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Abstract
Intrusion detection and response algorithms are key technologies for improving network resilience
against cyber-attacks. A key challenge to the development of these technologies is the sparsity of
robust and realistic data sets that describe attack features. Data generation techniques have been
previously developed to augment data sets when representative data sets are lacking, but algorithms
for common applications (e.g., image and text) are frequently not applicable to the analysis of
cyber systems. Cyber analyses often leverage timeseries data from a variety of system sensors, and,
when viewed together, they form multivariate timeseries. The range of techniques for generating
multivariate timeseries data is limited. This paper introduces GAMVT, a new method for generating
multivariate timeseries data. GAMVT needs relatively few training samples compared to machine
learning-based methods. GAMVT statistically characterizes each class of samples and generates
new samples that are both distinct from and reasonably similar to the training samples. This paper
demonstrates GAMVT for a space-cyber use case and compares results to those from generative
adversarial networks and variational autoencoders.
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1. Introduction

As cyber-attacks continue to evolve, tools for intrusion detection and response are becom-
ing even more important to the security and resilience of critical cyber systems. However,
the robust development and testing of these tools requires data that is not always readily
available. Often, representative datasets for cyber systems, particularly data for anomalous
or compromised conditions on the system, are either non-existent or extremely limited.
Such datasets must be augmented before they can be used for tool development.

Typically, in a cyber system, data will come from a variety of system sensors. For
example, if the cyber system in question is a car, timeseries might be collected from the
speedometer, odometer, temperature and fuel gauges, etc. When viewed collectively, these
sensor timeseries create multivariate timeseries samples which represent the state of the car
over periods of time. Samples may be partitioned into classes based on different events
which occurred in the system. One class may show the car’s state during a normal drive,
while another may include the car braking quickly to avoid a collision. For cyber systems
in general, it is critical to identify key events that occur in the multivariate timeseries, as
these events signal real-life conditions that may need to be addressed (detected, mitigated,
etc.).

A variety of data augmentation tools currently exist, especially for text and image data.
Unfortunately, these tools are not always applicable to multivariate timeseries data. Many
existing techniques were not initially designed to leverage the unique relationships present
in multivariate timeseries data, and applying such techniques to multivariate timeseries
data could generate invalid samples. For instance, a simple way to augment an image
dataset is to perturb the images by zooming, flipping, moving the subject, etc. However,
this approach applied to multivariate timeseries data could disrupt the underlying temporal
structure or truncate certain variables from the samples. In addition to the difficulty of
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modifying models to use multivariate timeseries data, many existing techniques have large
training data requirements, which is often infeasible for the limited datasets that exist for
cyber systems. Tools specifically catered to multivariate timeseries data with small data
requirements are preferable, but research in this area is very limited. Therefore, a new
algorithm is needed to generate multivariate timeseries samples in order to augment the
limited initial dataset and make it more robust for tool development and testing.

This paper introduces GAMVT: a Generative Algorithm for MultiVariate Timeseries
data. GAMVT (pronounced “gamut”) is a statistics-based approach that aims to mirror the
process a human might use to identify patterns. Using these patterns, GAMVT can generate
new multivariate timeseries samples which are representative of the system but still distinct
from existing samples. Section 2 will discuss some related work in data generation. Section
3 will give a deep dive on the different stages of GAMVT. Section 4 explains timeseries
clustering, a class of algorithms on which an early stage of GAMVT relies. Section 5 will
give an overview of the use case for this work and present results comparing GAMVT to
two existing data generation methods. Finally, Section 6 will discuss some areas for future
work and extensions to GAMVT.

2. Related Work

Many techniques exist for data generation, but this paper will focus on data-driven ap-
proaches. Such approaches start with an existing set of data, train a mathematical model,
and use that model to generate additional data (Sarkar, 2018). The most popular use cases
for data-driven approaches are image and text generation. Much less focus has been given
to data-driven approaches for generating multivariate timeseries data.

2.1 Image/Text Generation

Approaches for image/text generation can be loosely grouped into two categories: data
manipulation and deep learning approaches (Shorten and Khoshgoftaar, 2019). Data ma-
nipulation such as simple perturbations (flip, rotate, zoom, etc.) work well for certain image
datasets. However, applying these methods to multivariate timeseries will often generate
invalid timeseries by disrupting the strict underlying temporal structure. Time runs in a
single direction for all samples, and different variables or sensors are represented along the
non-temporal dimension. Perturbing these samples disrupts this structure.

On the deep learning front, several approaches have been shown to be highly effective
for image or text data. Generative Adversarial Networks (GANs) leverage competition be-
tween two sub-models to generate realistic data samples (Goodfellow et al., 2014). GANs
have been successful on image datasets such as handwritten digits, faces, and cartoons,
as well as text-to-image translations. Variational Auto-Encoders (VAEs) are another deep
learning approach that learn how to encode data into a reduced representation and then to
decode the data back into the full representation (Doersch, 2016; Kingma and Welling,
2019). Once trained, the decoding part of the VAE can be used for generation. VAEs have
been successful on both image and text generation.

Despite the major successes of GANs and VAEs, such deep learning approaches require
large datasets in order to train the models well. Thus, when the purpose of data generation
is to augment a small dataset, deep learning models are often not the optimal approach
because the existing dataset is too limited to sufficiently train the models. Additionally,
any models designed to work well with image and text need to be modified to process
multivariate timeseries due to the differences between spatial and temporal aspects of the
data.
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2.2 Multivariate Timeseries Generation

A few very recent efforts specifically focused on multivariate timeseries data have found
some early success generating data using Long Short-Term Memory (LSTM)-based GAN
models. Luo successfully trained LSTM-based GANs on multivariate timeseries data, but
it was with the goal of imputing missing values in existing samples, not of generating new
samples (Luo et al., 2018). Leznik demonstrated successful application of an LSTM-based
GAN working to continuous network resource use data (Leznik et al., 2021). However,
this work was built around continuous datastreams, where generated data was analyzed on
a continuous basis, and an existing dataset was leveraged. Finally, Chen used an LSTM-
based GAN to generate discrete data samples to augment the rare event samples in a rare
event-prediction task (Chen et al., 2021). Several verification methods showed that their
augmented dataset significantly outperformed the original unbalanced dataset. However,
their use case was not constrained by limited amounts of data. In addition, the generaliz-
ability of Chen’s approach has not yet been shown.

In all three works described above, there was sufficient data available to leverage the
power of a deep learning data augmentation approach. Sahakian and colleagues discuss
approaches taken in attempt to overcome the additional challenges of limited initial data.
Progress was made in applying deep learning techniques to limited sets of multivariate
timeseries data (Sahakian et al., 2021), but this work also highlighted the need for a new
approach to multivariate timeseries data generation which does not rely on deep learning
models. GAMVT is the proposed approach.

3. GAMVT

This section will discuss the design of GAMVT, walk through the full process of the algo-
rithm, and give an illustrative example.

3.1 Design Considerations

The design of GAMVT was motivated by the hypothesis that the process of manual data
sample classification could be simplified and automated, and that the information gathered
from this process could be used to generate new samples. Manual classification of multi-
variate timeseries data usually involves identifying patterns, or events, in the timeseries. A
human analyst might be able to recognize specific events in the data and pick out which
samples contain similar sequences of events. If the analyst has some prior knowledge, this
task can be further informed by the relationships between variables as well as the causal re-
lationship between physical conditions in the system being analyzed and the events visible
in the timeseries. GAMVT attempts to emulate this process by quantifying the patterns that
define each class of samples. GAMVT then uses this information to generate new samples
that fit those patterns. GAMVT was designed to:

• Honor the flow of time in the timeseries. Time moves forward from left to right along
the temporal axis of the samples.

• Maintain separation between the outputs of different sensors. Although some sensors
may be strongly correlated, each individual sensor is represented as a single variable
in the data.

• Allow for control over which class of sample is generated. GAMVT maintains sep-
arate information for each class, allowing sample generation to be informed by the
desired class label.
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Although GAMVT is not a machine learning algorithm, similar language is used to fa-
cilitate more direct comparison with existing machine learning data generation approaches.
The initial dataset is referred to as the “training set”, and the final data output from GAMVT
is the “generated set”. Samples are further subdivided into unique “classes” and labeled.

3.2 The GAMVT Algorithm

The GAMVT algorithm consists of four major stages shown in Figure 1. The data from
the training set is preprocessed. Then, each class is individually characterized. These
characteristics are used to generate new samples. Finally, any desired postprocessing is
applied to the data.

Figure 1: The GAMVT Algorithm

The resulting generated dataset contains samples that are unique from the training sam-
ples but still representative of the system and class. The generated samples should be
indistinguishable from the training data in terms of variable types and temporal patterns.
Samples can be generated specifically to address under-represented classes. All of this
can be accomplished with limited training data, making GAMVT a valuable tool for aug-
menting multivariate timeseries datasets. The following subsections detail these stages of
GAMVT.

3.2.1 Preprocessing

The Preprocessing stage serves two purposes. This first is to capture certain artifacts of
the training data that must be maintained in the generated data, such as data types and
sample shape. The data type of each variable should be consistent between the training and
generated sets. For example, if the output of a sensor in the real system is a timeseries of
integers, then the corresponding variable in generated data should also be a timeseries of
integers.

The second purpose of the Preprocessing stage is largely driven by the performance of
Characterization stage of GAMVT. The first step of Characterization is Timestep Cluster-
ing, which will be further explained in subsection 3.2.2. During development of GAMVT,
Timestep Clustering often produced more intuitive results if the input data was simplified
to capture the defining features of the events of interest in the timeseries. For example, if
one variable represents the current position of a vehicle, but a particular event is defined by
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the velocity of the vehicle, then a good preprocessing step would be to calculate the rate of
change of the position data.

Any simplifying function can be applied at the Preprocessing stage so long as it is
invertible during the Postprocessing stage. Examples might include calculating rate of
change over time or deviation from expected data for a particular variable.

Applying multiple transformations to a single variable may also be valuable. Transfor-
mations may be applied in combination or separately. Transformed timeseries may either
replace the original timeseries for that variable or be appended to the data as an additional
variable. Appending the transformed data gives GAMVT more timeseries to use to find
patterns during the Characterization stage. This additional input could result in more di-
verse samples with a wider variety of distinguishable patterns, or it may make identifying
the optimal relationships and patterns more difficult due to the presence of unnecessary
data. Preprocessing function should be chosen and parametrized based on the dataset at
hand.

3.2.2 Characterization

Once the training data is preprocessed, the next stage of GAMVT is Characterization. The
purpose of this stage is to reduce each class of samples to a set of defining characteristics.
This occurs in several steps, as detailed below.

1. Timestep Clustering -
Timestep clustering assigns a label to each timestep of the multivariate timeseries by
determining which timesteps are most similar to each other. This should subdivide
the timeseries into sections defined by different “events” and help to identify where
certain events reoccur in the samples. Timestep clustering can be achieved in many
different ways. For more information on the specific timestep clustering techniques
tested in this work, see the sections on Timeseries Clustering in Section 4.

The output of Timestep Clustering should be a series of labels, one for each timestep
in each sample. These labels are referred to as “cluster assignments”, and a series of
consecutive timesteps with the same cluster assignment is referred to as a “section”.
The cluster assignments will be used to separate out different events in the data,
identify patterns in the order and timing of events, and collect aggregate statistics
about the raw values of the data under different events.

2. Pattern Inference -
It is assumed that training samples are subdivided into classes based on different
events that occurred in the system during sample collection and that these events
are identifiable during Timestep Clustering described above. The goal of Pattern
Inference is to use these cluster assignments to infer a pattern that is unique to the
given class.

Pattern Inference is performed once for each class of training samples. For all sam-
ples in a given class, the cluster assignments are first collapsed, removing repeated as-
signments. The collapsed cluster assignments represent the order (but not the length)
of identified sections. The set of collapsed assignments is then generalized to a single
class pattern. This is similar to defining a regular expression that would match to the
collapsed cluster assignments of each sample.

In addition to the general pattern, statistics about section length are collected for
each class. These section statistics record how many consecutive timesteps tended
to belong to the same cluster, including the maximum and minimum length of the
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section and a distribution of the section lengths seen in the training set. If there
are few samples in the class, the distribution will be represented as a finite set of
lengths. If there is a larger variety of training samples, a random normal distribution
can be parametrized to represent viable section lengths. In addition to being defined
on a per-class basis, section statistics are further subdivided by section label and
by the number of times a section with that same label has appeared earlier in the
sample. This specificity allows for more complex patterns to be captured, improving
the realism of generated samples.

3. Aggregate Value Statistics -
Aggregate statistics are collected about the values in the preprocessed training data
on a per-class, per-cluster, per-variable basis. The collected statistics include the
mean, minimum, and maximum value across all the samples of a given class. As
with Pattern Inference, subdividing the data in such a specific way further constrains
the data generation process, creating more realistic samples. In addition, the under-
lying meaning of each cluster label must be captured. Each cluster label should be
consistently defined across the full dataset. Therefore, all timesteps with the given
cluster label, regardless of originating sample or class, are used to calculate the co-
variance between variables when a timestep falls into that cluster.

3.2.3 Generation

The next stage of GAMVT is sample Generation. The class characteristics collected in
the Characterization stage allow GAMVT to generate new samples that are within the pa-
rameters of each class. The only input that is needed is the desired class label for the new
sample. The desired sample shape is assumed to be the same as the training samples. The
process described below is depicted in Figure 2.

1. Gather Relevant Characterization Data -
Using the input class label, GAMVT selects the relevant class pattern, section statis-
tics, and aggregate value statistics collected during the characterization step.

2. Select Specific Sample Pattern -
Recall that a “section” is a series of consecutive timesteps in a sample with the same
cluster label, and that the class pattern is a general definition which encodes varia-
tions in order of sections for samples within the class. There could be several specific
patterns of sections encoded in this definition. A specific pattern for this sample is
randomly chosen from the general class pattern.

3. Expand Sample Pattern to Timeseries of Labels -
Given the specific sample pattern, the class section statistics are used to expand this
pattern from the collapsed cluster assignment representation into a full timeseries of
cluster assignment labels. Recall that these section statistics include minimum and
maximum bounds on valid section length as well as a distribution of section lengths
seen in the training data. This distribution is used to randomly select a length for
each section, with the following constraints: 1) the minimum and maximum statistics
ensure that sections of a given cluster label are not shorter or longer than sections of
that same label in the training data, and 2) the randomly chosen section lengths must
sum exactly to the full length of the desired sample size.

The result of this process is a full timeseries of cluster assignment labels.
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4. Expand Labels into Multivariate Timeseries Sample -
GAMVT iterates through the timeseries of cluster assignment labels and expands
each timestep from a univariate label to a multivariate timestep. This part of the gen-
eration process uses the class value statistics and the covariance matrices collected
during characterization.

The timeseries of cluster assignments is considered on a per-section basis. GAMVT
parametrizes a random normal multivariate value generator with the covariance ma-
trix relevant to the section’s cluster label. Using this generator, GAMVT generates
enough multivariate timesteps to fill the section. Then, the relevant class value statis-
tics are used to ensure that each variable in each timestep falls within an expected
range given sample class and section cluster label. If this is not true for any one vari-
able in a given timestep, the timestep is discarded and a new one is generated. This
cycle continues until there are enough valid multivariate timesteps to fill the current
section. GAMVT then moves on to the next section and repeats the process through
the end of the sample.

This “generate-then-test” method of timestep generation is inefficient. In addition,
due to the random value generator component, output can be noisy, depending on the
tightness of the constraints from characterization. These issues are both left to future
work (Section 6).

General Class 
Pattern

Class Section 
Statistics

Covariance 
Matrices

Expand Sample Pattern to 
Full Length Timeseries of 

Cluster Labels

Class Value 
Statistics

Gather Relevant 
Characterization Data

Select Specific 
Sample Pattern

Specific Sample 
Pattern

Expand Cluster Label 
Timeseries to Full Multivariate 

Timeseries Sample

Timeseries of 
Cluster Labels

User Input: 
Desired Number 

of Timesteps

User Input: 
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Result:
Generated Multivariate 
Timeseries Sample for 
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Figure 2: The GAMVT Generation Stage Flow Chart

3.2.4 Postprocessing

The output of the Generation stage is a set of samples which adhere to all patterns and
statistics collected during the Characterization stage. However, these statistics were col-
lected on preprocessed data. The Postprocessing stage reinforces the data types collected
for each variable, inverts any functions applied during preprocessing, and applies any addi-
tional smoothing or other postprocessing functions.

Postprocessing functions can require parametrization, and the best parameters may de-
pend on how the relevant preprocessing function (if any) was parametrized or on the dataset
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itself. If a preprocessing function required certain input data (e.g. to subtract expected val-
ues from actual values), then this same data may be needed to successfully invert that
function during postprocessing. As another example, one preprocessing function may cal-
culate change over time in a particular variable. Inverting this function requires an initial
seed timestep, which could reasonably be drawn directly from one of the training samples
or generated by taking some function over a subset of the training data.

Postprocessing may include applying functions unrelated to the Preprocessing stage,
with the purpose of making the generated data less distinguishable from the training data.
For instance, sinusoidal training data tends to result in highly oscillatory generated data
due to the inability to sufficiently constrain the random value generator during the Gener-
ation stage. A good postprocessing step might attempt to fit a sine wave to the oscillatory
generated data samples.

GAMVT concludes after all desired postprocessing functions have been applied.

3.3 Illustrative Example of GAMVT Application

Figure 3 shows a notional example of the GAMVT algorithm. For simplicity, the example
skips preprocessing and postprocessing. This example starts with three training samples of
the same class of data. During the Characterization stage of GAMVT, the three previously
described steps (Timestep Clustering, Pattern Inference, Aggregate Statistics Collection)
are followed. For this example, the class pattern A[BA]1,2 means that the class can be
characterized by sequences that consist of section of “A” followed by one or two sections
consisting of a subsection of “B” followed immediately by a subsection of “A”. Recall that
the actual number of timesteps in these sections can vary, and this variation is captured by
section statistics. Section statistics and aggregate value statistics are not represented in the
figure.

The Generation stage is used to generate one sample in this example. A specific sample
pattern, in this case ABABA, is chosen from the general class pattern. Using the section
statistics to determine the length of each section, the collapsed pattern is expanded into a
full timeseries of cluster assignments, such as ABBBAABBA. The covariance matrices
and aggregate value statistics are then used as previously described to generate a multi-
variate timeseries sample. This sample will then go through postprocessing (not illustrated
here) before being added to the generated dataset.

4. A Closer Look at Timeseries Clustering

Timeseries clustering is the first step of the Characterization stage for GAMVT, and it lays
the foundation for the subsequent Characterization steps. The goal of this process is to
divide the timeseries samples into sections where similar events are occurring. This helps
to identify and differentiate events in the timeseries and to determine how long they last.
This section will discuss the algorithms considered for timeseries clustering.

4.1 TICC: Toeplitz Inverse Covariance-Based Clustering

Toeplitz Inverse Covariance-Based Clustering (TICC) is an algorithm designed to cluster
multivariate timeseries data into sections of similar timesteps (Hallac et al., 2017). TICC
uses correlation networks (also called Markov Random Fields) to capture the relationships
between different variables at a single timestep and across consecutive timesteps. This
information is used to segment the series into clusters.

TICC has many tunable parameters, but this research focused on three:

 
1115



A A A B B B A A A A A A B B B B A A A A B B A A B B A

Training Samples:

Characterization:
Cluster assignments

Collapsed cluster assignments

Class pattern A [ B A ]1, 2

Generation:
Specific pattern

Sample pattern

Multivariate sample

A B A B A

A B B B A A B B A

ABA ABA ABABA

Figure 3: Notional Example of the GAMVT Algorithm

• Number of Clusters - TICC will create exactly this number of clusters, even if it is not
optimal. This parameter should be carefully tuned, especially if the desired number
of clusters is not clear from manually inspecting the dataset.

• Window Size - This parameter refers to the number of timesteps which will be con-
sidered when assigning each cluster label. For example, if the window size is set
to five, then TICC will consider the current timestep being clustered as well as the
next four timesteps in order to determine a cluster label. A window size that is too
large may miss quick changes in events, while a window size that is too small may
be hypersensitive to noise.

• Beta - This parameter determines how influential the additional timesteps in a win-
dow are when clustering the current timestep.

Some limitations were discovered while investigating the application of TICC to the
use case described in Section 5. During experimentation, TICC was not able to capture
relationships that were defined by a trend over time (i.e. linear rate of change). This
is because TICC uses the raw values at each timestep to calculate correlation networks,
not the change in data over time. This issue motivated GAMVT’s Preprocessing stage.
By preprocessing and simplifying the data to reflect key trends, TICC was better able to
identify individual events in the data.
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Another limitation to overcome was the fact that TICC operates on a single multivariate
timeseries sample at a time, and that the correlation networks are not easily shared between
different runs of the algorithm. Therefore, in order for the same correlation networks to be
applied across all training samples, the samples needed to be carefully concatenated. This
ensured that the definition of each cluster label was consistent and that all unique events
were captured across the full set. Concatenating the samples as-is would cause the first
timesteps of one sample to influence the clusters at the end of the previous sample, which
is not desired behavior. Buffer timesteps were inserted to overcome this problem.

After careful parameter tuning and some processing to address the aforementioned
challenges, TICC worked very well overall on the use case dataset (see Section 5). How-
ever, TICC had a lot of trouble on noisy, highly oscillatory, or wave-like data, and would
often produce errors or never converge on such samples.

4.2 Distance-Based Methods

Given both the successes and challenges seen with TICC, a simpler distance-based method
was investigated. Each timestep was treated as an n-dimensional point, where n is the
number of variables in the multivariate timeseries sample. Then, all timesteps were fed
individually to a simple K-Means clustering algorithm (Lloyd, 1982). The only parameter
this method required was the desired number of clusters, which serves the same function
for K-Means clustering as it does for TICC.

As with TICC, all samples were concatenated before applying the model. Note that,
because K-Means does not use future timestep information, there was no need to add a
buffer to any of the concatenated data as with TICC. In addition to cluster consistency,
sample concatenation facilitates normalization of the entire dataset on a per-variable basis.
This normalization step was not needed with TICC, but for a distance-based clustering
method, normalization keeps the calculated distances from being heavily influenced by
variables with large magnitude values.

On the use case dataset (Section 5), K-Means was able to find intuitive cluster labels,
performing about as well as TICC. On some of the noisier datasets where TICC would
not converge, K-Means was able to return cluster labels, although they often reflected
the noisiness of the data and were not very informative. K-Means is certainly a simpler
approach, which was viable for our use case. However, as TICC is a more sophisticated
algorithm, it may perform better than K-Means on more complex datasets.

5. Results

5.1 Use Case

This use case was motivated by the development an automated response tool for a cyber
system. This tool would be informed by a dataset of historical attacks to the system. Then,
when a threat is identified on the system, recent sensor data would be forwarded to the
automated response tool. The response tool would use this data to identify the current
threat based on its similarity to historical threats, typically by applying a machine learning
classifier. The automated response tool relies heavily on the historical threat dataset, which
is a dataset of multivariate timeseries samples representing sensor output under different
threat conditions. Because a large dataset of this type is often not available, a small initial
dataset is generated and then augmented with synthetic samples. This is where GAMVT,
or other data generation approaches, can come into play.

The system of interest for this use case was a space-cyber system, which was mod-
eled using the NASA-developed emulation platform NOS3 (Geletko et al., 2019). NOS3
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Attack Class Description Experiments
Run

Class 0 No Attack/Baseline. Contains two planned 3-minute experi-
ments, one at 14 minutes and one at 21 minutes.

5

Class 1 One or both experiments from Baseline are deleted. 3
Class 2 The start times for both experiments from Baseline are changed. 20
Class 3 Baseline experiments are replaced with multiple experiments at

random start times, filling camera memory with useless data.
20

Table 1: Attack Classes

emulates a small satellite containing multiple hardware payloads. Emulation allows us to
model the satellite in orbit using virtual hardware running real software. NOS3 was con-
figured to execute an imaging-based mission where the camera would take images over
two locations of interest. Using the NOS3 platform, a total of 48 experiments were run for
30 minutes each, producing multivariate timeseries samples representing the scenarios in
Table 1. Because these experiments run in real time, only a small dataset was collected.

For each experiment described in Table 1, data was collected from the GPS and camera
payload. Figure 4 visualizes one sample of the baseline data from Attack Class 0. The
format of the image is as follows:

• Row 1 - Position data for the satellite, with X-, Y-, and Z-coordinate data in the red,
green, and blue channels respectively.

• Row 2 - Velocity data for the satellite, with X-, Y-, and Z-coordinate data in the red,
green, and blue channels respectively.

• Row 3 - Camera on/off state, indicating periods of time where the camera is actively
collecting an image. Data is recorded in the red channel.

• Row 4 - Camera memory usage; note this value increases whenever the camera is
collecting an image. Data is recorded in the red channel.

• Row 5 - Placeholder for data downlink status; nothing of interest in current dataset.
Data is recorded in the red channel.

• Row 6 - Timestamp for the given column of data, recorded in the green channel only.

Figure 4: Visualization of baseline experiment (Attack Class 0).
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The goal is to use a data generation algorithm to augment the small dataset collected
from NOS3 without having to deal with the real-time constraints of emulation. The aug-
mented dataset should be a more robust representation of the potential threat space, which
supports improved performance of the downstream machine learning task in the automated
response tool described earlier.

5.2 GAMVT Parametrization

GAMVT’s Preprocessing must be parametrized to allow for optimal identification of events
in the data. For this use case, the identifiable events were the camera experiments, which
involved a change of camera state and an increase in stored camera data. The following
preprocessing steps were applied to the data:

1. Expected position and velocity was subtracted from actual position and velocity. Be-
cause the satellite orbit is preprogrammed in NOS3, the expected position and veloc-
ity values over time are known. Due to the nature of the NOS3 emulation, there is no
noise in the emulated orbit, so subtracting expected values actually sets all position
and velocity data to zero. In a more realistic emulation, remaining noise may need to
be further addressed.

2. Rows 4 and 6 were transformed to reflect change over time. For Row 4, this transfor-
mation converts the raw memory usage data into the rate at which camera data was
collected and stored, which better captures the relationship of interest between the
camera on/off state and the memory usage. For Row 6, the transformation simplifies
the timestamp data so that it is less likely to obscure the GAMVT Characterization
process.

The Postprocessing stage of GAMVT only inverted these functions and did not apply
any additional processing. Reversing the “rate of change” preprocessing transformation
required an initial timestamp seed, for which the first timestep in one of the training samples
was used.

5.3 Other Methods Tested

Two deep learning data generation methods were applied to this use case in addition to
GAMVT. Both methods are commonly used for image- and text-based data, but they were
modified for multivariate timeseries data to compare to GAMVT.

5.3.1 Generative Adversarial Network

A Generative Adversarial Network (GAN) is a deep learning method which leverages two
“competing” submodels, a Generator and a Discriminator. The goal of the Discriminator
is to differentiate between training data and data created by the Generator model. The goal
of the Generator is to create samples so similar to the training data that the Discriminator’s
accuracy is no better than random guessing. This type of model has been shown to work
particularly well with image data. The Generator and Discriminator can have a variety of
underlying model structures, but the structures of the two submodels should mirror each
other. In addition, the GAN can be developed to take some sort of additional condition
as input, which allows for learning specific to each class of training samples. Previous
work investigated different input formats, conditions, and submodel structures. In the end,
a Multilayer Perceptron (MLP) -based Conditional GAN was the best-performing GAN
model. See this paper’s companion paper for further details (Sahakian et al., 2021).
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5.3.2 Variational Autoencoder

A Variational Autoencoder (VAE), also a deep learning method, has been used especially
with image-based data. A VAE can be split into two phases: and Encoder and a Decoder.
The Encoder uses various deep learning layers to reduce the input training data to a smaller
latent layer, which could be thought of as an “encoding” of the training data. Then the
Decoder phase builds a new sample from this encoding and some random input. The struc-
ture of the Encoding layers and the Decoding layers should mirror each other. Also, like
GAN’s, VAE’s can be formulated to be Conditional, allowing for specification of class dur-
ing encoding and decoding. Previous work investigated the conditioning used in the model
as well as the type of convolution applied in the model layers. A Conditional VAE with
convolutions which acted only along single rows and “telescoped” in size, changing length
as the size of the layer changed, was the best-performing VAE model. See this paper’s
companion paper for further details (Sahakian et al., 2021).

5.4 Metrics

Two metrics, Quality and Diversity, were developed to quantitatively evaluate the results
of the three generation methods under test. Each metric was used to evaluate the goodness
of the entire dataset generated by each method. The purpose and interpretation of these
metrics will be described here. For further discussion and formulation, see (Sahakian et al.,
2021).

Quality measures how similar the generated data is to original training data of the same
class using a classification model trained on the original data. The ideal Quality score for
this metric is 1.0. A Quality score lower than 1.0 would indicate that the generated data
is likely dissimilar to the training data. A Quality score higher than 1.0, while rare, would
indicate that the model performed better on the generated data than the training data. In
this case, the choice of model used to evaluate Quality should be reconsidered.

Diversity measures how unique the generated samples are compared to training sam-
ples of the same class and compared to other generated samples. The ideal Diversity score
is 1.0, which would indicate the same amount of data diversity in the training, generated,
and combined datasets for a given class. A Diversity score lower than 1.0 would signal
a generator that regenerates existing samples. A Diversity score higher than 1.0 could be
indicative of noise in the generated samples or of generated samples that are not represen-
tative of their intended class.

Both metrics are required to fully evaluate the generated data. A generator that simply
returns the training dataset would get a perfect Quality score, but an extremely low Diver-
sity score. A generator that returns random values would likely score fairly high Diversity,
but very low Quality. A balance must be struck between the Quality and Diversity metrics.
Although both metrics have an ideal score of 1.0, some deviation from this score on either
or both metrics does not necessarily indicate a poor generator. It would be better to have
both scores be close to but not exactly 1.0 than to have a perfect score for one metric and a
poor score for the other.

5.5 Discussion

The three methods under evaluation are GAMVT, GANs, and VAEs. See selected result
images from Attack Class 3 in Figure 5. Both deep learning captured certain aspects of
the system data well, but there were still some fundamental issues. Both models produced
somewhat noisy results, particularly the VAE. In addition, the relationship between the
camera on/off state (Row 3) and the camera memory usage (Row 4) was not well-captured

 
1120



by either model. In fact, the periods of time where the camera is on in the GAN-generated
sample are short and sporadic, which is unrealistic given the underlying physical process.

Real Data Sample GAN-Generated Sample

VAE-Generated Sample GAMVT-Generated Sample

Figure 5: Selected Sample for Class 3 Using Each Generation Technique

Now consider the output of GAMVT, also shown in Figure 5. The gradients in Rows 1,
2, and 6 are very smooth, similar to the training data. There’s a clear relationship between
Rows 3 and 4, as desired. Further, Row 3 camera experiments are of realistic duration.
Qualitatively, from these selected images for Class 3, GAMVT is generating more realistic
data.

Now the generated datasets are evaluated as a whole. Figure 6 shows a selected sam-
ple generated for each class by each generation method. Table 2 shows the Quality and
Diversity metrics calculated on the entirety of the datasets generated by each method.

Figure 6: Selected Sample for Each Class and Each Generation Technique

Consider the metrics shown in Table 2. The GAN model generated the highest Quality
score, but GAMVT’s Quality score was very similar. The VAE model produced data with
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GAN VAE GAMVT

Quality 0.7875 0.4775 0.7513
Diversity 23.2840 24.1815 1.4388

Table 2: Quality and Diversity Score for Each Generated Dataset

a very low Quality score. However, GAMVT is the only method with a Diversity score
close to 1.0. The GAN and VAE models both generate datasets with much higher Diversity
scores, which is reflective of the noise in the generated samples from these models. Thus,
GAMVT is determined to be quantitatively superior based on these metrics.

In addition to better qualitative and quantitative performance, GAMVT has other desir-
able qualities. Since GAMVT was developed for multivariate timeseries data, it is able to
leverage the information embedded in the underlying structure of this type of data. In ad-
dition, GAMVT is not a deep learning method, and thus does not struggle with insufficient
training data or model explainability as many deep learning methods do. Due to all of these
factors, GAMVT was chosen as the best algorithm for this use case.

6. Future Work

First, a great test of GAMVT will be applying the GAMVT-augmented dataset to a down-
stream machine learning process. It is anticipated that the model trained on the augmented
dataset will outperform the model trained on the small dataset generated through system
emulation alone.

Much of the future development of GAMVT should be focused on supporting more
complex datasets.

• Generator Distributions - Currently, the core of GAMVT’s Generation stage is a ran-
dom normal value generator, but this distribution may not be optimal for generating
realistic output for all system sensors. It could be beneficial to explore generating
samples using a variety of distributions.

• Efficient Constrained Timestep Generation - Section 3.2.3 described an inefficient
“generate-then-test” method for generating timesteps for new samples which con-
formed to collected class characteristics. Developing a better way to approach gen-
eration would be preferable.

• Oscillatory Data - Currently, GAMVT relies on postprocessing to adequately han-
dle and generate wave-like or highly oscillatory data. Although this is a reasonable
approach, it is perhaps not ideal. There may be better ways to handle this type of
data during the Characterization and Generation stages rather than leaving it all to
postprocessing.

• Complex Patterns - GAMVT has never been tested on the case where multiple known
events occur in a single sample, either independently or at the same time. If classes
of samples are not easily separable, the collection of a unique pattern for each class
of samples may become more difficult or require additional development.

• Sensor Relationships - The initial use case did not involve many different relation-
ships between sensors. There is a physical relationship between position and velocity
data, but this relationship wasn’t leveraged in the initial use case. The only inter-
sensor relationship used was the relationship between camera on/off state and the
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camera memory usage, and this relationship was relatively simple. It is necessary to
test GAMVT with more complex or higher-order relationships between two or more
sensors to see if these relationships can be adequately captured by GAMVT.

In addition, an established methodology for finding the best set of preprocessing and
postprocessing functions for a given dataset would alleviate the burden on the analyst mak-
ing these configurations. The use case dataset from Section 5.1 was simple enough that it
was easy to make ad hoc decisions for the best set of functions and adjust as needed. This
approach will likely be insufficient as datasets become larger and more complex, and it will
be useful to have a general method for determining which processing functions will allow
GAMVT to best capture and reproduce trends and relationships in the data.

7. Conclusion

Tools for intrusion detection and response on cyber systems are key to improving the re-
silience of these systems to an ever-evolving array of attacks. The robust development and
testing of these tools requires threat datasets which often do not exist for cyber systems.
Even if a small dataset does exist or can be generated, it must be augmented with some
data generation technique. However, such techniques for augmenting small multivariate
timeseries datasets have not been available historically. GAMVT helps to fill this gap. Both
qualitatively and quantitatively, this work showed GAMVT outperforms modified versions
of existing data generation techniques which have had great success generating other types
of data. GAMVT is specifically designed to interpret the relationships embedded in multi-
variate timeseries data without requiring a large training dataset, which are major benefits
over existing data generation methods.
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