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Abstract 

This study investigates the benefits of spatio-temporal analysis frequency separation 
(STAFS) strategies prior to bootstrapping periodically correlated time series. Analysis of 
time series data that contains periodically correlated (PC) principal components, such as 
seasonal, daily, or other cyclostationary processes, benefits from separating these 
components from other interfering frequencies or PC components. Bootstrapping allows 
estimation of a statistic's sampling distribution using random sampling with replacement, 
while block bootstrapping is a model-free resampling strategy for time series data and 
extensions of the block bootstrap help preserve the correlation structures of PC processes. 
Frequency separated periodic block bootstrapping (FSPBB) is introduced to separate 
different periodic components by frequency and bootstrap the PC components to improve 
estimation of the periodic characteristics of those component processes as well as the full 
time series. Data simulation studies are used to compare block bootstrapping results of 
periodically correlated time series with and without prior frequency separation. 
 
Key Words: Spatio – Temporal Analysis Frequency Separation, Frequency Separated 
Periodic Block Bootstrap, Periodically Correlated Time Series, Cyclostationary Process 
Frequency Interference, Seasonal Mean, Kolmogorov-Zurbenko Iterated Moving Average 

 

1. Introduction 

 
1.1 Background 

To better understand the characteristics of a set of data and the population that the set of 
data represents, bootstrapping, or resampling with replacement from a given set of data, is 
useful to estimate the sampling distribution of statistics such as means and variances. 
Random sampling with replacement results in independent draws that form a resample of 
the same length as the original data set first detailed by Efron (1979). In time series data, 
successive data points, or observations, are ordered in time and more on time series 
including definitions, notation, and examples can be found in Wei (1990). The ordering 
can be in space, space-time, or another combination of dimensions, generally described as 
spatio-temporal data, but without loss of generality the data can still be referred to as time 
series and the metric that data is ordered in can be time. It is often the case that the ordered 
data points may be correlated with prior observations in the time series. Consequently, 
independently sampling data points from the dataset to form a new ordered resample will 
not replicate correlations between a given and prior data points. The correlation between 
successive time series data points is destroyed.  Many bootstrapping schemes destroy 
correlation structures between in time series data. 
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Block bootstrapping methods attempt to replicate and preserve correlations in spatio-
temporal data. Block bootstrapping often involves a general strategy of splitting the time 
series into blocks, and then randomly sampling the blocks to form the resamples. An 
example of this is the Moving Block Bootstrap first introduced by Kunsch (1989). This can 
help replicate the correlation structure between given data points and, at least up to a limited 
number, some prior observations. Clearly, correlations between data points that are 
separated by more than the length of the bootstrapped blocks will have correlation 
structures destroyed. 
Many fields that relate to natural or physical processes involve spatio-temporal data that is 
driven by periodic factors or components. Periodic components of a given period, 𝑝 , 
exhibit a unique type of correlation structure between observations in spatio-temporal data. 
Such a component of a time series is periodically correlated (PC). A PC time series with a 
period 𝑝 has strong correlation between data points that are 𝑝 time points removed. In 
general, block bootstrapping has difficulty reproducing the correlation structure of PC time 
series. First, arbitrarily bootstrapping with block lengths less than the given period, 𝑝, will 
sever these correlations. Additionally, bootstrapping with block lengths greater than the 
given period, 𝑝, will preserve the correlation within each block, however there is no reason 
that randomly sampled adjacent blocks will retain the periodic correlation structure when 
forming the resample. With this bootstrap design, there is nothing to force the first data 
point of a sampled block to be the next step in each cycle of period 𝑝 that follows the last 
data point of the prior sampled block. This is illustrated in the following figure. For this 
reason, many block bootstrapping strategies are not well suited for PC time series. 
 

 
Figure 1: Illustration of resampling a PC time series component of period 𝑝1 with a block 
boostrap of block length less than 𝑝1 and destroying the PC structure. 
 
1.2 Existing Methods and Challenge 

 A block bootstrapping strategy that is better suited for PC time series with a PC 
component of period, 𝑝, is one that considers bootstrapping blocks whose length in some 
way accounts for the period 𝑝. A seasonal block bootstrap was proposed by Politis (2001). 
There, the block length is restricted to be a multiple of the period 𝑝 . Regardless of 
whichever step in the cycle a block begins with, all other blocks in the resample will 
likewise start and end with a common step in the cycle of period 𝑝. This strategy will 
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preserve correlation structures between data points that are p points removed from each 
other in time series data. This can be seen in the following figure. Some other block 
bootstrapping methods for PC time series include that of Chan et al. (2004) as well as that 
presented by Dudek et al. (2014). 
 

 
Figure 2: Illustration of resampling a PC time series component of period, 𝑝2, with a block 
bootstrap strategy that incorporates the period, 𝑝2, in the design of block length, replicating 
the PC structure. 
 
In many real-world problems, time series will be a function of the accumulated influence 
of multiple periodically correlated (MPC) components. These problems could arise in 
meteorology, environmental sciences, physics, economics, and other fields where factors 
that operate on different time scales with different periodicities play significant roles in 
determining the time series. While the block bootstrapping methods described above 
attempt to preserve one PC correlation structure, the same reasoning that explains their 
success underscores the challenge presented by MPC components contained within a time 
series. If there are two or more PC components in a MPC time series, only in rare 
circumstances will the period of one PC component be an integer multiple of another. In 
this more trivial case, block bootstrapping can be performed on the longer period and still 
bootstrap the shorter without eliminating the correlation structure of either. More likely, in 
MPC time series with multiple PC components, each with their own correlation structure, 
one periodicity will not be an inter multiple of another. With MPC, these block 
bootstrapping methods can preserve one but not multiple periodic components. The choice 
of block length suitable for preserving one correlation structure will fail to preserve that of 
a different PC component. This is illustrated in the following figure. Any choice of block 
length for resampling from correlated time series with two or more component periodicities 
will essentially destroy at least one inherent periodic component’s correlation structure. 
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Figure 3: Illustration of resampling a MPC time series with PC component A of period, 
𝑝𝐴, and a different PC component B of period, 𝑝𝐵,  with a block bootstrapping strategy that 
incorporates the period, 𝑝𝐵, in the design of block length, replicating the PC structure of 
component B but failing to replicate the PC structure of component A. 
 
1.3 Solution 

The objective is to bootstrap MPC time series with two or more PC components while 
preserving the correlation structures of each periodic component present. One potential 
solution would be to choose a block length that is an integer multiple of the period of both 
components.  In effect, the block length would be a common multiple and at best a least 
common multiple (LCM) of the two periods. This however is problematic because unless 
the LCM is relatively small, and as a result the periods themselves are very small, the block 
length will be relatively large compared to the data set length, or more likely, many times 
longer than the available data. This problem is compounded, with even higher demand for 
data, if a third or additional components are present, and the LCM is for 3 or more 
components. 
 
Another solution is inspired by the periodogram, which is a spectral density or frequency 
domain representation of a time series and is described in Wei (1989). Two or more 
different periodic components operate at different frequencies, or the reciprocal of period, 
and signals of two different frequencies may sum in the time domain but have zero 
correlation between them. Different frequencies operate independently. Separating and 
filtering a MPC time series according to its spectral density by the individual PC 
component frequencies, would create a set of component PC time series each with one PC 
structure. This can be seen in the following figure. The set of component PC time series 
each with one PC structure could then individually be block bootstrapped with the 
appropriate block size to preserve that correlation structure. Frequency separated periodic 
block bootstrapping (FSPBB) should preserve all correlation structures within a MPC time 
series. 
 

 
1272



 
Figure 4: Illustration of separating a MPC time series into PC components 
 
There are several potential advantages to using FSPBB on an MPC time series. The block 
bootstrapping techniques previously mentioned can be used on the individual PC time 
series of each component that result from separating the MPC time series. This strategy 
may be useful if the primary purpose is to investigate one PC component individually, 
rather than collectively as the MPC time series. This may be useful to gain insight into 
other components that may not be the primary intended focus of a study. This could be 
used if the primary purpose is investigating an individual PC component free from the 
interference, perhaps from a nuisance PC component present in the time domain of a MPC 
time series. Another potential use of this strategy beyond reproducing a single PC 
component, is recombining block bootstrapped components to investigate a subset of PC 
processes of interest. Recombining bootstrapped components can replicate the correlation 
structure of any combination of components up to the full MPC time series. This was not 
previously possible the by block bootstrapping the MPC time series directly. This strategy 
is illustrated in the figure below. 
 

 
Figure 5: Illustration of resampling a MPC time series with PC component A of period, 
𝑝𝐴, and a different PC component B of period, 𝑝𝐵. After PC component separation, the 
strategy incorporates the period, 𝑝𝐴  and 𝑝𝐵 , in the design of block length for block 
bootstrapping respectively, replicating the PC structure of component A and component B. 
 

 
1273



This FSPBB strategy can be accomplished by applying filters to the original MPC time 
series. It is necessary to separate and filter the MPC time series into portions of the spectral 
density, each containing one PC component frequency. With only two PC components this 
can be accomplished by applying low and high-pass filters designed so that the filter cut-
offs, or the boundary between passed and attenuated bandwidth, sits between the PC 
component frequencies. If there are more than two PC components, bandpass filters can be 
used in addition to low and high pass filters with the same design feature. It may also be 
beneficial to FSPBB even in the case of a single PC time series, as it will separate the PC 
component from other potential components, even those that are not PC such as noise. This 
may improve investigation of the properties of the component itself. 
 
There is a choice of filters of these types, and one such filter is the Kolmogorov-Zurbenko 
(KZ) filter, and its extensions. These filters are described in Zurbenko (1986). KZ filters 
are a class of low-pass filters, but their extensions include bandpass filters, and in 
combination with difference filters, are a flexible way to produce low, high, and bandpass 
filters with fine control over filter cut-off frequencies. KZ filters are iterations of a simple 
moving average. These filters are well suited for computing processes that will include 
bootstrapping algorithms. Also, the parameters of the filter provide a clear and direct 
explanation relating to the desired problem. 
 
Kolmogorov-Zurbenko (KZ) filters and their extensions can separate portions of the 
frequency domain to exclude interfering frequencies as detailed in Yang and Zurbenko 
(2010).  The frequency separated spatio-temporal components can then independently be 
used to reveal important details about patterns and processes often hidden within the 
original data, as well as associations with possible factors operating at similar spatio-
temporal scales. This is the idea behind spatio-temporal analysis by frequency separation 
(STAFS). These filters are used to isolate frequencies in a variety of fields such as the 
environmental sciences, meteorology, and climatology. Examples include investigating 
ozone in Rao et al. (1997) and Tsakiri and Zurbenko (2010), air quality in Kang et al. 
(2013), global temperature in Ming and Zurbenko (2012), atmospherics in Zurbenko and 
Potrzeba (2010) and climate in Zurbenko and Cyr (2011). They are used to model disease 
such as skin cancer in Valachovic and Zurbenko (2013, 2014), and diabetes by Arndorfer 
and Zurbenko (2017). Valachovic and Zurbenko uses frequency separation to identify 
hidden PC components in skin cancer time series and perform multivariate analysis on 
these component factors (2017). Many of these examples highlight the use of Kolmogorov-
Zurbenko filters to smooth data, reduce random variation, interpolate missing observations, 
and specifically separate and filter portions of the frequency domain prior to analysis. 
These features make KZ filters and their extensions ideal for use in FSPBB. 
 

2. Methods 

 
2.1 Statistical Analysis Tools 

The Kolmogorov-Zurbenko (KZ) filter is the iteration of a moving average of length m, a 
positive odd integer defined in Zurbenko (1986). It is a filter with two parameters. The 
parameter m is the filter window length and the parameter k is the number of iterations. KZ 
filters are low pass filters that strongly attenuate signals of frequency 1/m and higher while 
passing lower frequencies. Applied to a random process {𝑋(𝑡): 𝑡 ∈ ℤ} a KZ filter with m 
time points, and k iterations is defined as: 
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Equation 1: Kolmogorov-Zurbenko Filter 

𝐾𝑍𝑚,𝑘(𝑋(𝑡)) = ∑
𝑎𝑢
𝑚,𝑘

𝑚𝑘
𝑋(𝑡 + 𝑢)

𝑘(𝑚−1)/2

𝑢=−𝑘(𝑚−1)/2

 

 
The coefficients 𝑎𝑢

𝑚,𝑘 are the polynomial coefficients from: 

∑ 𝑧𝑟𝑎𝑟−𝑘(𝑚−1)/2
𝑚,𝑘

𝑘(𝑚−1)

𝑟=0

= (1 + 𝑧 +⋯+ 𝑧𝑚−1)𝑘 

 
One advantage of the KZ filter is the computational ease with which statistical software 
can apply it in an iterated form. As an application of k iterations of a moving average filter 
of m time points, the Kolmogorov-Zurbenko filter can be produced according to the 
following algorithm: 
 
Equation 2: Kolmogorov-Zurbenko filter as an iterated algorithm 

𝐾𝑍𝑚,1(𝑋(𝑡)) = ∑
𝑎𝑢
𝑚,1

𝑚1
𝑋(𝑡 + 𝑢)

(𝑚−1)/2

𝑢=−(𝑚−1)/2

=
1

𝑚
∑ 𝑋(𝑡 + 𝑢)

(𝑚−1)/2

𝑢=−(𝑚−1)/2

 

𝐾𝑍𝑚,2(𝑋(𝑡)) =
1

𝑚
∑ 𝐾𝑍𝑚,1(𝑋(𝑡 + 𝑢))

𝑘(𝑚−1)/2

𝑢=−𝑘(𝑚−1)/2

 

 
⋮ 

 

𝐾𝑍𝑚,𝑘(𝑋(𝑡)) =
1

𝑚
∑ 𝐾𝑍𝑚,𝑘−1(𝑋(𝑡 + 𝑢))

𝑘(𝑚−1)/2

𝑢=−𝑘(𝑚−1)/2

 

 
The transfer function is the linear mapping that describes how input frequencies are 
transferred to outputs. The energy transfer function is the square of the transfer function 
and as such is symmetric about zero. The energy transfer function of the KZ filter at 
frequency λ is seen in the following equation. This shows how with only a few iterations, 
a KZ filter, strongly attenuates signals of frequency 1/m and higher while passing lower 
frequencies: 
 
Equation 3: Kolmogorov-Zurbenko energy transfer function 

|𝐵(𝜆)|2 = (
sin(𝜋𝑚𝜆)

𝑚 sin(𝜋𝜆)
)
2𝑘

 

 
The cut-off frequency is a limit or boundary at which the energy transferred through a filter 
is suppressed or diminished rather than allowed to pass through. The point where output 
power is 𝛼 𝜖 (0,1) times that of the input can be used as the boundary, and it is common to 
use 𝛼 = 1/2 or the half power point, a power ratio in 10 ∗ 𝑙𝑜𝑔10 of -3 decibels units. The 
cut-off frequency, where the transfer function for a KZ filter is: 
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Equation 4: Kolmogorov-Zurbenko cut-off frequency 

𝜆0 ≈
√6

𝜋
√
1 − (1/2)

1
2𝑘

𝑚2 − (1/2)
1
2𝑘

 

 
Where the KZ filter is a low pass filter, strongly filtering signals of a frequency at or above 
the frequency equivalent to 1/m, the related Kolmogorov-Zurbenko Fourier Transform 
(KZFT) filter is a band pass filter.  KZFT is a filter applied to a random process 
{𝑋(𝑡): 𝑡 ∈ 𝑇} that has parameters m time points, and k iterations but is shifted to center at 
a frequency 𝜈 and is defined: 
 
Equation 5: Kolmogorov-Zurbenko Fourier Transform 

𝐾𝑍𝐹𝑇𝑚,𝑘,ν(𝑋(𝑡)) = ∑
𝑎𝑢
𝑚,𝑘

𝑚𝑘
𝑒−𝑖2𝑚νu𝑋(𝑡 + 𝑢)

𝑘(𝑚−1)/2

𝑢=−𝑘(𝑚−1)/2

 

The coefficients 𝑎𝑢
𝑚,𝑘 are the polynomial coefficients from: 

∑ 𝑧𝑟𝑎𝑟−𝑘(𝑚−1)/2
𝑚,𝑘

𝑘(𝑚−1)

𝑟=0

= (1 + 𝑧 +⋯+ 𝑧𝑚−1)𝑘 

 
Where the KZ filter is symmetric around zero, the KZFT is a symmetric band pass filter 
around frequency ν. Practical use of the KZFT filter is similar to the KZ filter since it can 
be produced in statistical software. The energy transfer function of the KZFT filter at a 
frequency λ with parameters m, k, and ν is given below. 
 
Equation 6: Kolmogorov-Zurbenko Fourier Transform energy transfer function 

|𝐵(𝜆 − 𝜈)|2 = (
sin(𝜋𝑚(𝜆 − 𝜈))

𝑚 sin(𝜋(𝜆 − 𝜈))
)
2𝑘

 

 
It follows that the cut off frequency is: 
 
Equation 7: Kolmogorov-Zurbenko Fourier Transform cut-off frequency 

|𝜆0 − 𝜈| ≈
√6

𝜋
√
1 − (1/2)

1
2𝑘

𝑚2 − (1/2 )
1
2𝑘

 

 
For these filters, the cut-off frequency boundaries then become useful to determine the 
region of the spectra that is passed and that which is suppressed or filtered. 
 
2.2 Statistical Theory 

 
Kolmogorov-Zurbenko filters can PC components in MPC time series in most 
circumstances. Yet, it is important to understand the limitations and conditions under which 
the filter is applicable, as well as have detailed guidance for the implementation of the 
filters to accomplish their intended purpose. While any that two different frequencies can 
theoretically be separated by Kolmogorov-Zurbenko (KZ) filters with appropriate chosen 
filter parameters with a sufficiently large spatio-temporal series length or number of 
observations, n, so that each frequency is outside of the filter cut-off from the other 
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frequency, this does not mean that two frequencies are separable for any set of data. While 
possible to separate any two different frequencies with KZ filters, regardless of how close 
they may be, doing so in practice requires increasingly lengthy time series and increasingly 
high parameters values, 𝑚 and 𝑘. With finite datasets the ability to increase KZ parameters 
is limited. 
 
However, the cut-off frequency can be used to derive a set of conditions necessary so that 
appropriate KZ filters can be assured of separating frequencies, while minimizing 
interference between filtered spectral components subject to the limitations of the data. The 
research in Valachovic (2020) answers what is the closest that any two frequencies can be 
and still be separated by KZ filters for a fixed time series length. That work also answers 
what is the minimum number of observations necessary to separate them by KZ filters, for 
two different given frequencies? This work uses these criteria to guide filtration for signal 
separation. The first proposition provides the minimal required length of time series data 
for separation of two given frequencies. The second proposition provides a means to 
calculate how close two frequencies may be for a fixed time series length, n, and still be 
separated with given KZ filters. 
 
Proposition 1: Given 𝜆𝑖 = 1/𝑑𝑖  and 𝜆𝑗 = 1/𝑑𝑗  different spatio-temporal frequencies 
where 𝜆𝑖 ≠ 𝜆𝑗, and given 𝑘𝑖, 𝑘𝑗 parameters of KZFT filters, where 𝑚𝑖 = 𝑚𝑗 = 𝑚𝑖,𝑗 ≡ 

𝑚𝑎𝑥

(

 
 
𝑐𝑒𝑖𝑙𝑖𝑛𝑔

(

 √(1/2)
1
2𝑘𝑖
⁄

+
1−(1/2)

1
2𝑘𝑖
⁄

𝜋2

6
(
|λ𝑖−λ𝑗|

2
)

2

)

 , 𝑐𝑒𝑖𝑙𝑖𝑛𝑔

(

 √(1/2)
1
2𝑘𝑗⁄
+
1−(1/2)

1
2𝑘𝑗⁄

𝜋2

6
(
|λ𝑗−λ𝑗|

2
)

2

)

 

)

 
 
  

if |√6
𝜋
√

1−(1/2)
1
2𝑘𝑖
⁄

𝑚𝑖,𝑗
2 −(1/2)

1
2𝑘𝑖
⁄
| ≤

|λ𝑖−λ𝑗|

2
 and |√6

𝜋
√

1−(1/2)
1
2𝑘𝑗⁄

𝑚𝑖,𝑗
2 −(1/2)

1
2𝑘𝑗⁄
| ≤

|λ𝑖−λ𝑗|

2
 then  

𝑛𝑖,𝑗 ≥ 𝑚𝑎𝑥 (𝑚𝑖,𝑗, 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 (
1

𝜆𝑖 
) , 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 (

1

𝜆𝑗
)). 

 
Proposition 1 may be best suited for research design, prior to observation when the time 
series length may be adjusted. The related question is, with a fixed spatio-temporal 
sequence length, n, what is the closest that two frequencies may be and still be separated 
with given KZ filters. This will determine if frequency separation is a viable strategy for 
block bootstrapping of MPC time series. This proposition provides the minimum separable 
frequency difference between any number of frequencies and is most useful for existing 
time series data of fixed length. 
 
Proposition 2: If n is the given number of observations, and 𝜆𝑖 = 1/𝑑𝑖 and 𝜆𝑗 = 1/𝑑𝑗  are 

two frequencies so that √6
𝜋
√

1−(1/2)
1
2𝑘𝑖
⁄

𝑚𝑖
2−(1/2)

1
2𝑘𝑖
⁄

≤
|𝜆1−𝜆2|

2
 , 𝑖 = 1, 2  where 𝑚1, 𝑘1, 𝜆1  and 

𝑚2, 𝑘2, 𝜆2  are parameters of KZFT filters, then |𝜆1 − 𝜆2| ≥
√6

𝜋
√
1−(1/2)

1
2𝑘1
⁄

𝑛2−(1/2)
1
2𝑘1
⁄

+

√6

𝜋
√
1−(1/2)

1
2𝑘2
⁄

𝑛2−(1/2)
1
2𝑘2
⁄

. 
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Subject to these constraints, it is possible to separate two or more given PC components in 
a MPC time series using KZ filters, KZFT filter extensions, and combinations of these with 
difference filters. 
 
To better understand the design of the KZ and KZFT filters that will be used to separate 
MPC time series prior to block bootstrapping PC components, we consider each filter 
parameter. Recall that the KZ filter has two parameters, 𝑚 and 𝑘, and the KZFT filter adds 
a third parameter, ν, which is the easiest to interpret since it is the frequency around which 
the filter will be centered. Where the KZ filter is symmetric around zero, the KZFT is a 
symmetric band pass filter around frequency ν, and the KZFT filter reduces to a KZ filter 
when 𝜈 = 0. 
 
The KZ filter parameter 𝑚 defines the width of the moving average filter window. It can 
be interpreted as defining the endpoints of the filter width, where the time series energy is 
eliminated. The effect of varying the 𝐾𝑍 filter parameter 𝑚 is illustrated in the following 
figure. 
 

 
Figure 6: One side of the symmetry energy transfer functions for Kolmogorov-Zurbenko 
filters centered at frequency 𝜆0 with parameters 𝑘 = 1 and A) 𝑚 = 3 in red, (B) 𝑚 = 5 in 
green, (C) 𝑚 = 10 in blue, and (D) 𝑚 = 100 in purple. 
 
The KZ filter parameter 𝑘 defines the number of iterations of the moving average filter that 
is performed. It can be interpreted as defining the sharpness of the filter, and it can move 
the filter cut-off even though it does not change the filter endpoints where the time series 
energy is completely attenuated. The effect of varying the 𝐾𝑍 filter parameter 𝑘, for a 
constant fixed 𝑚 is illustrated in the following figure. 
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Figure 7: Energy transfer functions and KZFT filters centered at 𝜆0 for parameters 𝑚, such 
that 1

𝑚
= 𝜆0 − 𝜆1 = 𝜆2 − 𝜆0  and 𝑘 = 1 in red with cut-off (A), 𝑘 = 2 in orange with cut-

off (B), 𝑘 = 10 in green with cut-off (C),  𝑘 = 100 in blue with cut-off (D). 
 
The next figure below shows how two KZFT filters centered at respective frequencies can 
filter and separate one bandwidth containing one frequency, from another bandwidth 
containing the other frequency. 

 
Figure 8: Illustration of the energy transfer functions from a KZFT filter centered at 𝜆1 
with cut-offs A and B and a KZFT filter centered at 𝜆2 with cut-offs E and F. C and D are 
the frequencies excluded by the choice of window size in the respective KZFT filters, set 
here to be halfway between frequencies 𝜆1 and 𝜆2. 
 
Understanding the control provided by the parameter choice of KZ and KZFT filters 
enables these tools to take a MPC time series, and filter all other frequencies, particularly 
any other PC components, that lie outside of a narrow band around a first specific PC 
component frequency. This filter passes only the first PC component. A difference filter 
between the original MPC time series and the first PC component time series results in a 
time series of the original MPC time series excluding that first PC component. Now 
proceeding to the second PC component, and filtering a narrow band around that frequency, 
excluding any others, provides a time series of just the second PC component. This process 
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can be repeated, resulting in separated individual PC component time series. Each PC 
component time series has only one PC correlation structure. When there are no further PC 
components left to filter, what remains is the MPC time series absent all PC components. 
Provided that there is a sufficiently lengthy spatio-temporal MPC time series dataset to 
support implementing the filters, KZ filters offer the flexibility to separate any PC 
component from MPC time series. 
 
After PC component separation, FSPBB then block bootstraps each individual PC 
component time series. Using methods outlined earlier, such as using block lengths equal 
to the period of a particular PC component, FSPBB will preserve each PC structure. This 
allows the investigation of PC components individually in the MPC time series. Finally, 
bootstrapping the full MPC time series, or any set of the PC components simultaneously, 
is accomplished by block bootstrapping each PC component separately with an appropriate 
block length, and then summing each resample. Summing a resample from every PC 
component to be included, will produce one resample of the intended set of components. 
Provided an equal number of resamples are produced for each PC component, this will 
produce the same number of resamples the set of PC components including the full MPC 
time series. 
 

3. Simulations 

 
The use of FSPBB for an MPC time series is supported by simulations under assumed 
conditions and settings comparable to real world MPC time series data analysis. 
Simulations validate and demonstrate the performance of Kolmogorov-Zurbenko filters to 
recover PC components as compared to block bootstrapping an MPC time series without 
frequency of components. These simulations show that standard block bootstrapping 
strategies from the original time series data under the presence of MPC will destroy some 
PC structures, while FSPBB can preserve every PC component correlation structure. 
 
3.1 Simulation Methods 

Analysis is performed in R version 4.1.1 (2013) statistical software using the KZFT 
function in the KZA package, see Close and Zurbenko (2013) for more detail, with datasets 
as a time series measured on an ordered interval dimension, in this case time. All time 
series are constructed with 300-time units. First, two periodically correlated sine wave 
signals with different periods, or frequencies, where the time coordinate determines the 
phase of the sine waves, are summed. The result is a multiple periodically correlated time 
series of interacting waves entangled in the time domain. Next, random variation is 
introduced by generating equal length vectors of elements randomly selected from a 
standard normal distribution. These random variations are then combined with the summed 
PC components. The final MPC time series of data is composed of the two PC components 
obscured by noise, seen in the figure below, and this would represent the data ordinarily 
available at the time of analysis. 
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Figure 9: Simulated data of two PC components, and their sum with noise forming the 
MPC time series. 
 
In these simulations, PC1 has period 𝑝1 = 10 and PC2 has period 𝑝2 = 30 and both have 
an amplitude of 2. The simulation design is used in two scenarios, first to block bootstrap 
the MPC time series without separating PC component frequencies by blocking to preserve 
the PC correlation structure for PC1 by fixing the block size to 10. The second scenario 
performs FSPBB by separating the PC components using KZFT filters, and block 
bootstrapping each component according to the described strategy, with fixed block size 
10 for PC1, and 30 for PC2. In the second scenario, KZFT filters are centered above the 
PC component frequencies, while choosing parameters to exclude the other PC component 
outside of the cut-off boundary for that filter. The PC components in both simulations have 
frequencies 1/10 and 1/30, respectively, a frequency separation of approximately 0.067. In 
each scenario, all block bootstrapping is performed with 10,000 resamples.  
 
3.2 Assessment of the Block Bootstrap Strategy 

To assess the performance of the ordinary periodic block bootstrapping of the MPC time 
series verses the FSPBB strategy, we look at how well each strategy has replicated the 
correlation structure of the MPC time series as well as how well each strategy has replicated 
the PC correlation of individual components. While the sampling distribution of many 
different statistics can be replicated by block bootstrapping, with PC or MPC time series 
the periodic mean, sometimes referred to as seasonal mean when measured in months, are 
of primary interest. Here, the performance can be visualized in terms of replicating the 
periodic mean. After 10,000 replications, 95% confidence intervals (CIs) for the periodic 
means are created. These CIs are plotted for scenario one without frequency separation of 
the PC components in the MPC time series, and scenario two, with PC component 
separation prior to bootstrapping the individual components (FSPBB). Finally, the two 
strategies are compared by comparing their differences in CI size and coverage. 
 

4. Results 

 
This first step in using the FSPBB on a MPC time series is to determine if there is sufficient 
data available to apply KZ filters to separate adjacent frequencies. According to 
Proposition 2, in a time series with n=300 data points and choosing 𝛼 = 0.5, or the half 
power point for the filter cut-offs, the closest two frequencies may be and still be separated 
with Kolmogorov-Zurbenko (KZ) filters having parameters 𝑘1, = 𝑘2 = 1 is approximately 
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0.0028. A minimum frequency separation of approximately 0.0028 is less than that in the 
scenarios, 0.067, indicating 300 observations is sufficient to use KZ filters to separate these 
PC components. 
 
After performing direct block bootstrapping, without frequency separation, on the 
simulated MPC time series, we can visually inspect the resulting 95% CI for the periodic 
mean which spans the red region in the following figure.  While this region does contain 
the true periodic mean, represented by the black line, we notice this region representing 
95% confidence is relatively wide. Furthermore, we notice a periodicity in this region, that 
appears to match the PC1 component period, 𝑝1 = 10. So direct block bootstrapping, 
without frequency separation, on the simulated MPC time series with block size equal to 
𝑝1 = 10 has preserved the PC1 correlation structure. We also notice that within the 95% 
CI there appears no residual periodic structure associated with the PC2 component, at 𝑝2 =
30. The red region does not change in any periodic way with a period of 30. This results 
in regions that substantially misalign with the true periodic mean, observed where the most 
red is visible in the figure, on a periodic cycle of period 𝑝2 = 30. The correlation structure 
of the PC2 component has been destroyed. 
 

 
Figure 9: A piece of the MPC time series periodic mean, seen as the black line. 95% CIs 
for the periodic mean of the MPC time series using direct block bootstrapping of the MPC 
(𝑝 = 10) without frequency separation in red and block bootstrapping the MPC by block 
bootstrapping the frequency separated components PC1 (𝑝1 = 10) and PC2 (𝑝2 = 30) 
separately in blue. 
 
If we contrast this with the blue region in the figure, representing block bootstrapping the 
MPC time series after frequency separation, or FSPBB, by separately block bootstrapping 
the PC components, we observe relatively narrow 95% CIs for the periodic mean. Again, 
the periodic mean of the MPC time series is contained within the blue 95% CI, but this CI 
aligns well with the true periodic mean. We notice that the blue 95% CI changes with both 
a period of 10 and 30, so the PC1 and PC2 correlation structures have been preserved. 
 
While this is only the results from one illustrative example, to quantify the comparison, we 
note that block bootstrapping of the MPC time series without frequency separation of the 
PC components, resulted in 95% CIs for the periodic mean that ranged from approximately 
77% larger to 115% larger than the CIs produced when block bootstrapping the separated 
PC components of the MPC time series using FSPBB. 
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5. Discussion 

 
To gain insight about a population from which a sample is available, bootstrapping, or 
resampling with replacement from a given set of data, is a useful tool with few assumptions 
to estimate the sampling distribution of statistics on that population. Simple random 
resampling, however, does not preserve correlation structures between successive data 
points, and in general is not useful for time series or more broadly spatio-temporal data. 
Block bootstrapping methods attempt to replicate and preserve correlations in spatio-
temporal data. Periodically correlated (PC) components of a given period, 𝑝, exhibit a 
unique type of correlation structure between observations in spatio-temporal data. Many 
block bootstrapping strategies are not suitable for preserving PC time series. While there 
are certain block bootstrapping strategies that account for the period, 𝑝, and bootstrap to 
preserve the PC correlation structure, these strategies are not suitable time series with two 
or more different PC components, called multiple periodically correlated (MPC) time 
series. Any choice of block length for resampling directly from MPC time series with two 
or more PC component will destroy at least one PC component’s correlation structure. 
 
This study suggests the better strategy of FSPBB, which bootstraps MPC time series by 
frequency separating PC components, block bootstrapping these components individually, 
accounting for their individual PC correlation structure, and then combining resamples to 
produce bootstraps of the original MPC time series. Simulations showed more accurate and 
more precise confidence intervals can result from performing FSPBB on MPC time series. 
 
There are limitations in this strategy. This study illustrates the importance of understanding 
the applications and limitations of Kolmogorov-Zurbenko (KZ) filters and spatio-temporal 
analysis by frequency separation. There are limitations to what frequencies are detectable 
and how closely two frequencies can be and still be separated by Kolmogov-Zurbenko 
filters. Separating components by frequency must follow well defined guidelines given by 
Valachovic (2020). With this guide it is possible to determine what separation may be 
expected given a set of data, and similarly what data is required to investigate the separation 
of two or more targeted signals. In addition, the new FSPBB strategy introduced here needs 
further investigation to determine consistency under a variety of different factors including 
but not limited to relative PC component strength, frequency variation, additional PC 
components, non-PC components, and level of noise. 
 
The conclusions of this study and the advantages of this new strategy are clear. The results 
show that the presence of multiple PC components prevent the accurate estimation of the 
sampling distribution of MPC time series. Multiple PC components can even prevent 
accurate estimation of the sampling distribution of any single specific PC component, even 
if only one is of interest. The presence of other PC components in a MPC time series had 
a negative impact on replicating any one PC structure of interest, even if correctly block 
bootstrapping for just that component. Frequency separation of the PC components 
becomes a necessary step before block bootstrapping, and FSPBB used on MPC time series 
preserves the correlation structures of multiple PC components. 
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