can be fit to estimate the fixed effects. If the population-

level effects are known then the random effects, can be estimated using traditional mixed 

effect regression model. Using expectation–maximization (EM) algorithm, there is an 

alternation between estimating regression tree, assuming that the estimated random 

effects are correct, and estimating the random effects assuming regression tree is correct 

(Sela & Simonoff, 2012). 

The objective of this study was to compare the predictive ability of linear mixed effect 

model with that of RE-EM tree method on cognitive decline using data from the English 

Longitudinal Study of Aging (ELSA). 

 

2. Methods 
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2.1 Data source 

In this study we used data from wave 1 to wave 5 (2002-2011) of the English 

Longitudinal Study of Ageing (ELSA) (Banks et al., 2019). The ELSA is a prospective 

and nationally representative cohort of men and women aged 50 years and over living in 

England. A detailed description of the goals, design and methods of the ELSA has been 

published elsewhere (Banks et al., 2019; Marmot et al, 2017; Steptoe et al., 2013; 

Zaninotto et al., 2018). A total of 12,212 participants with 2 or more waves resulting in 

total of 42,160 records were included in this study. The individuals had unequal number 

and variably spaced waves resulting in unbalanced and time-unstructured data. 

The outcome variable was index of memory function with a range 0-24 (memtotb). This 

variable combines results from 3 memory tests: respondents today's date, carry out an 

instruction given to the respondent earlier in the interview and remembering a word list 

both immediately and after a delay (Steel et al., 2003). The predictor variables considered 

in this analysis were type 2 diabetes history, age, sex, marital status, employment status, 

level of education, having difficulties in preforming activities, mobility, current smoking 

status, drinking status, hypertension, depression score, stroke, cancer history, lung 

disfunction, dementia, Altzhimer, health history (Jacqmin-Gadda et al., 1997; Matthews 

et al., 2012; Wu et al., 2003; Zaninotto et al., 2018; Zheng et al., 2018).  

 

2.2 Data Analysis 

2.2.1 Linear mixed effects model 

The general form of the linear mixed effects model, written in matrix notation, is: 

          

where   is a column vector of observed responses,   is the design matrix of predictor 

variables,   is the vector of unknown fixed effects regression parameters,   is the design 

matrix of random variables, reflecting how the response evolves over time for each 

subject,   is the vector of unknown random effects parameters, and    is the vector of 

random errors, representing the within-subject variation.  

The model assumptions are that: 1) the relationship between the response variable and 

(set of) predictor variables is linear, 2) the random effects are independent and identically 

distributed with means 0 and a positive definite covariance matrix           , 3) the 

random errors are normally distributed with means of 0 and a positive definite covariance 

matrix             and no longer required to be independent and homogeneous as in 

the general linear model, and 4) the random effects and random errors are independent of 

each other. Based on these we obtain the variance of   is         .  

To fit the linear mixed effects model, we used SAS PROC MIXED (SAS institute inc. 

2015). We model   by setting up the random effects design matrix   and by specifying 

covariance structures for   and  . The covariance structure of the random effects   

models the natural between-subjects variability using RANDOM statement in PROC 

MIXED. It is recommended that the unstructured covariance structure be specified in the 

RANDOM statement, indicating that we do not want to impose any structure on the 

variances for intercept and variances for slopes, and on the covariance between the 

intercept and slopes (SAS Institute Inc, 2002). REPEATED statement directly models the 
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correlation within subject, which is directly related to the spacing of measurements, by 

specifying a covariance structure for the   matrix (SAS institute Inc, 2015). 

We determined the covariance structures appropriate for our model. First, using 

RANDOM statement with unstructured covariance structure we fitted two simpler 

models: the unconditional means model and the unconditional growth model (Singer & 

Willett, 2003). These unconditional models partition and quantify the outcome variation 

across people without regard to time, and across both people and time, respectively, and 

allow to determine if there is systematic variation in the outcome and where that variation 

resides (within or between individuals) (Singer & Willett, 2003). Based on the 

unconditional means model, we computed the intraclass correlation coefficient (ICC), 

computed as a ratio ICC = (between-person variance) / (between-person variance + 

within-person variance), to describe the proportion of the total outcome variation that lies 

between individuals. Next, we fitted models only with REPEATED statement and 

restricted maximum likelihood (REML) method of estimation and explored models with 

different covariance structures for R: independent or variance components (VC) (0 

within-subject correlation), compound symmetry (CS) (constant within-subject 

correlation regardless of the distance between time points), unstructured (UN) (the 

observations for each pair of times have their own unique correlations), first-order 

autoregressive (AR(1)) (the correlation between observations is a function of the number 

of time points apart,    for d units apart; Toeplitz (TOEPH) (similar to AR(1) but instead 

of     observations d units apart have correlation   ; and special power (SP(POW)) 

structure (allows for unequal spacing and is generalization of AR(1)). The best 

covariance structure was selected based on the smallest Akaike’s Information Criterion 

(AIC) and finite sample version of the AIC the (AICC) (Akaike, 1974). Finally, the linear 

mixed effects models with RANDOM and REPEATED statements and selected 

covariance structure for R were refitted. 

The linear mixed effects models were fitted using the set of all predictor variables of 

interest. In addition, the liner mixed effect models were refitted using the set of the 

predictor variables based on the resultant RE-EM tree models.  

Linear mixed effects models were also estimated using the lmer function of the lme4 

package in R (Bates et al., 2015). 

 

2.2.2 RE-EM tree 

Sela and Simonoff (2012) constructed the RE-EM tree algorithm for longitudinal and 

clustered data as an iterative two-step process (Sela & Simonoff, 2012) described as 

follows. After the first initialization of the estimated random effects           in the first 

step the regression tree approximating    based on the target value        and the 

specified   ignoring the longitudinal structure is estimated using CART algorithm. In this 

step a set of indicator variables          ) over all terminal nodes    in the regression 

tree is obtained. These indicator variables are then used in the second step, to fit a linear 

mixed effects model                  )  + ε and extract  
 . They replace the 

predicted response at each terminal node with the estimated population level predicted 

response    . These two steps are repeated until the estimated random effects    converge 

using ML or REML method of estimation. 
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RE-EM tree algorithm in the first step is based on binary tree growing and pruning rules. 

A binary recursive splitting is a greedy top-down approach that select the best split in 

selected predictor variable   based on maximizing the reduction in sum of squares for the 

nodes (Breiman, et al., 1984; Gareth et al., 2013). Splitting continues as long as the 

increase in the proportion of variability account for by the tree is greater than 0.001 (the 

complexity parameter, cp>0.001) and the number of observations in the node being 

considered for splitting is greater than 20. The grown tree is then pruned based on 10-fold 

cross validation. The best tree is selected as the smallest tree with the largest cp value and 

corresponding estimated 10-fold cross validated error rate that is within one standard 

error of the minimum (also known as 1-SE rule) (Breiman et al., 1984; Gareth et al., 

2013). In the case of missing data, the binary tree growing algorithm uses surrogate splits 

to automatically handle missing values in the variables.  

In our analysis we fitted RE-EM trees with 1-iteration (i.e., reporting a final tree 

estimated with one time iteration through the two aforementioned steps) and RE-EM tress 

with 6-iterations using all candidate predictor variables.  

RE-EM trees were fitted using REEMtree function in the R package REEMtree (Sela & 

Simonoff, 2012).  

 

2.2.3 Comparison of predictive models 

The study data were randomly divided into training and validating components based on 

the number of individuals in wave 1. Seventy five percent (75%) of the data (n=31,849) 

were used to derive the models and 25% of the data (n=10,311) were used to evaluate the 

prediction performance of the models (Picard, 1990). The prediction performance of the 

fitted models was evaluated using the root mean square error (RMSE): 

          
         

  

  
    

where    and     represent the actual and predicted value for an observation  , 
respectively;    is the total number of observations in the testing data.  

 

3. Results 

Table 1 presents the estimated random effects covariance parameters based on fitted 

unconditional means and unconditional growth models for the memory function score 

with unstructured covariance structure, and random intercept and random intercept and 

slope for Time variable (measured in number of years), respectively. Based on the 

unconditional means model, the ICC=11.0813/(11.0813+7.15)=60.8% indicated that 

60.8% of the total variation in memory function score was attributable to differences 

among subjects (Table 1) indicating that random effects model is appropriate to analyze 

these longitudinal data (Musca et al., 2011). Comparing the residual covariance 

parameters estimates between the two unconditional models in Table 1, there was 5.6% 

decrease in within-subject variation associated with Time. The unconditional growth 

model suggested that very small of the within-subjects variation was attributable to linear 

Time and that there were significant between-subjects variations in both true initial status 

and true rate of change. 
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Table 1. Random effects covariance parameter estimates based on unconditional means 

and unconditional growth models for the memory function score 

Unconditional Means Model Unconditional Growth Model 

Covaria

nce 

Paramet

er 

Estima

te 

Standa

rd 

Error 

Z 

Val

ue 

P-

value 

Covarian

ce 

Paramete

r 

Estima

te 

Standa

rd 

Error 

Z 

Valu

e 

P-

value 

UN(1,1) 

(In initial 

status) 

11.081

3 

0.1734 63.9

1 

<.00

01 

UN(1,1) 

(In initial 

status) 

10.027

6 

0.1924 52.13 <.00

01 

Residual 

(Within-

subject) 

7.15 0.05818 122.

9 

<.00

01 

UN(2,1) 

(Covarian

ce) 

0.1392 0.02327 5.98 <.00

01 

  

        

UN(2,2) 

(In rate of 

change) 

0.0423

2 

0.00417 10.15 <.00

01 

  

        

Residual 

(Within-

subject) 

6.7477 0.064 105.4

3 

<.00

01 

Fit Statistics       Fit Statistics       

-2 Res 

Log 

Likelihoo

d 

226604

.2 

      

-2 Res 

Log 

Likelihoo

d 

226249

.1 

      

AIC 

(Smaller 

is Better) 

226608 

      

AIC 

(Smaller 

is Better) 

226257 

      

AICC 

(Smaller 

is Better) 

226608 

      

AICC 

(Smaller 

is Better) 

226257 

      

BIC 

(Smaller 

is Better) 

226623 

      

BIC 

(Smaller 

is Better) 

226287 

      

 

Table 2 presents the fit statistics for linear mixed effects models with various covariance 

structures for R matrix (i.e., models fit with RANDOM statement only in SAS PROC 

MIXED). The results show that the model with the smallest fit statistics is the model 

fitted with unstructured covariance structures for R matrix.  

Table 2.  Fit statistics for linear mixed effects models with various covariance structures 

for R matrix 

Fit Statistics 
VC* 

(Independent) 
UN CS AR (1) SP(POW) TOEP 

-2 Res Log 

Likelihood 

243171.7 226187.6 226613 228816 226439.7 226432 

AIC (Smaller 

is Better) 

243174 226218 226617 228820 226446 226442 

AICC 

(Smaller is 

Better) 

243174 226218 226617 228820 226446 226442 
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BIC (Smaller 

is Better) 

243181 226329 226632 228835 226468 226480 

*Default if REPEATED statement is not specified. 

Figure 1 and Figure 2 show the fitted RE-EM trees with 1 and 6 iterations, respectively. 

The selected predictors based on 1-iteration RE-EM tree were age, education level, 

employment status, drinking status and sex.  The selected predictors based on 6-iterations 

RE-EM tree were education level, age, and sex. 

 

Figure 1. Estimated 1-iteration RE-EM tree for memory function score with random 

intercept and slope for Time variable using REML method (n=31,849) 
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Figure 2. Estimated 6-iterations RE-EM tree for memory function score with random 

intercept and slope for Time variable using REML method (n=31,849) 

 

Table 3 summarizes the computed RMSEs for various fitted linear mixed effects models 

and RE-EM tress.  The fitted 1-iteration RE-EM tree performs better in predicting the 

outcome variable memory function score (RMSE=3.668023) than the fitted 6-iterations 

RE-EM tree (RMSE= 3.676194). The linear mixed effects model fitted using all 

covariates of interest as well as the reduced linear mixed effects models fitted using 

covariates selected based on the fitted RE-EM trees resulted with smaller RMSEs 

indicating that they are more effective than the RE-EM trees in predicting the memory 

function score (Table 3). 

 

Table 3. Predictive performance of various fitted linear mixed effects models and RE-

EM tress 

Models Root Mean Square Error (RMSE) 

Linear mixed effects model with all covariates 3.565972 

fedqual = 5,7

age >= 75

age >= 86

age >= 79

age >= 67

fsex = 1

age >= 72

age >= 82 fedqual = 2,3,4,6

fsex = 1

age >= 69

fsex = 1

16

100%

14

35%

12

10%

9.8

1%

13

8%

12

4%

13

4%

15

25%

14

9%

15

16%

15

6%

16

10%

17

65%

15

13%

13

3%

15

10%

17

52%

17

39%

17

16%

18

23%

16

2%

18

21%

18

13%

18

7%

19

6%

yes no
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1-iteration RE-EM tree  3.668023 

Linear mixed effects model reduced based on 1-

iteration RE-EM tree 3.602161 

6-iterations RE-EM tree  3.676194 

Linear mixed effects model reduced based on 6-

iterations RE-EM tree 3.624616 

 

4. Discussion and future work 

In this study we used empirical longitudinal data to compare the predictive performance 

of fitted linear mixed effects models with random intercept and random slope for Time 

variable and RE-EM trees estimated with 1 and 6 iterations. The results showed that the 

linear mixed effects models had the best predictive ability compared to the RE-EM trees. 

We did not fit linear mixed effects models with both within-subject correlation and 

random effects covariance structures due to computational errors. Fitting a model with 

random effects and serial correlation might sometimes overparameterize the covariance 

structure, because the random effects are often able to represent the serial correlations 

among the measurements (SAS institute Inc, 2015; Chi et al., 1989; Diggle et al., 1994). 

When we specify the intercept and Time variable in a RANDOM statement, the random 

coefficient model indirectly models the serial correlation within subject and enable the 

correlations within subject to change over time (SAS institute Inc, 2015). In addition, by 

specifying the unstructured covariance structure we do not impose any structure on the 

variances for intercepts and variances for slopes, and on the covariance between the 

intercepts and slopes. By specifying the random intercept and slope for Time variable, the 

unequal time intervals are considered as well because the Z matrix is used in the 

computation of the V matrix (SAS institute Inc, 2015). 

In our study the memory function score variable was approximately normally distributed 

as well as all linear mixed effects model’s assumptions were satisfied. In addition, the 

data used in the analyses had only 0.2% missing values. Future studies need to be 

conducted to compare predictive performance of the mixed effects models and RE-EM 

trees using simulated data with different scenarios for sample size, distribution of the 

outcome variable, and different percentage of missing values. 
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