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Abstract.  The treatment response is designated as the individual ways of responding to 
a defined treatment. The major concepts of the treatment response approach are the 
aggregation, treatment-outcome complex, sensitivity to the treatment, and capacity for 
spontaneous recovery. Contrary to the treatment effect (defined in the frame of RCT as 
risk reduction in compared cohorts), the treatment response approach derives from the 
assumptions of the uniqueness of each member of the population, relatedness of the co-
occurring events, and possibility of making valid causal inferences from single cases. The 
data driven deterministic hypotheses of non-random aggregation of the elements, events, 
and characteristics are subject to contrasting with the hypotheses of their random 
gathering. Complementing the traditional approach towards analysis of the treatment 
effect can have most substantial implications in the following areas: 1) identification and 
prediction of the individual effect of treatment; 2) identification and prediction of 
spontaneous recovery and sensitivity to the treatment, and 3) generalizing the results of 
RCT and predicting the individual results of treatment in the general population 
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Introduction  
This paper considers approaches toward analysis of the treatment process through 

two complementary aspects, the effect of treatment and the response of a subject to the 
treatment.  

Statistical analysis of the treatment effect has a century-long tradition deriving 
from the pioneering works by Jerzy Neymani and Ronald Fisher.ii,iii The major tool for 
studying the treatment effect is the Randomized Controlled Trial (RCT), which is a 
statistical experiment examining a hypothesis, typically that treatment 𝐴 is more effective 
than 𝐵.  

A common consensus is that RCT provides a unform, quantitative scientific 
approach towards the assessment of the efficacy of treatment. These undisputed 
advantages of the RCT approach make it a gold standard for the assessment of the effect 
of drugs, and an integral part of the system of drug development. Numerous variants and 
modifications of the trial design developed over decades share the same fundamental 
assumptions and principles. 

The efficacy of the experimental treatment, i.e., the effect of the treatment in the 
RCT environment, is routinely defined as risk reduction for a negative outcome. The 
index of risk reduction refers to the entire trial population, and additional studies of 
heterogeneity of the treatment effect such as subgroup analysis and subgroup 
identification procedures are required to explore the variability of risk across the 
clinically significant segments of the trial population, and statistically assess an 

 
1 lev@redmondanalytics.com 
 

 
112

mailto:lev@redmondanalytics.com


 
 

association of these variations with co-variates (conditions) of the study. The 
accomplishments and limitations of this approach are thoroughly investigated.iv, v   

One of the major trends in modern medicine is the individualization of treatment.  
Some important aspects of the RCT related to individualization remain problematic in the 
frame of the treatment effect approach. Here we discuss some of these: 
• Can be a result of the RCT translated to an individual patient? 
• In a statistical context, is there a way to distinguish a recovery induced by 
treatment from spontaneous recovery? 
• To what extent can the efficacy-effectiveness gap be overcome, and can 
individualized predictions be made in the general population? 

In our opinion, further advances on each of these problems require not only 
improved and new methods, but a changing in the angle from which we consider the 
problem. 

We propose the treatment response approach as it is described in our previous 
reports,vi,vii which hereafter will be referred to as [*] and [**] respectively, and which will 
refer to our earlier related publications. Contrary to the treatment effect approach, which 
refers to the entire treatment population, the treatment response approach focuses on an 
individual patient. The treatment response approach starts with the observations that 1) 
when exposed to the same treatment, various individuals can produce different outcomes; 
and 2) in response to different treatments, various individuals may produce the same 
outcome or different outcomes.  

The objectively observed co-occurrences of the treatment, outcome, and co-
variates in individual patients and small groups are the starting point for logical and 
statistical analysis. In this sense, the treatment response approach is complementary to 
the treatment effect approach.     

We reuse the notation and set of definitions for describing the effect of treatment 
and response of the subject to the treatment used in our previous reports [*, **]. While 
this paper refers to binary models throughout (a positive outcome vs. negative one, i.e., 
recovery vs. death, or having a heart attack vs. not having it), generalization to 
continuous outcomes would be a natural next step and follows the same principles. 
1.  Treatment effect  
1.2.  Assumptions in treatment effect analysis  

A classic randomized controlled trial (RCT) design implicitly assumes the 
following. 
• Subjects are anonymous and interchangeable. Personal information may move from  
one group to another for the reasons not related to analysis. Exclusion of any single 
subject from the study, moving him or her from one group to another, and/or trading 
single subjects between groups does not substantially affect the result of the study.  
• Two or more events co-occur by chance unless the contrary is proven. Statistical  
models inherently involve randomness. The hypothesis of random co-occurrence of the 
events (null hypothesis) is accepted or rejected because of its correspondence (or a lack 
of correspondence respectively) to the observed relationships. 
• Numerous subjects are required for making valid inferences. Any clinical research  
manual has a chapter devoted to choosing the sample size before data collection to obtain 
a desired level of power. 
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1.2.  Individualization   
In RCTs and observational studies, the treatment effect measures the impact of 

the treatment on the treatment population. It is defined as the absolute or relative risk 
reduction of a negative outcome (or, symmetrically, as increased chance for recovery), 
where risk is the probability of the negative outcome, the proportion of the negative 
outcome in the treatment population.  

Thus, the object of the RCT is a population, not an individual.  This has 
important ramifications.  
Case 1 

Consider a classic randomized placebo-controlled trial, and assume that sample 
sizes and other trial parameters are sufficient for statistical significance.  On diagrams 
(Fig. 1, 2), the color-coded bars show positive and negative outcome.  

 
The capital letters within the bars are designating conditional names of the 

individuals participating in the trials. The experimental cohort includes 7 patients 
(𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺) with a positive and 3 patients (𝐻, 𝐼, 𝐽) with a negative outcome (Fig. 
1). In the control cohort, there were 4 positive (𝐾, 𝐿, 𝑀, 𝑁) and 6 negative outcomes 
(𝑂, 𝑃, 𝑄, 𝑅, 𝑆, 𝑇). The absolute risk reduction, therefore, is 30%. 

Now suppose the outcome of the trial is as shown on Fig 2.  Individuals 𝐻, 𝐼, 𝐽 
had the positive outcome, and instead 𝐴, 𝐵, 𝐶 had the negative outcome. This would not 
matter for the assessment of the efficacy of the experimental treatment, the absolute risk 

reduction is the same at 30%. For individuals 𝐴, 𝐵, 𝐶 and 𝐻, 𝐼, 𝐽, however, who 
are the human beings (not gadgets, not bolts, not peas, not drosophilae, not molecules, 
etc.), it would literally be a matter of life and death.  

The individual outcome is of existential concern for each individual member of 
the trial. Certainly, this problem looks quantitatively less substantial in trials claiming a 
high (e.g. 95%) product efficacy, but the human essence of the problem does not 
disappear even in such cases.  

This is the fundamental difference of the clinical trial from the statistical 
experiment in agriculture, physics, engineering, etc., and this aspect of the RCT should be 
given a priority status in the further development of the methodology of the clinical trials. 

The clinical trial is designed to assess the treatment effect, i.e., to identify risk 
and change in risk for the trial population; this effect cannot be directly translated to each 
individual member of the trial. The information on the treatment effect obtained from the 
RCT can be valuable for public health purposes. However, applying this information to 
the individual requires, the very least, substantial reservations and additional 
investigations beyond the scope of the classical RCT design. Substantial efforts 
undertaken to overcome this limitation will be discussed later in the paper.  

Fig. 1 

 
Fig. 2 

 

Experimental A, B, C D, E, F, G, H, I, J 
Active control K, L, M, N O, P, R, S, T 

                - positive outcomes                    - negative outcomes 
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1.3 Individual treatment effect  
D. Rubin defined causal effect of treatment as follows: “Intuitively, the causal 

effect of one treatment, 𝐸, over another, 𝐶, for a particular unit and an interval of time 
from  𝑡1  to 𝑡2 is the difference between what would have happened at time 𝑡2 if the unit 
had been exposed to 𝐸 initiated at 𝑡1 and what would have happened at 𝑡2 if the unit had 
been exposed to 𝐶 initiated at 𝑡1: 'If an hour ago I had taken two aspirins instead of just a 
glass of water, my headache would now be gone,' or 'because an hour ago I took two 
aspirins instead of just a glass of water, my headache is now gone.' Our definition of the 
causal effect of the 𝐸 versus 𝐶 treatment will reflect this intuitive meaning." viii  

This intuitive definition considering the treatment effect at the individual level 
contains at least two strong assumptions. It is assumed that if aspirin had been taken 
instead of water, the headache would be gone, which is not necessarily the case. Also, it 
is assumed that “headache is now gone” because aspirin was taken, which is not 
necessarily true either. Therefore, this definition contains substantial uncertainty. This is 
acceptable for statistical analysis of the treatment effect though, where the individual 
cases are grouped into a population, but when it is applied to an individual case, the 
question about the effect of aspirin remains unanswered. 

The positive outcome of treatment (the “headache is gone” state) is then said to 
be caused by aspirin only if 1) this positive outcome has occurred after taking aspirin, 
and 2) we have a reason to believe that it would not have occurred if aspirin were not 
taken.   

Otherwise, the positive outcome (“headache is gone”) could have occurred 
without taking aspirin. It could possibly have occurred after taking aspirin, but not 
because of the effect of aspirin, regardless of aspirin, or in spite of aspirin.  The 
difference between these cases is the difference between ‘reasons to believe…’ in 
condition 2. 
1.4. Individual risk and population   

Thus, the definition of the individual treatment effect is not strict, and it leaves 
open the possibilities for mutually exclusive inferences. This makes bridging the 
individual and the population treatment effect difficult. In the frame of the prevailing 
methodology, we circumvent these difficulties by not operating with the individual 
treatment effects. Rather we operate with the concept of risk, and in RCT, the treatment 
effect is defined as risk reduction via comparing risk in the trial cohorts.                

In clinical research and epidemiology, risk is understood as a probability of a 
negative outcome estimated as a proportion of this outcome in the studied population; 
this definition implicitly refers to a population, not individual. A source of numerous 
misunderstandings is that often the index of risk computed for one of the arms of the 
RCT is intuitively ascribed to each individual member of this arm and is treated as his/her 
virtual property. In this notion, it is assumed that if, for instance, a proportion of the 
negative outcome among male patients in the cohort is 0.6, then the risk for each male 
patient of this cohort also is 0.6. Retrospectively this can be verified for the subgroup 
only as the proportion of negative outcomes.  

However, for a single patient randomly selected from this subgroup this risk 
cannot be verified. Retrospectively, we always find that in each individual patient with a 
negative outcome the risk was underestimated; and in each one with a positive outcome 
was overestimated.  In this sense we never find out what the individual risk really was. 

The inability to assess the individual risk and to measure the individual risk 
reduction under the exposure to treatment inspires strong generalizations. In the context 

 
115



 
 

of “population thinking,” “the ubiquitous presence of individual-level variability makes it 
impossible to study individual-level causal effects.” ix A widespread view among 
statisticians is that the assessment of the effect of treatment in an individual case is 
impossible. Yu Xie presents it as a paradox in social science: “Whereas there is always 
variability at the individual level, causal inference always requires statistical analysis at 
an aggregate level overlooking individual-level variability.”  

Richard von Mises does not leave any doubts on this matter: “When we speak of 
the “probability of death,” the exact meaning of this expression can be defined in the 
following way only. We must not think of an individual, but of a certain class, e.g., “all 
insured men forty-one years old living in a given country and not engaged in certain 
dangerous occupations.” A probability of death is attached to the class of men or to 
another class that can be defined in a similar way. We can say nothing about the 
probability of death of an individual even if we know his condition of life and health in 
detail. The phrase “probability of death,” when it refers to single person, has no meaning 
for us at all.”x  

Richard von Mises introduced the concept of “collective” to emphasize that 
probability does not deal with individual cases. (An) “… example of a collective is a 
whole class of insured men and women whose ages at death have been registered by an 
insurance office.” … “The definition of probability which we shall give is only concerned 
with ‘the probability of a certain attribute of this collective’.” 
 Summarizing the experience of numerous clinical studies, McEvoy, et al., (2014) 
conclude that (1) predictions of risk are accurate at the level of populations but do not 
translate directly to patients, and (2) perfect accuracy of individual risk estimation is 
unobtainable even with the addition of multiple novel risk factors.xi 

In summary, the treatment effect is defined on the target population. The 
interpolation of the effect onto the individual within the population or extrapolation of the 
result to the individual member of another population is always problematic. A common 
notion among statisticians is that making valid causal inferences regarding the effect of 
treatment in a single case is impossible. xii  Some of them even state that “identifying 
individual causal effects is generally not possible, or even does not make sense.”xiii  
1.5. Approaching the problem  

Contrary to the declared and thoroughly justified senselessness of identifying 
individual causal effects, there exists a brunch of applied statistics aiming to predicting 
individual treatment effects. Generally, the problem is approached by considering the 
treatment effect as a function of conditions (co-variates). 
1.5.1.  Subgroup analysis. The simplest method for addressing the heterogeneity of the 
treatment effect is subgroup analysis, in which risk of the negative outcome is conditional 
on the variables selected based on clinical or theoretical considerations. The intention of 
the approach is to identify clinically significant groups of patients with elevated or low 
risk. Substantial limitations of subgroup analysis include false positives due to multiple 
comparisons, false negatives due to inadequate power, and simultaneous variation in 
multiple patient characteristics.  Together these lead to a limited ability to inform 
individual treatment decisions. iv, v  
1.5.2.  Subgroup identification. Substantial progress in identifying clinically significant 
high-risk subgroups is related to the use of modern statistical and computational methods. 
A “subgroup identification” approachxiv, xv associates the high-risk groups with a 
combination of several co-variates. Using deep learning, Ran Chen et al., performed 
identification of the variability of the treatment effect across clinically relevant subgroups 
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associated with clusters of variables.xvi Unlike subgroup analysis, which is selecting 
variables based on clinical or theoretical considerations, the “subgroup identification” 
approach is creating data driven hypotheses. One of the issues requiring methodological 
elaboration is the relationships between the power of the entire study and the power of 
the procedures of the identifying the subgroups.  
1.5.3.  Identification of the predicted individual treatment effect.  This approachxvii 
involves treating of the effect of treatment in individuals as a problem in prediction, and a 
high degree of predictive accuracy has been reached using modern statistical methods.  
We see the limitation of this approach in that it does not predict the individual treatment 
effect, but rather identifies and predicts the individual outcome. This is not just a 
terminological difference.  
Case 2 

Consider a typical RCT design schematically shown on Fig. 3.  

Note, that since the placebo is biologically inactive, the patients with a positive outcome 
in the control cohort have recovered with no treatment, i.e., spontaneously. For 
simplicity, we do not consider the “placebo effect.” xviii In the placebo control, there is a 
fraction of spontaneously recovered patients. If the trial was randomized 1:1, it should be 
expected that in the experimental cohort, there should be an amount of spontaneously 
recovered patients (Spontaneous) approximately equal to that in the placebo control.  
The recovery can be positively attributed to the experimental treatment only in the rest of 
patients with positive outcome (Treatment-induced). These relationships are inherent to 
the randomized placebo-controlled design, but they are not included in the concept and 
practice of the assessment of the treatment effect by apparent reasons: The Spontaneous 
and Treatment-induced cases are not clinically distinguishable. Their identification and 
differentiation require special analysis described in a greater detail in our report.xix 
Case 3 

A separate issue is the heterogeneity of the group of patients with negative 
outcome. While some patients could have died from the target disorder, the others could 
have died from other causes. Once again, the outcome itself, death, is not distinguishable 
in these patients, and to establish the differences in the causes of death is the prerogative 
of the clinical, pathology, etc. analyses.  

Fig. 4. Diagram of Randomized Placebo-Controlled Trial 

 

Fig. 3. Diagram of Placebo-Controlled Randomized Trial 

 

Experimental Spontaneous Treatment-induced  
Placebo Spontaneous  

                - positive outcomes            - negative outcomes 
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 Altogether, in terms of causality, the RCT trial data present a complex mosaic 
(Fig. 4) not sufficiently accounted for in the analysis of the treatment effect and more 
thoroughly described in [*].  
The very definition of the individual causal effect (see above) makes it impossible to tell 
whether a positive outcome, recovery, should be attributed to the effect of treatment, or it 
has developed spontaneously, regardless of the treatment. Also, some of the negative 
outcomes (deaths) were not caused by the target disorder.  Clinical and pathology 
analysis would be required to conclude whether a specific negative outcome was caused 
by the target disorder, or this death was due to other cause; thus, likewise, the effect of 
the treatment in such cases could not be identified (See below). 

Predicting the outcome is important, yet it is different from predicting the effect 
of treatment. Having the outcome in the individual predicted still leaves the question 
regarding the individual effect of the treatment wide open.  A related limitation of the 
predictive approach is the difficulty of replicating the prediction from the trial population 
to the general population.  This generalization problem applies both in terms of 
proportion of negative outcomes, and the identification of the individual outcomes. 

2. Efficacy-effectiveness gap  
The strong results of the “identification of the predicted individual outcome” approach 
are necessarily obtained within the trial population.  This implies the problem of 
extrapolating from “in-sample” to “out-of-sample.” This problem is analogous to that 
encountered in numerous studies using classical methods of automated classification, 
image recognition, etc., which were popular in 1960s-70s. The extrapolation of these 
results beyond the experimental population (training set vs. test set, or “in-sample” vs. 
“out-of-sample”) to another population, or to a general population, lead, as a rule, to 
reducing the accuracy of the prediction. This applies both to the projection of the 
treatment effect established for the trial population to the general population or its sub-
populations, and to the prediction of the treatment effect in the individual members of the 
general population. 

In contemporary drug clinical trials, a positive result of a comparative trial (“𝐸 is 
more efficacious than 𝐶”), once made public, can lead to an unlimited preference of drug 
𝐸 in physicians’ prescription practices and patients’ preferences, effectively eliminating 
the less efficacious drug 𝐶. The demonstrated superiority of drug 𝐸 over 𝐶 often leads to 
indiscriminate prescribing of the more efficacious drug 𝐸. This is a not an optimal way of 
generalizing the result of the RCT.  

The efficacy-effectiveness gapxx means that the proportion of patients with a 
negative outcome computed in the trial population is not necessarily the same in the 
general population. The indices of risk computed for the trial population and for the 
general population can differ, as can the treatment effect in the clinically significant 
groups of the trial population. The “individual treatment effect” can be predicted with 
accuracy next to 100% within the trial population, yet not accurately predicted in the 
general population.  
 While the result of an RCT remains an important factor in making a clinical 
decision, “physicians should base treatment decisions on their knowledge of the 
pathophysiology of the disease, the mechanism of action of the proposed treatment, and 
the clinical characteristics of the individual patient while informing their decision with a 
critical understanding of the results of relevant trials.”xxi The appeal towards professional 
knowledge, experience, and intuition in the interpretation of the results of the RCT in 
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their reference to clinical practice is traditional and common because multiple factors - 
environmental, organizational, logistic, and statistical - are involved in forming the 
efficacy-effectiveness gap but the attempts identify the major factors forming the 
efficacy-effectiveness gap so far have a limited success.xxii 
 There are numerous reasons for the discrepancy between the treatment effect in 
RCT and general population. From a purely statistical viewpoint, in RCT, the indices of 
risk used for the assessment of the efficacy are computed for only a small subset of the 
general population selected by the inclusion/exclusion criteria which may not be 
representative of the distribution of the factors in the general population and described 
with limited number of co-variates.  

The problem of determining the size and the content of the gap between 
populations has no satisfactory solution at one point in time.  Moreover, with the passage 
of time, the distribution of known and unknown factors might change, and new factors 
might come into play, changing heterogeneity of risk and heterogeneity of effect, as well 
as choice of therapy [**]. Under these circumstances it would be naïve to expect that the 
individual treatment effect perfectly predicted for the out-sample of the RCT population 
would be projected for the general population with the same level of accuracy. Prediction 
of the individual outcome or the effect of treatment using regression or classification 
models built on the RCT sample have limited accuracy for the same reason. 

3. Paradox 
The effectiveness and productivity of the methodology of analysis of the 

treatment effect is proven with a multitude of practical results. Advances in the 
methodology and the use of the modern computational methods xxiii brought a notable 
progress in studying the heterogeneity of the treatment effect and identifying and 
predicting individual outcomes. Further progress can be expected with the use of the 
modern statistical and computational approaches (e.g., “deep learning”) which are 
capable of “educating” themselves and find those parameters that have a greater impact 
on the result.  

However, so far, practical achievements with respect to the individualization of 
treatment are not as impressive as the theoretical and technological advances.  

Consider the analysis of the treatment effect. A key requirement of traditional 
RCT methodology is that the process of the statistical analysis of the treatment effect can 
proceed only after data collection is complete, i.e., after having the entire set of individual 
characteristics (variables) uniformly describing each member of the population put in the 
record. 

With the set of individual data records complete, we can measure characteristics 
of the studied population. The individual characteristics of each subject are interpreted as 
the random variations of the general characteristics of the population. The distribution of 
these variations is described with a set of the parameters, providing a generalized and de-
individualized description of the population. This lets us use bivariate or multivariate 
methods to compute risks in the comparison cohorts. If our objective was limited to 
computing the risk and change in the risk within the trial population, this is sufficient. If 
our objective is to explore the heterogeneity of the treatment effect, or the “identification 
of the predicted individual treatment effect,” we undertake additional, more complex 
procedures, rooted in probability theory, requiring modern statistical methods, 
computational technology, time, and intellectual resources. 
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Thus, first, we compose the population from individuals. Then, we get rid of the 
individual characteristics. Then we follow a roundabout path, transforming the data to go 
back to the individual and his/her relationships with his/her individual characteristics.  

Even after this, the results cannot be applied as-is to individuals in the general 
population. The actual application is guided not by the rigorous and mechanical 
application of the scientific method, but rather by the clinical judgement, experience, and 
intuition of physicians. Put this way the situation seems absurd, and it is a wonder the 
present author and reader have survived to this day in spite of numerous visits to 
physicians over their lives. The diagnosis and treatment decisions during these visits have 
not necessarily, if ever, involved classic or modern statistics.  

At this point, having considered the analysis of the treatment effect from some 
distance, we should ask the following naïve questions.   
• Is it possible that, by taking this roundabout road to study the results of treatment 
and to project them to the individual patient, we lose some important information or an 
opportunity for analysis along the way?  
• Are we spending too much time and resources assessing the association between 
treatment, outcome and “generating conditions,” which possibly could be obtained by 
other, more direct ways? 

• Is it possible that considering the treatment process from a different angle, we 
could explore some aspects of the process which cannot be explored from our traditional 
position? 

• Should we take a better look at the capacity of clinical thinking, and at least to 
borrow some of the ideas explicitly or implicitly realized in clinical experience and 
intuition? 

4. Treatment response 
Exploring causality in the treatment process requires establishing relationships 

between three categories of factors: treatment, outcome, and conditions (co-variates). 
When exposed to the same treatment, various individuals can produce different 

outcomes. In response to two different treatments, various individuals can produce the 
same outcome or different outcomes. Thus, the outcome of the treatment depends not 
only on the treatment itself, but also on the way each individual patient responds to the 
treatment.  

We define treatment response as the individual way of responding to the 
treatment, in contrast with treatment effect.  An analogy illustrates the distinction: 

Planting a seed into watered soil with the necessary nutritional components, 
results in vegetation; planting it into dry sand will have different results. Similarly, 
different results should be expected from hammering a nail into a wooden wall and into a 
granite boulder. In other words, for achieving the expected result, there should be a 
correspondence between 1) the treatment (e.g., a seed, or the nail and hummer,) and 2) 
the properties of the object to which this treatment has been applied (fertile soil vs. dry 
sand; wooden wall vs. granite boulder).  

In this dualistic approach, the treatment effect and the treatment response 
characterize the same treatment process, but from two different, complementary 
positions. The treatment response approach sees the trial population as intrinsically 
heterogeneous regarding the factors determining the result of treatment.  
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4.1. Variability of variability 
Per Jerzy Neyman, at a logical level, a population is defined as “categories of 

entities satisfying certain definitions but varying in their individual properties.” (ref. ix, 
p.1). Populations can differ in type of variability of individual and group properties. In 
the simplest case, height can vary across individuals and across groups in a certain range. 
Other populations can be conveniently described with hierarchical (multilevel, spatial) 
models, e.g., the indices of quality of educations can vary at individual, class, school, 
district, and so on levels. Other populations have complex heterogeneity where some of 
their subgroups differ from one another by clusters of properties. For instance, consider 
the staff of a large corporation as a population. It consists of various divisions with a 
different structure and function, with the individuals and subgroups differing by their 
skills, experience, cultural background, area of expertise, objectives of their work, their 
position in the industrial process, etc., etc. It can be a military population, with the 
apparent differences, for instance, between the air force, infantry, and navy, as well as 
substantial variability within the branches. It can be the population of a large city, or a 
population of the companies trading on a stock market, and numerous other heterogenous 
populations. 

A distinctive example of heterogeneity can be borrowed from the theory of origin 
of life. Per A.I. Oparin, the infant Earth was surrounded by a reducing atmosphere, 
containing molecules of methane, ammonia, hydrogen, and water vapor, which were the 
raw materials for the evolution of life. The random encounters of the diverse, multiple, 
chaotically moving molecules, in accordance with their properties were followed by 
arrangement of the molecules into molecular structures of increasing complexity, with 
new properties, size, and forms.xxiv At some point of evolution, this “primitive ocean” 
became a mix of freely moving molecules of gas, water, mineral and organic solutions, 
and organic compounds of various size, form, complexity, described by J.B.S. Haldane as 
a “soup,” xxv from which the first reproducing entities were created. 

This description provides two distinctive pictures. One of them presents 
randomly distributed and free moving molecules, which were the raw materials for the 
evolution of life. In the other, there are still chaotically moving molecules, but also their 
various aggregations, a class of components radically different from free moving 
elements because of the relationships between the elements of these structures. In other 
words, this is a mix of the randomly distributed elements and deterministically related 
components composed from the same elements. These random and non-random 
extremes, together with a diversity of intermediate variants, form the range of 
possibilities of variability.  The choice of analytical method for a population must be 
adequate to its variability type. 
4.2.  Data matrix   

A data matrix is the framework for analysis of the RCT. The object of analysis, 
i.e., the trial population, can be described in two complementary ways, presenting two 
different images. An example of the matrix with binary data described by a set of 
variables is shown on Fig. 5 (A,B). 

On Fig. 5(A), before sorting, a configuration of the elements of the matrix is 
visibly chaotic. On Fig. 5(B) the same data have been sorted to demonstrate the object of 
our interest, which are the group of color-coded subsets of variables (including treatment 
and outcome) identical in the subsets of cases (individuals). 
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Fig 5. Heterogeneity of treatment response in the trial population (from [*]) 

 
The mounting data on heterogeneity of the treatment effect make evident that in 

various individual patients and subgroups of patients, the treatment and outcome are 
related to various combinations of the variables, but a “physical” structure of the 
relatedness is not known, and it requires special investigation. Thus, the dataset of the 
heterogenous population presents a mix of elements, either distributed by chance, or 
related to each other in various combinations.   

The assumption of randomness has strong implications: while part of the objects 
may chaotically behave like molecules of gas, others can randomly create assemblages, 
and one more part of the objects can present aggregations, i.e., subsets of these 
“molecules” related deterministically, and the data matrix can be described as a mix of 
randomly distributed and deterministically related elements (“soup").  

When an unprejudiced investigator observes two co-occurring events, he/she 
must form a hypothesis as to whether these events have co-occurred by chance or were 
related to each other. Initially, both assumptions are equally legitimate, leading further 
analysis in different directions. Ultimately the results of the two analysis paths are 
compared and contrasted, and the initial hypothesis of each analysis should be accepted 
or rejected.  
4.3.  Assumptions in treatment response approach 

The traditional analysis of the treatment effect derives from the assumption of 
randomness. If the population is complex, in the sense that it contains a mix of random 
and deterministically related influential factors, the assumption that the observed co-
occurred events are related to each other is also valid.  It coexists as a parallel hypothesis 
along with the assumption of randomness, which is natural for statistical analysis, and we 
must assume it is a legitimate possibility unless proven otherwise using logic, 
computations, and yet to be developed conventional criteria.  

The assumptions of the treatment response approach, in the context of analysis of 
the relationships between treatment, outcome, and conditions within the experiment of 
treatment (RCT), are as follows: 
• Each subject is a unique individual. Changing, removing, and/or adding  
individuals might completely change the subject and result of analysis. The individual 
outcome of treatment is of the existential value for each individual patient. 
• Two or more co-occurring events are related unless the contrary is proven. This  

 
 

A       B 

 

CaseTx/txY/y A B C D E F G H J I K L M N O P Q R S T U V W X Z … Case Tx/txY/y A B S C H V O J D E F G I K L M N P Q R T U W X Z …

1 1 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 … 2 0 0 1 1 0 1 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1 0 1 0 …

2 0 0 1 1 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 1 0 1 0 … 7 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 …

3 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 … 14 0 0 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 …

4 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 1 1 1 1 1 0 1 … 15 0 0 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 …

5 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 … 18 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 …

6 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 … 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 …

7 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 … 5 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 …

8 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 1 1 0 1 … 6 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 …

9 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 … 10 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 …

10 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 1 … 19 0 1 1 1 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 …

11 1 1 0 0 0 0 1 0 0 0 1 0 1 1 1 1 1 0 0 1 1 0 0 0 0 1 0 … 9 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 …

12 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 … 17 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 …

13 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 … 4 0 1 1 1 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 1 1 1 0 1 …

14 0 0 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 … 13 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 …

15 0 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 … 16 0 1 1 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 …

16 0 1 1 1 1 0 0 1 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 … 20 0 1 1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 0 0 1 1 1 1 0 1 0 1 …

17 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 … 21 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 …

18 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 0 0 1 … 22 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 …

19 0 1 1 1 0 0 0 1 0 0 1 0 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 … 3 1 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 …

20 0 1 1 1 1 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 0 1 0 1 1 0 1 … 8 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 1 0 1 …

21 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 1 1 … 12 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 …

22 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 0 1 1 0 1 0 1 … 24 1 1 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 0 0 …

23 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 0 0 0 1 1 … 11 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 1 0 0 0 1 0 …

24 1 1 0 1 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 0 … 23 1 1 1 1 1 0 0 0 0 1 0 0 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 …

25 1 1 0 1 0 1 0 0 1 0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 … 25 1 1 0 1 1 0 0 0 1 0 1 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 …

… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … …

 𝐴𝑔1    𝐴𝑔2  𝐴𝑔3   𝐴𝑔4   𝐴𝑔5   𝐴𝑔6  𝐴𝑔7 
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assumption is the major motivating factor for analysis, and it can be accepted if the 
probability of co-occurrence of the events by chance is small, and it should be rejected 
when this probability is large.   
• Valid inferences potentially can be made from single cases and small number of  
cases.          

We emphasize that these are not positive assertions, but rather the assumptions in 
a genuine meaning of this term, designating starting positions of the approach, which is 
exploratory by its nature. The inference deriving from analysis based 
on these assumptions is relevant for a particular instance (case or cases) only. A 
conclusion in a particular instance can then be an element of further analysis.  This can 
mean comparisons with analogous elements, producing inductive and deductive 
inferences, and comparing inferences with other hypotheses. 
4.4.  Aggregation  

The RCT data matrix is represented as a rectangular space populated with 
sparsely distributed defined elements, with some relatively crowded areas, and packs, in 
which identical clusters of variables are repeated in several cases. Cases with identical 
clusters can be observed in matched rows and columns of the list of cases. By sorting, 
these cases can be brought next to each other. Similarly, variables identical in two or 
more individuals can be located apart in the list of variables without any impact on the 
content of the matrix and statistical analysis. Using relevant column sorting, they also can 
be brought together, creating a rectangular subset in which each line consists of the 
identical sub-set of variables, and each column is presented by the identical value of the 
relevant variable (Fig. 6., highlighted blue)    

Some variables can be clustered in some subsets of individuals and differently 
grouped in the others. The grouping can create rectangular subsets of individuals with 
identical subsets of variables (highlighted blue).   
      

Fig. 6.  Scheme of Aggregation 

 
We designate the described subset, the elements which have gathered 

presumptively non-randomly, with the term “aggregation,” and we use the term “case-
variable association” for such assembly of elements gathered by chance [*]. The 
difference between the case-variable associations and aggregations [Fig. 5(B)] can be 
determined statistically [*]. 

Via purposeful sorting, or using special algorithms, we can identify and visualize 
one particular aggregation. If we then sort to visualize another aggregation or case-
variable association, the visualization of the first aggregation can be destroyed. This 
process can continue, and at each step, the visualization of a new aggregation might 
destroy the previous ones. Still, the change in the order of variables in the matrix, as well 
as the order of cases (individuals), does not change its content. We only change the 
visualization of the multidimensional relationships between the variables and individuals 
existing in various virtual groups of the population. 

By this procedure, we see that the data matrix is a mix of sparsely distributed 
elements, case-variable associations, and aggregations of various size, form, content, and 

𝐼𝑗 \𝑉𝑖 |   … 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻, 𝐼 …        

 𝐼1 | … 1 1 0 1 0 0 0 1 1 …  
𝐼2 | … 0 0 1 0 0 1 1 0 0 … 
𝐼3  | … 0 1 1 0 0 1 1 0 1 … 
𝐼4  | … 1 1 1 0 0 1 1 1 1 … 
𝐼5  | … 1 0 0 0 1 0 0 1 0 … 
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function. These components can exist solo or joined with each other, exist separately or 
create hierarchy, etc. The entire picture can change in time [**]. 
4.4.1.  Correlation and aggregation 

The correlation index, a measure of association between two variables, 
characterizes the population, and it does not refer to any individual member of the 
population. For instance, a positive correlation between two binary variables (designating 
different characteristics) means that a proportion of the pairs concordant by these 
characteristics (i.e., both 1, or both 0) is larger in this population than the proportion of 
discordant pairs (one 0, another 1). However, the correlation coefficient does not indicate 
which pairs are concordant and which are not. 

In contrast, the aggregation is a set of the observed evens having co-occurred in 
certain identified individuals, irrespective of the rest of the population.  
4.4.2.  Quantification   

Each aggregation implies a deterministic hypothesis of relatedness between its 
elements. This hypothesis can be and should be contrasted with an alternative hypothesis 
of random association of the elements. In our report [*], a set of indices including the size 
of the aggregation, the probability of random gathering of the elements of the 
aggregation, “density” of the aggregation, and other indices, was introduced. Using the 
report’s notation, we summarize here some key quantitative features of case-variable 
association/aggregations. 

After having the case-variable assemblage identified, the next objective is 
establishing its random or non-random character. The alternative to the deterministic 
hypothesis (“null hypothesis”) above is the hypothesis of random gathering of the 
elements comprising the association/aggregation:  

𝑃𝑟(𝐴𝑔1
′ ) = [𝑃𝑟(𝐶+) ∗ 𝑃𝑟(𝐷−) ∗ 𝑃𝑟(𝐷−) ∗ 𝑃𝑟(𝐸+) ∗ 𝑃𝑟(𝐹+)]| 𝐼2,3.4|. 

The size (𝑆𝑧) of the aggregation expected under the condition of random gathering of the 
elements comprising the association/aggregation: 

𝑆𝑧𝐴𝑔1
′ =  𝑛 ∗ 𝑃𝑟(𝐴𝑔1

′ ); 
where 𝑛 is the size of the matrix.  
             The observed size of the aggregation is a product of the cardinalities of the subset 
of variables and subset of individuals comprising the association/aggregation: 

𝑆𝑧𝐴𝑔1
= | 𝐼2,3.4| ∗ |𝑽𝐶,𝐷,𝐸,𝐹|. 

A comparison of the expected and observed size of the aggregation can be a basis for 
examining the hypothesis of random gathering of the elements comprising the 
association/aggregation. 

In the analysis of the aggregation, relatedness between the treatment, outcome, 
and co-variates is inferred not via comparison of risk in various groups or subpopulation. 
Rather, it is defined as the relatedness of these elements within the aggregation, which 
makes it the instrument of choice for studying heterogeneity. 
4.4.3.   Interpretation of aggregations 

 So far, we’ve considered sets of variables constituting aggregations from a 
quantitative angle. Such a set might be 1) a cluster of symbols without an interpretable 
meaning, or 2) it can have an identifiable connotation and be a readable “word,” or 3) be 
a combination of meaningful and “meaningless” subsets. Combining symbols into 
“words” in this sense can reduce the dimensionality of the description of the population. 
The interpretation of the “words” reveals the meaning and content of the aggregations. 
Ultimately, “words” can help explain the structure of heterogeneity and mechanisms of 
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the treatment response. xxvi Aggregation is an exploration tool, and interpretation of the 
aggregation is the search for new useful factors or properties. 

The process of the interpretation of the “words” is similar, but not identical, to 
the process we described for the interpretation of principal components. xxvii The major 
difference is that with principal components we deal with a set of correlations, which 
requires comparing a “positive presentation” and “negative presentation.” Within the 
aggregation, the “word” is identical in all individuals.  The meaning of the “word” is to 
be surmised directly from the combination of the events, things, or properties denoted by 
the “letters” comprising the “word.” This inference is a key “human-machine interaction” 
stage in the analysis of complex relationships and mechanisms of the treatment effect and 
treatment response.  
4.5.  Determinants of treatment response  

In the context of treatment response, the numerous factors determining the result 
of treatment can be aggregated into two, not mutually exclusive, categories, namely the 
capability for spontaneous recovery, “𝑆𝑝𝑜𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠, ” (𝑆𝑝) and sensitivity to a specified 
treatment “𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒, ” (𝑆𝑡). Under each of these categories, we mean a relevant property 
(attribute, quality, characteristic, ability, or trait) of a patient, determined by a single 
factor inherent to a relevant category of patients (e.g., polymorphism), or by a confluence 
of multiple internal or external factors, either prevalent or rare. The presence or absence 
of one or both of these properties determines the outcome of treatment. [*] 
4.5.1.  Property 𝑆𝑝  

Recovery, as one of possible outcomes in the natural course of most disorders, 
has been described by physicians long before the age of modern medicine. Spontaneous 
recovery (or remission, or intermission) is a prevalent phenomenon observed in most 
known human disorders. A history of this phenomenon, its epidemiological and 
experimental aspects, and its theoretical and practical implications are discussed in our 
report. xix We understand the capability for spontaneous recovery as a property reflecting 
an existence of an evolutionarily developed protective system in response to a specific 
hazard. 

A capability to recover spontaneously, designated by the category, 
“𝑆𝑝𝑜𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠, ” (𝑆𝑝), is the capacity (propensity, predisposition, readiness) to recover 
spontaneously, i.e., without, or regardless of treatment. We call a patient “Spontaneous” 
(𝑆𝑝+) if a positive outcome has developed without treatment, or there are reasons to 
believe that in the patient exposed to the treatment, recovery would have occurred if the 
treatment were not applied.  
4.5.2.  Property 𝑆𝑡  

The category designating sensitivity to the treatment, “𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒” (𝑆𝑡), is the 
capacity of a subject to respond positively to the defined treatment. We call a patient 
“Sensitive” (𝑆𝑡+) to a specified treatment if there are reasons to believe that this 
treatment has imposed the outcome of interest, or it would have imposed it if applied. 
Sensitivity should be considered only in reference to the specified treatment. 

Logically, the presence of the factors covered by the categories “Spontaneous” 
(𝑆𝑝+) and/or “Sensitive” (𝑆𝑡+)  is the necessary condition for the development of the 
positive outcome in the patient exposed to the specified treatment. 
4.5.3.  Treatment-outcome complex 

In the frame of our model, there are four possible combinations of the treatment and 
outcome (𝑇𝑥+𝑌+, 𝑇𝑥+𝑌−, 𝑇𝑥−𝑌+, 𝑇𝑥−𝑌− ). We call this combination the “treatment-
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outcome complex.” xxviii It derives from the classification of patients by treatment and 
outcome, which creates a 2 × 2 table (Fig. 7) typically used as a framework for the 
assessment of the treatment effect.  

 Fig. 7. Combinations of Treatment and Outcomes 
 𝑇𝑥+ 𝑇𝑥− 

𝑌+ 𝑇𝑥+ 𝑌+ 𝑇𝑥− 𝑌+ 
𝑌− 𝑇𝑥+ 𝑌− 𝑇𝑥− 𝑌− 

These measures deal with objectively observed individual events of the treatment and 
outcome, unlike the individual treatment effect, which, as shown above, cannot be 
determined with certainty. Importantly, the category of the treatment-outcome complex is 
logically related to the categories of “sensitive” and “spontaneous,” which makes a 
framework for possible inferences regarding treatment response. In analysis of the 
treatment response, we use the variables of treatment and outcome jointly as a unit for 
the identification of the individuals possessing the properties “Spontaneous” and/or 
“Sensitive.”  
4.6 Logic of identifying properties 𝑆𝑝 and 𝑆𝑡  

The concept of the Treatment-Outcome Complex, logically related to the 
categories “Spontaneous” and “Sensitive” [*, **], allows to address the following 
problems:  

1) identifying the properties that determined the outcome in the patients in the 
trial population  

2) identifying the patients possessing relevant properties in the defined target 
population 

3) applying this inference to prediction for patients  
Problem 2 requires special consideration and is discussed below in Section 

“Treatment response in general population.” Problems 1 and 3 can be approached 
through establishing logical relationships between the categories of treatment (𝑇+𝑌,− ), 
outcome (𝑌+, 𝑌−), and conditions (𝑆𝑝+, 𝑆𝑝−;  𝑆𝑡+  , 𝑆𝑡−), schematically shown in Fig. 8.  

Fig. 8. Relationships between the categories Treatment, Outcome, “Sensitive” 
and “Spontaneous” 

 
Fig. 8 shows logic relationships between the categories of treatment, outcome, 

“Sensitive” and “Spontaneous.” It shows the possibilities of determining (retrospectively) 
the presence or absence of the properties “Sensitive” and “Spontaneous” in patients. 
Also, it shows the possibilities of predicting the outcome in a patient with all possible 
combination of the properties “Sensitive” and “Spontaneous” exposed and not exposed to 
the treatment. For instance, if we have reason to believe that the patient is  
“𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒, ” (𝑆𝑡+) to the treatment 𝑇𝑥+ or/and that he/she is capable for spontaneous 
recovery [“𝑆𝑝𝑜𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠” (𝑆𝑝+)], it would be equivalent to predicting a positive 
outcome in this patient under the exposure to the treatment 𝑇𝑥+.  
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4.7 Aggregations including treatment-outcome complex 
Thus, the presence or absence of the properties 𝑆𝑡 and 𝑆𝑝 in the individual is 

inferred from the combination of treatment and outcome (Fig. 8), i.e., treatment-outcome 
complex. If the aggregation includes the treatment-outcome complex, it can be 
hypothesized that this treatment, this outcome, and this subset of the variables are related 
to each other in this subset of patients, i.e., in the individuals comprising this subset 
possess relevant property or properties.  

The set of aggregations which include the treatment-outcome complexes 
represents the heterogeneity of the treatment response in the defined population.  

It is not necessary that the aggregation should include a substantial number of 
individuals. Relatedness of a certain subset of variables with the treatment and outcome 
can be established even in a single case or a small group of cases having rare variables in 
their description. Borrowing an example from pharmacovigilance, two or three cases of 
Steven-Johnson syndrome observed in the patients with rare symptoms or conditions 
could be a ground for the inference of the relatedness between the treatment, these 
symptoms, and this serious adverse event. 

Above, we have considered the logic of identification of patients with the 
properties 𝑆𝑝 and 𝑆𝑡. The presence or absence of these categories can be logically 
established in each individual case with the level of assurance and limitations discussed 
in [*], [**], even when typically a single causal factor cannot be identified. The statistical 
approach towards the identification of the properties 𝑆𝑝 and 𝑆𝑡 we describe xix is limited 
by a strong assumption of the independence of the 𝑆𝑝 and 𝑆𝑡 properties.  
4.8 Mapping “Sensitive” and “Spontaneous” 
 The properties “sensitive” and “spontaneous” can thus be attributed to individual 
patients.  The following step is the mapping of the factors belonging to the categories 
“sensitive” and “spontaneous” to variables describing the population. A procedure of the 
mapping described in [*] is built on the logic of pairwise comparison of individuals or 
groups of individuals within and across the subpopulations delimited by the treatment-
outcome complexes.  

There are 10 unique types of pairs, each with a distinct pattern of inferences 
regarding the mapping. For each type of the comparison, there is a specific set of logical 
operations leading towards mapping the properties “Spontaneous” and “Sensitive,” i.e., 
ascribing a status of potential carriers of these properties to some subsets of variables. [*]  
4.7.  Implications  

Identification of the “Sensitive” and “Spontaneous” individuals and mapping 
these properties to subsets of the variables have important implications. Here is a 
schematic example.  
4.8 Accounting for 𝑆𝑡  

Case 4  

Consider a RCT comparing the experimental (𝐸) and active control drugs (𝐶) (Fig. 9). 
For simplicity, all patients with positive outcome have recovered only due to the 
treatments, and none recovered spontaneously. The color code scheme is as on Fig. 1, 2. 
A routinely computed result of the RCT is that the experimental drug 𝐸 has reduced risk 
of death (ARR) by 30% compared to the active control drug 𝐶. Setting aside problems 
with generalization, we say that treating the target disorder with the more efficacious 
drug 𝐸 means 70% of the patients survive, and 30% die.  
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At least 8 (40%) patients from the active control cohort (1, 2, 3 ,4 ,5, 6, 7, 8) 
should be sensitive to the drug (𝐶).  

Fig. 9 

 
Because of randomization, it means that, 40% of patients of the experimental 

cohort also should be sensitive to the drug (𝐶). It is true for the entire experimental cohort 
including the segment of with a negative outcome (patients O, P, Q, R, S, T). If the drug 
(𝐶) was prescribed to the patients 𝑂, 𝑃, 𝑄, 𝑅, 𝑆, 𝑇, who are not sensitive to the 
experimental drug 𝐸, we should expect a reduction of the deaths rate in this subgroup by 
~ 40%. 
    This means that the drug 𝐶, which has been qualified as less effective than the 
experimental drug (𝐸), in fact can be effective in cases in which the experimental drug 
happened to be ineffective. Likewise, it is possible that while the trial does not reveal 
superiority of drug 𝐸 over 𝐶, the patients sensitive to the drug 𝐶 can be found in the 
experimental cohort, as well as patients sensitive to 𝐸 in the control cohort, with relevant 
implications upon the individualized prescription of both 𝐸 and 𝐶.  

The inferences above are true in the case that drugs 𝐸 and 𝐶 belong to different 
classes, and the sensitivity of a patient toward the experimental drug 𝐸 is not related to 
(independent of) sensitivity toward drug 𝐶. 
4.9 Accounting for 𝑆𝑝 

For simplicity of presentation, capacity for spontaneous recovery (𝑆𝑝) was not 
included in the Case 4, but implications of accounting for this capacity can be 
demonstrated on the scheme of Case 2 above, where substantial part of the recoveries in 
the experimental cohort could be theoretically achieved without even being exposed to 
the experimental treatment  𝐸. 

Analysis incorporating the capacity for spontaneous recovery and sensitivity to 
treatment under the assumption of independence of 𝑆𝑝+, 𝑆𝑡+ is described in our paper. 
xxix In lieu of so strong an assumption, the identification of these properties in a 
heterogenous population should be performed using the sequence of the steps described 
in the previous sections (See: “Determinants..). 
4.10 Potential benefits 

Clinical reality is more complex, but ideally individualized prescription of 
treatments upon the identification of 𝑆𝑝+, 𝑆𝑡+ creates the possibility of increasing the 
effect of treatment and more rational use of resources, specifically reducing the number 
of negative outcomes, reducing risk for adverse reactions, and reducing expenditure via 
the elimination of unnecessary prescriptions and via prescribing a less expensive but still 
individually effective drug to those with a relevant indications. 

5. Treatment response in general population 
In the treatment response analysis we assume that the treatment population is 

intrinsically heterogeneous. In its description (data matrix), it presents as a mix of 
aggregations, case variable associations, and randomly scattered elements. The data 
matrix can refer to the general population or to the RCT population, which is a sample of 
the former. 

 Experimental     A, B, C, D, E, F, G, H, I, J, K, L, M, N O, P, Q, R, S, T 

Active Control 1, 2, 3 ,4 ,5, 6, 7, 8 9,10,11,12,13,14,15,16,17,18,19,20 
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An aggregation is, by definition, a subset of the deterministically related 
variables in a subset of individuals. There is no reason to believe that the process that 
formed this structure is specific to the environment of the RCT. If this subset is identified 
in members of the general population, the variables of this subset are deterministically 
related in the same way. The proportion of the aggregation of this specific type may vary 
in various samples of the population, but as identified it exists irrespective of the 
proportions of the comprising elements in the population, possessing the same properties 
and functions. 

In the RCT data, the property, e.g., 𝑆𝑡+, can be marked by several subsets of 
variables belonging to respective aggregations. In other words, the property can be 
deterministically related to various combinations of factors, i.e., be heterogenous. Once 
deterministic relatedness of the subset of variables (necessarily including the variables of 
treatment and outcome) in this aggregation is established, it can be interpreted as a 
marker for the property of our interest. Using these markers, we can identify the 
individuals with at least one of the relevant markers, and who, therefore, are in 
possession of the property 𝑆𝑡+. The same is true for 𝑆𝑡−, 𝑆𝑝+, 𝑆𝑝−, or their feasible 
combinations. 

Subsequently the above logic (Fig. 8) leads to a prediction of the outcome in the 
individuals and relevant subgroups. A prediction by this method is only possible for those 
cases possessing relevant information in their description; for other cases we must default 
to traditional predictive modeling based on the treatment effect approach.  

The treatment response approach leads to correct predictions on a part of the 
population for which information is sufficient and the property inferences are correct. 
Likewise, predictive modeling leads to correct (true positive or true negative) predictions 
for part of the population, and false positive or false negative for the rest. The projections 
made using treatment effect and treatment response approaches not necessarily should be 
identical. One approach can confirm or challenge another one, which is the meaning and 
purpose of complementing the treatment effect and treatment response approaches.  

The frame of the relationships between the results of the treatment response and 
treatment effect analysis is shown in [*]. Comparative analysis of these relationships is 
beyond the objectives of this report.  

6. Limitations  
Clarity about the limitations of the complementary treatment effect and treatment 

response approaches should create the frame for combining them.  The advantages of one 
of them might compensate for the limitations of another one, and vice versa.  
6.1 Treatment effect  
Above, we have demonstrated the efforts to overcome the limitations of the treatment 
effect approach. As discussed above, the treatment effect refers to the population, not 
individual. Translating the results of analysis of the treatment effect in RCT to the “real 
world” population is difficult; predicting the individual treatment effect even more so. In 
the real world, the task of individual case decision making is performed primarily based 
on clinical experience and intuition, while at the same time the treatment effect, i.e., risk 
reduction, is often misinterpreted as the generalized expectation of the positive outcome.  

The identification and prediction of the treatment effect requires working with the 
distribution of the variables in the RCT. The difference between sample statistics and the 
parameters of the distribution in the general population requires adjustments in translating 

 
129



 
 

the population and individual treatment effect from RCT to the “real world” population. 
Additional factors not included in the set of covariates, and factors that emerge during and 
after the completion of the trial [**], obfuscate filling the “efficacy-effectiveness gap” and 
predicting the individual treatment effect. 

The identification and prediction of the treatment effect in sub-groups and 
individuals requires additional analyses beyond the design of the RCT. There is progress 
in this area, but as shown above, this progress is limited primarily to the experimental 
populations.  
6.2 Treatment response 

While some of the limitations of the treatment response approach, as well as its 
capacities, are already known, others are yet to be learned. At this point the most 
substantial limitation of exploring the treatment response is that, similarly to predictive 
modeling based on the treatment effect approach, it can leave some of the individuals 
unidentified. The treatment response approach does not claim that it should identify the 
properties determining the response to the treatment in all the individuals comprising the 
RCT and general population. Rather it claims that only individuals whose description 
contains relevant information can be identified with the level of assurance determined by 
the conventional criterion of non-randomness of the aggregation. It acknowledges the 
impossibility of identifying and predicting the treatment response in those with 
insufficient information. But it claims the invariance of the structure of the aggregation 
across various samples of the general population. In this it differs from the treatment 
effect approach, which diffuses the concept of risk onto all members of the trial 
population. In this sense, the limitation of the treatment response approach can be 
interpreted as an advantage: it delineates a boundary of its capacity without making an 
impression of certainty in situations in which there is no reason for a confidence.  

7. Conclusion 
Thus, the questions asked in the Introduction can be answered at this point as follows.  
7.1 Translation of the result of RCT to an individual patient  

A treatment effect as measured by RCT refers to the trial population and cannot be 
directly translated to the individual patient. Additional studies, beyond the original design 
of the RCT, should be done to move towards individualization. Using data on treatment, 
outcome, and co-variates recorded in the data matrix, it is possible to re-create the results 
of the trial. In the frame of this re-creation, it is possible to identify and predict the 
outcome in each individual participant with high accuracy, xvii but this result cannot be 
reproduced with the same level of accuracy in prediction for individuals in the general 
population.  

The proportion of negative outcomes in the general population is not necessarily 
equal to this proportion in the RCT, and predictions of the individual outcome beyond the 
trial population are usually accurate for a part of the population. In some predictive 
models, this part can be substantial, but for the rest the of population the individual 
predictions are either false positive or false negative. The difference between the trial and 
general populations in the proportion of the negative (or positive) outcomes, along with 
the discrepancy between the predicted and observed individual outcomes, constitutes the 
efficacy-effectiveness gap. The predictive approach identifies the individual outcome, not 
the individual treatment effect, because it does not identify the individuals whose 
recovery was induced by the treatment, and those whose recovery was spontaneous.  
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7.2 Sensitivity to treatment (𝑆𝑡) and capacity for spontaneous recovery (𝑆𝑡) 
The very design of RCT shows that spontaneous recovery is a prevalent phenomenon, a 
notion supported with historical, clinical, epidemiological, and experimental data. xix 
Analysis of the treatment effect in RCT leaves unknown whether the positive outcome 
(recovery) was induced by the treatment, or developed spontaneously.  

The treatment response, defined as an individual’s way of responding to the 
treatment, is determined by multiple factors forming two, not mutually exclusive, 
categories, the sensitivity to the treatment (𝑆𝑡) and capacity for spontaneous recovery 
(𝑆𝑝).  
 There are difficulties in defining the individual treatment effect in the statistical 
context. In contrast, the determinants of the treatment response (𝑆𝑝 and 𝑆𝑡) can be 
logically defined and identified (with well-defined limitations) from observation of the 
outcome in the patient exposed to the treatment. The logic of identifying the subsets of 
variables deterministically related to the properties 𝑆𝑝 and 𝑆𝑡 was shown in [*], [**]. 
These subsets can function as markers for these properties in individuals and subgroups 
in both RCT and general populations. 
7.3 Tackling the efficacy-effectiveness gap 
The identification of individuals with treatment-induced and spontaneous recovery is of 
great importance for studying disease and treatment mechanisms, to the individualization 
of treatment, and to reducing the efficacy-effectiveness gap. 

For reasons described above, it is not likely that the efficacy-effectiveness can be 
eliminated in the frame of the treatment effect approach. Nor is it likely to be eliminated 
using the treatment response approach, nor by complementing these approaches; but 
there are reasons to believe that the combined approach has the potential to reduce the 
gap to some extent. 

In the treatment effect approach, depending on the population and on the specific 
predictive model, the individual predictions are correct (true positive or true negative) for 
some proportion of the population, with the goal of methodology to improve this 
proportion. The treatment response approach derives from another set of assumptions, 
and it relies on statistically confirmed inferences about deterministic relationships of the 
descriptive characteristics of the aggregation [*].  

The following considerations suggest that the individual predictions of the 
treatment response used in parallel to various methods of predictive modeling projecting 
the results of treatment effect analysis can lead to reducing the efficacy-effectiveness gap. 

The RCT population is a sample of the general population selected using special 
inclusion/exclusion criteria. The RCT data matrix is a mix of the deterministically related 
components (aggregations of various types) and randomly scattered elements. The 
aggregations and randomly scattered elements are contained in various proportions in 
various samples of the general population, but the structure of the of the aggregations, 
i.e., the subsets of the respective deterministically related variables, should be identical 
respectively in various samples of the population, and does not depend on the proportions 
of the aggregations and randomly scattered elements in these samples. 

The method refers to deterministic relatedness (i.e., 𝑃𝑟 = 1), as distinct from 
probabilistic relatedness. This is a strong assumption in a statistical sense, but in a 
“physical” sense (or per Kolmogorov,xxix in the “actual world of experiment” as opposes 
to the “the purely mathematical development of the theory”) it refers to the relatedness of 
the atoms creating a molecule upon a random encounter, where the probability 𝑃𝑟 =
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0.99(9) of the random encounter means the possibility of the random encounter of the 
atoms, while 𝑃𝑟 = 1 means that the encounter has occurred.  

As a rule, a heterogeneous treatment population contains multiple aggregations 
comprised of distinctive subsets of variables including treatment, outcome (the treatment-
outcome complex), and a subset of co-variates. Using the logic shown on Fig. 8, the 
treatment response approach identifies individuals and groups possessing the properties 
of sensitivity to the defined treatment (𝑆𝑡) and capacity for spontaneous recovery (𝑆𝑝) 
within the RCT population. This in turn makes it possible to identify the subsets of 
variables deterministically related to the property, which can play the role of markers for 
these properties. In turn these markers make possible the identification of individuals 
with these properties in the general population. This then makes possible prediction of 
outcomes in individuals in the general population.  

In the predictive modeling, the predictions are correct (true positive or true 
negative) for part of the population. Similarly, the treatment response approach claims 
correct prediction for the part of the cases, specifically those possessing relevant 
information in their description, and in which the status of relevant aggregations has been 
correctly established descriptively and statistically. Importantly, the correct/incorrect 
predictions made using two different approaches are not necessarily identical in each 
individual member of the target population. The predictions made using one approach 
can confirm or challenge the other, which is the meaning and purpose of complementing 
these approaches.  

The contribution of the combined application of the two complementary 
approaches depends on the heterogeneity of the treatment population, the set of 
covariates used for analysis, and multiple other factors. 
7.4. Possible developments  
 The treatment response approach is a tool for the analysis of heterogenous 
populations, which can be described as a mix of deterministically related and randomly 
scattered elements.  

The assumptions to the treatment response approach relate to traditional 
qualitative, clinical thinking. Applying this approach towards quantitative data intends to 
combine the flexibility and explorative capacity of qualitative, clinical thinking with the 
advantages of quantification, measurement, and computation. The inevitable trade-off is 
that flexibility must be restricted by the hard requirements intrinsic to the quantitative 
methods.  

We are at the very initial steps of the approach. At this point, only basic 
statistical procedures can be advised in the context of the treatment response [*]. More 
advanced quantitative methods specifically focusing on analysis of the treatment 
response are yet to be explored or developed. Further development will allow the 
application of this analysis to more structurally complex variable associations. 

With necessary adjustments this approach can be applied to the exploration and 
analysis of treatment using observational, messy, and incomplete data, analysis of single 
cases and small groups. In this context, a status of the aggregation can be confirmed or 
rejected using valid and reliable epidemiological data on relevant characteristics of the 
studied population. 

In the context of the modern advanced approaches, the treatment response 
approach can provide a conceptual guidance framework for “self-educating,” and in 
particular “deep learning,” analysis of the effects of treatment.  
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The key impactful application of the treatment response approach should be 
expected in the area of individualization of treatment. Further impact may be sought 
beyond the boundaries of medicine and public health, in a broad class of areas and 
populations characterized by heterogeneity of response to treatment, where understanding 
and addressing the members of the population in an individualized manner can render 
better results for a smaller expenditure. 
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