
Data Engineering Techniques And Designs With Music
Generation Neural Networks

Noah Solomon, Wanchunzi Yu

Abstract
The generation of music artificially is an interesting concept to many and has
received a lot of attention in recent years. The advancement of neural networks
has allowed for the creation of models that can seemingly generate music
creatively to mimic a specific genre or composer. This project delved deep into
the many ways to construct these neural networks and compared different model
architectures and data engineering techniques. Three main types of models were
implemented and the resulting generated music was evaluated with respect to the
melody, note agreeableness, and rhythm. These models used the Bach Chorales
corpus as inspiration for music generation.

Key Words: Neural Networks, Data Engineering, Music Generation

1. Introduction

Up until recently, computers have never been conventionally thought to be
capable of generating art up to the standards of a regular person. Unlike other
existing natural phenomena such as weather patterns, CO2 emissions, animal
populations, creative human behavior is an extremely complicated idea that has
been incredibly difficult to model. With advancement of artificial intelligence(in
particular neural networks), now computers are able to model situations like these
effectively. This project aimed to explore different implementations of neural
networks that generate music and the techniques that are used.

1.1 History of Neural Networks and Music Generation

Neural networks, like many other complicated scientific ideas, went through
varying ranges of societal interest and advancement through time. A simple neural
network called the “Perceptron” was first created in 1958 by Frank Rosenburg.
This perceptron was used to predict whether a fly’s flee instinct would be
activated with respect to what it was seeing. Due to its single layer architecture
the perceptron was only capable of learning linear relationships, so it was not

1138

applicable to any real world problems. Nonetheless it introduced neural networks
to the world and led to future research. The next year, researchers Bernard
Widrow and Martian Hoff from Stanford created a neural network that reduced
noise from phone lines. This was the first neural network that fixed a non-trivial
problem and in turn brought much hype to the field. Unfortunately researchers
experienced many roadblocks and in the late 60s, research in neural networks
ceased entirely. A phase called the “AI winter” had begun and it was not until the
1980s that research would continue for neural networks. At this point, an already
existing concept called back propagation was applied to neural networks to
bypass the roadblocks that held them back. Many important discoveries and
advancements have been made since the 1980s to bring the field of deep learning
to where it is today.

The history of music generation relative to neural networks is far more recent and
comparable to the advancement of a similar field called natural language
processing. Natural language processing is a field that explores ways for a
computer to extract and express information from linguistic sources. The tasks
that natural language processing explores are highly useful in society. Some
natural language processing tasks that most people use commonly throughout
their life are auto-complete, google translate, and scam detection. Although
reading, writing, and speaking may seem natural for the average person, it is
actually an extremely difficult task for a computer. The advancement of vanilla
neural networks were somewhat successful in completing simple natural language
processing tasks but it was the invention of long-short-term-memory (LSTMs)
neural networks that made massive strides in the field. These networks, in
addition to being able to extract complex relationships, worked well with
temporal data which is the type of data at which most NLP tasks use. Due to
music's similar structure to language, LSTMs were applied to music generation
tasks and reached a high level of success compared to previous approaches.
Within the past couple years a new type of neural network called the transformer
has proved to be even more effective with most NLP and music generation tasks.
Today, the industry leading music generation models use transformers.

1.2 Deep Neural Networks

As with any supervised learning task a neural network requires samples that
consist of inputs and target outputs. Let f(x) represent the target output associated
with the input of x. The task at hand for the neural network is to approximate

such that total loss, or error, between and is minimized.𝑓 *(𝑥) 𝑓(𝑥) 𝑓 *(𝑥)

1139

The approximation function can be abstracted as a system of layers of𝑓 *(𝑥)
densely connected nodes. An example is shown below:

A bias parameter is associated with each node and a weight parameter is
associated with each edge. The state of any given node can be calculated by
taking the weighted outputs of the previous layer and adding the node’s bias then
applying an activation function. The weights that are used correspond to the edges
coming into the node of interest. The activation function that is used depends on
where the layer is positioned and the range of values that the next layer’s nodes
can take on. The activation that is typically used on intermediate layers is called
rectified linear unit (RELU) and is defined as:

σ(𝑥) = 𝑚𝑎𝑥(0, 𝑥)

Another common activation function is called the sigmoid and squeezes output
values between 0 and 1. This activation is often used on nodes in the final layer in
binary classification or multi-class classification problems. Sigmoid is defined as:

σ(𝑥) = 1

1+𝑒−𝑥

Softmax is the last activation that will be discussed. This activation function is
used in multi-class classification tasks on nodes in the final layer of a neural

1140

network. Applying the softmax function the final layer of a network creates a
vector of probabilities that sum to 1. This allows the networks to “learn” a
posterior probability distribution. The equation for softmax is the following:

σ(𝑥
𝑖
) = 𝑒

𝑥
𝑖

𝑗=1

𝐾

∑ 𝑒
𝑥

𝑗

Where i is the ith node in the last layer and K is the number of distinct classes.
When this activation function is used samples are to be one hot encoded so an𝑦
accurate loss value can be calculated.

Unlike many other machine learning models, neural networks do not have a
closed form solution to find the optimal weights and biases (defined as (W, B) or
𝛉) such that the total loss is minimized. This is one of the major drawbacks of
deep learning as models must iteratively be trained which can be extremely time
consuming depending on the complexity of the training data and network
architecture.

The algorithm that is used to train a neural network is called gradient descent. Let
be the gradient of the loss function with respect to all parameters.∇

𝛉
𝐿(𝑦,𝑦)

Following this gradient would be going in the direction of higher loss relative to
the training samples. Going the opposite direction would reduce total training
error, tuning the parameters such that the predictions that are made are closer to 𝑦
, the target outputs. Typically the weights and biases are updated every n samples
where n is the batch size. To update a weight w:

1. Calculate the partial derivative: ∂𝐿
∂𝑤

2. 𝑤
𝑛𝑒𝑤

 = 𝑤
𝑜𝑙𝑑

 − γ · ∂𝐿
∂𝑤

Where is a constant called the learning rate.γ

There are a variety of loss functions that are used in different scenarios. A
common loss function for regression tasks is squared error calculated as

. Classification tasks instead use a loss function called cross𝐿(𝑦, 𝑦) = (𝑦 − 𝑦)
2

entropy. This function is defined as :

𝐿(𝑦, 𝑦) = −
𝑖=1

𝐾

∑ 𝑦
𝑖

· 𝑙𝑜𝑔(𝑦)

where i is the ith output node.

1.3 Recurrent Neural Networks

1141

While regular fully connected neural networks are effective at completing
non-temporal tasks, they struggle working with time related data or data where
previous outputs influence future outputs. This is where recurrent neural networks
(RNNs) are useful.

The RNN performs similarly to regular deep neural networks but has an
intermediate section called the hidden state which allows for previous predictions
to be used for new predictions. The hidden state encapsulates all relevant
information about the past outputs so an accurate prediction can be made relative
to time. The RNN architecture is shown below:

Figure 1.3.1: An RNN’s architecture where t represents the timestep.

Let where means the tth element that occurs𝑋 = {𝑥<1>, 𝑥<2>, 𝑥<3>,..., 𝑥<𝑇>} 𝑥<𝑡>

in a time-related sequence of data. The tth hidden state denoted as is𝑎<𝑡>

computed as follows:

𝑎<𝑡> = σ(𝑊
𝑎

· 𝑎<𝑡−1> + 𝑊
𝑥

· 𝑥<𝑡> + 𝑏
𝑎𝑥

)

Where is the weight vector associated with the hidden states and is the𝑊
𝑎

𝑊
𝑥

weight vector associated with the inputs. Then:

𝑦<𝑡> = σ(𝑊
𝑦

· 𝑎<𝑡> + 𝑏
𝑎𝑦

)

Notice that there is an optional output for every timestep t. Sometimes all the𝑦<𝑡>

outputs are used while other times only a select few or even the last are used. This
all depends on the task at hand. A task where an output is required at every

1142

timestep uses a many to many RNN. An example of one of these types of tasks is
predicting the next word of a sentence at every timestep of the input sentence.
Another type of task requires the many to one RNN where a sequence of time
related data is used to make a single prediction. An example of one of these tasks
is determining the sentiment of a sentence (also known as sentiment analysis in
the field of natural language processing).

In this project a more advanced RNN is used called a long-short term memory
network (LSTM). LSTMs can more effectively learn what information to keep
and what to forget, making them a more favorable choice than vanilla RNNs in
most situations.

1.4 Embeddings

Normally when the input data to a neural network is categorical it is one hot
encoded to emphasize the existence of different classes. The problem with one hot
encoding is that it can create massive sparse vectors that solely convey
information about the classification of the event. Embeddings project categorical
data points to a vector space such that spatial similarity is captured. Data points
that are alike will be projected to vectors that are close together geometrically. In
music terms, notes that are close together would most likely be projected to
similar vectors while notes that are far apart would be projected to distant vectors.

Embedding data points before passing them through an LSTM is a common
practice as it often reduces the dimension of the data and provides more
information. Embeddings were used in all the models that were created in this
project.

2. The Data
The quality and quantity of the data used is one the most influential factors of
how well a neural network performs. The best results come from a network that is
trained with a large amount of unbiased samples from the population of interest.
In addition the data must be encoded in a way that best exploits relationships that
must be learned (data engineering). In most scenarios as much data as possible
should be used. As a general rule of the thumb, the higher the complexity of the
training data, the more samples required to prevent overfitting from occurring.
Overfitting is a concept in machine learning that occurs when a model
“remembers” the training data instead of generalizing.

1143

Figure 2.0.1: The difference between overfitting and underfitting with a binary
classification task.

In cases of overfitting, the model will perform deceptively well on training data
while performing poorly on unseen data points. Over training a neural network
also causes overfitting.

Since neural networks are prone to overfitting it is essential to partition the
dataset into a training set and testing set. Most data should be reserved for the
training dataset but around 20% of the data can be used as the testing dataset.
Then the neural network is trained using the training data and evaluated on the
unseen test data to get an accurate idea on how well the model performs. The
models created in this project used a validation set which allowed the models to
be evaluated during training instead of after training as the testing set would be.

Data engineering is the process of taking raw data and manipulating it such that
the transformed data can be used in a machine learning model. The choices that
are made during this step will drastically change how a neural network performs.
Even though two forms of data contain the same amount of information, one of
the forms may expose important relationships more clearly. There are many
techniques that can be used during the data engineering stage but there is no
golden standard. Realistically the choices that are made come from a mixture of
intuition/trial and error/domain knowledge. The choices made in this project are
discussed in section 4.

Throughout this paper events will continuously be referenced and it is important
to define it for consistency purposes. An event as mentioned in this paper is a
piece of data that retains information about a musical action being performed
through time. An event is represented as a vector of length n where n is the
number of distinct pieces of information. The following is an event with 2 pieces
of information:

1144

𝑒𝑣𝑒𝑛𝑡 = [𝑛𝑜𝑡𝑒 𝑜𝑛, 𝑐4]

This would signal for middle c to be pressed down. Information can be added as
needed as well for example would add a piece of information [𝑛𝑜𝑡𝑒 𝑜𝑛, 𝑐4, 𝑚𝑓]
about the volume of the note. Ultimately the individual pieces of information in
each event are integer encoded to be compatible with embedding layers which are
used in all models in this project.

2.1 MIDI

MIDI (Musical Instrument Digital Interface) is the main type of raw data used in
this project. It is the most common digital representation of music and data was
found easily online. MIDI’s consist of messages which possess the parameters of
type, note, velocity, and delta time. Type can either be note_on or note_off to
signal pressing down and releasing notes respectively. Other types of messages
exist but they are not important to this project. Note is the midi representation of
the pitch that is to be played or released. Middle C or C4 would be encoded to 60.
Velocity, although not used in this project, is how loud the note is. Delta time is
the number of ticks (An arbitrary unit of time determined by meta) that pass after
the previous message is activated.

Figure 2.1.1: An example of MIDI encoded data.

2.2 Music21

This project used a library called music21 which had collections of music scores
parsed out in an organized way. The music21 scores were separated out by voice
(soprano, alto, tenor, and bass) and time measured out in traditional musical time
units (quarter notes, eighth notes etc). This structured form of data was easier to

1145

work with and the separation out by voices allowed for an interesting and
effective neural network architecture to be used.

3. General Approaches

Using the softmax activation function in the final layer of a neural network causes
the output to be a vector of probabilities that sum to 1. In a sense, the neural
network can learn to approximate a posterior distribution 𝛉). There are 2𝑝(𝑌| 𝑋,
general approaches that configured and used this posterior distribution to generate
music creatively.

3.1 Sequential Predictions

The first method used involved training a neural network to use previous events to
predict a future event. Generating new pieces using this approach is recursive and
is done by using previous predictions as input to additional predictions. Let n be
the number of previous events that the neural network will have access to when
making predictions. Pieces can either be initialized using n start tokens or picking
the first n events of a random Bach chorale. The piece before generation would
be:

[𝑒𝑣𝑒𝑛𝑡
1
, 𝑒𝑣𝑒𝑛𝑡

2
, ... , 𝑒𝑣𝑒𝑛𝑡

𝑛
]

Then for any t > n,

𝑒𝑣𝑒𝑛𝑡
𝑡
 = 𝑠𝑎𝑚𝑝𝑙𝑒(𝑝(𝑌| 𝑋, 𝛉))

Where X = [𝑒𝑣𝑒𝑛𝑡
𝑡−𝑛

, 𝑒𝑣𝑒𝑛𝑡
𝑡−(𝑛−1)

, ... , 𝑒𝑣𝑒𝑛𝑡
𝑡−1

]

and Y = {𝑒𝑣𝑒𝑛𝑡
1
, 𝑒𝑣𝑒𝑛𝑡

2
, ... , 𝑒𝑣𝑒𝑛𝑡

𝐾
}

Since new predictions use old predictions as input data, events must be generated
in order. That means must calculated before because the𝑒𝑣𝑒𝑛𝑡

𝑡−1
𝑒𝑣𝑒𝑛𝑡

𝑡
prediction for uses .𝑒𝑣𝑒𝑛𝑡

𝑡
𝑒𝑣𝑒𝑛𝑡

𝑡−1

Each piece is able to generate N - (n - 1) samples. Sample i would consist of:

(𝑥
𝑖
, 𝑦

𝑖
) = ([𝑒𝑣𝑒𝑛𝑡

𝑖
, 𝑒𝑣𝑒𝑛𝑡

𝑖+1
, ... , 𝑒𝑣𝑒𝑛𝑡

𝑖+𝑛
], 𝑒𝑣𝑒𝑛𝑡

𝑖+𝑛+1
)

1146

Figure 3.1.1: Visual representation of sequential predictions generation approach.

3.2 Resampling

The second method of generating music that was used is a process of resampling
from an existing or randomly initialized piece. The resampling process involves
selecting an event at random and re-predicting it with the context of n previous
events and n future notes. Let N be the number of events in an existing piece.
Then the full piece before the re-sampling process would be:

[𝑒𝑣𝑒𝑛𝑡
1
, 𝑒𝑣𝑒𝑛𝑡

2
, ... , 𝑒𝑣𝑒𝑛𝑡

𝑁
]

Then for any n < t < N - n,

𝑒𝑣𝑒𝑛𝑡
𝑡
 = 𝑠𝑎𝑚𝑝𝑙𝑒(𝑝(𝑌| 𝑋, 𝛉))

Where X = [𝑒𝑣𝑒𝑛𝑡
𝑡−𝑛

, 𝑒𝑣𝑒𝑛𝑡
𝑡−(𝑛−1)

, ... , 𝑒𝑣𝑒𝑛𝑡
𝑡+𝑛

] \ 𝑒𝑣𝑒𝑛𝑡
𝑡

and Y = {𝑒𝑣𝑒𝑛𝑡
1
, 𝑒𝑣𝑒𝑛𝑡

2
, ... , 𝑒𝑣𝑒𝑛𝑡

𝐾
}

1147

This process is described in Gaetan Hadjeres Deep Bach's research paper and is
called pseudo Gibbs sampling.

4. Data Engineering/Model Design Choices

Throughout this project there were many choices that had to be made when
parsing data and designing the models. It was discovered that most of these
choices make a massive impact in the validation accuracy/loss of a model and the
quality of its generated music.

4.1 Sequence Length

The first main choice that was made for all the models was selecting a sequence
length. The sequence length is how many events a model has access to while
making its prediction. A higher sequence length gives the model more context and
allows more global trends to be learned. A smaller sequence size restricts how
much context the neural network has and only allows for localized trends to be
learned but training time is reduced. For each of the models a “small” sequence
size was used due to the tendency for localized patterns to be present in Bach
chorales. There was not a universal sequence length that was used for all the
models because the training data differed in how much information was captured
in one event. For example the on-off network required a higher number of events
to capture the same amount of information relative to the durational net.

4.2 Transpositions/Converting To C

Another choice that was made was choosing to transpose samples to generate
more training data or convert all pieces to the constant key signature of C to
reduce the complexity of trends existing in the data.

Transposing was effective if done in a way such that new events were not
introduced into the sample space. Since the y vectors were one hot encoded with
each index representing an event (or part of an event), introducing new notes to
the sample space would increase the number of dimensions in the output. As the
number of options increases, the harder it is to make an acceptable choice.
Therefore each sample had a minimum and maximum number of half steps at
which it could be transposed by. Transposing the samples increased the number of
samples by a magnitude which had a positive effect on all models but
dramatically increased the amount of time it took to train a model. It was also

1148

necessary to partition the largest datasets and load each into memory one at a time
to prevent from overloading ram.

Converting pieces to the constant key signature of C was a challenge with midi
data because oftentimes the midis do not have key signature data. However the
music21 corpus of Bach Corpus did have key signature data for each chorale. As
a side project a neural network was trained to predict key signature based on a
vector of note proportions using the music21 data. This model performed well and
achieved an accuracy of ~90%. It was used to predict key signatures of the Bach
chorales that were in MIDI format which the On-Off and Durational networks
both used. Then all the midis were converted to the key signature of C. So far the
On-Off network was the only model that was trained using the pieces that were
transposed to C and the results are surprisingly good. The models train about 10
times quicker and reach loss/accuracy values that are almost as good as the
models trained with transpositions. It seems like this is a good option if losing a
point or 2 of accuracy is not a problem and speed is the main selling point.

4.3 Information That The Network Has Access To

The information that a model has access to in the training data/ how the
information is encoded was shown to make an impact into the resulting generated
music heavily. The main 2 pieces of information that all the models included in
some form were the notes being played and some sense of timing. The models
differ in how they encode this data as the On-Off network records time relative to
previous events while the Durational network records time by duration of a note.
In Deep Bach there is a constant amount of time between each event in the input
sequences. There is also additional information that is encoded into the events of
Deep Bach such as the key signature, subdivisions of a beat, and existence of
fermatas. Oftentimes, the more relevant information that a network has access to
the better it performs its task. That being said it is not always possible to find
additional information that is relevant to the task at hand and if it is, training time
will increase.

4.4 Hyper-Parameters

Tuning hyper-parameters for a neural network is a difficult and tedious task
especially when training one model takes a long time. The models trained in this
project were complex and used a large amount of data so training was a lengthy
process. For this reason hyper-parameter optimization was not a huge focal point.
The only form of hyper-parameter tuning was for each model type creating a
handful of models with varying levels of complexity. Surprisingly it was
discovered that selecting a small value for the embedding output dimension
created a bottle neck and decreased accuracy/increased loss a fair amount. For

1149

example with the transposition version of On-Off Network the validation accuracy
increased nearly 3% when increasing the embedding dimension from 15 to 75.

5. Models
There were 3 main types of models with varying designs that were trained until
validation loss stopped increasing. In this section, the architecture will be
explained then the model will be evaluated based on the following qualities:

1. Training time
2. Data complexity
3. Melody
4. Note agreeableness
5. Rhythm

5.1 Model 1: On-Off Network

The first model that was designed used the sequential predictions approach and
events consisted of a vector of length 1. The events used, played off the note on -
note off trend already existing in MIDI allowing for a convenient data parsing
process. There are 3 main types of events that can be classified as listed below.

1. [note_on_<pitch>]: Note with corresponding pitch to be pressed down
2. [note_off_<pitch>]: Note with corresponding pitch to be released
3. [rest_<time>]: Rest time amount of ticks

Since the events have 1 piece of information, the neural network will have 1 input
being a sequence of integer encoded events. The sequence of integers then goes
through an embedding layer which maps each integer to a vector. At this point
the sequence of vectors passes through an LSTM which extracts the temporal
relationships between events. The output is sent through a fully connected dense
layer activated with the softmax function to output a vector of probabilities. The
length of the output vector is equal to:

2 · |{𝑥
𝑖
: 𝑥

𝑖
 𝑖𝑠 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑛𝑜𝑡𝑒}| + |{𝑥

𝑖
: 𝑥

𝑖
 𝑖𝑠 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑡𝑖𝑚𝑒}|

1150

Figure 5.1.1: A diagram of the On-Off Network’s architecture.

Results

Training each On-Off Network model took about an hour

Figure 5.1.1: These plots compare validation loss and accuracy between the
transpose and convert to c models. As the model number increases so does the
complexity of the model with respect to its hyper-parameters.

1. Training time - C/A

1151

Training the transposition model took a long time while training the convert to c
models took far less time.

2. Melody - D
The melodies generated do resemble the Bach chorales to an extent, but they are
more chaotic and have no structure.

3. Note agreeableness - C
Most notes that are generated to go well together but there are definitely a handful
of predictions that are unnatural. Also sometimes notes are signaled to be pressed
but never released which results in muddiness.

4. Rhythm - A
Rhythm is decently modeled and sound close to the original Bach chorales.

5.2 Model 2: Durational Network

The second type of model that was designed aimed to transform the data from the
previous network into a more usable and direct form. The previous data captured
note on, note off, and rest occurrences while the duration network solely used
note ons and corresponding durations. An event consisted of 2 pieces of
information: the signal, and the duration. The signal could either be the note that
was to be pressed down or a “rest”. The duration was the amount of ticks that the
event would be activated for.

Events could be the following form:

1. [note_on_<pitch>, <duration>]: Note with corresponding pitch to be
pressed down for duration ticks

2. [rest, <duration>]: Signal to rest for duration ticks

This network is multi-input and multi-output since the events have two
components each. The input of a sample consists of two input arrays where one is
a sequence of the signals and the other is a sequence of the durations. All the
elements in the signal sequence and duration sequence are integer encoded to
allow for compatibility with embeddings. Both the sequences go through different
embedding blocks and the outputs are combined. Then the sequence of combined
embeddings go through an LSTM. The LSTM output is first sent through a fully
connected layer activated by softmax to represent the signal prediction. Then the
LSTM output is combined with the signal prediction probabilities and sent
through another fully connected layer activated with softmax to represent the
duration predictions. The duration prediction output uses the signal prediction
because the signal and duration are heavily dependent. Whether a specific note or

1152

rest predicted is chosen changes the range of acceptable predictions for the
duration.

Figure 5.2.1: Network design of the Duration Network

Results

Figure 5.2.1: These plots compare validation accuracy and loss between the
transpose and convert to c models.

1153

The model number once again corresponded with the dimension of the
embeddings and dimension of the LSTM. Increased complexity resulted in better
performance. Compared to the on-off network, the durational network has far
more validation loss (at best 1.55 compared to 0.75) but this is due to the multiple
outputs. The validation loss is the total loss between both the signal and duration
outputs so there is naturally more net error. There are two validation accuracy
metrics: one for the signal and one for the durations. The signal accuracy peaks at
68% while the duration peaks at 80% suggesting that the rhythm is a more
extractable trend than the note choice. Although it is difficult to compare the
accuracy metrics from a multi-output model to a single output model, based on
the metrics it seems as if the Durational network performs similarly or maybe
even worse than the On-Off network. But this is far from the truth as the music
generated from the Durational Network is noticeably improved.

1. Training time - B
Training the transposition model took far less time than the transposed on-off
network. Models on average took about 15 minutes to train completely.

2. Melody - C+
The melody is still chaotic and has no clear direction. It is easily distinguishable
between the actual Bach Chorales.

3. Note agreeableness - B
The majority of notes locally go well together. Note agreeableness is greatly
improved compared to the on-off network.

4. Rhythm - B+
Rhythm is slightly improved from the on-off network.

5.3 Model 3: Deep Bach

Deep Bach is a model designed and implemented by Gaetan Hadjeres. This model
consists of four neural networks - one for each voice (soprano, alto, tenor, bass)
and uses the resampling method to generate music. The data that is used comes
from the music21 library in python and an event consist of seven pieces of
information:

1. Soprano note: midi representation of note in soprano voice
2. Alto note: midi representation of note in alto voice
3. Tenor note: midi representation of note in tenor voice
4. Bass note: midi representation of note in bass voice
5. Subdivision: what quarter beat is in - can be 0,1,2,3
6. Key signature: key signature of piece that sample came from

1154

7. Fermata: 1 if fermata is present in, 0 otherwise

The overall process of music generation involves many iterations of a random
voice and note within the voice being selected to be resampled. The previous N
events, future N events, as well as current notes being played in the other voices
are used as input data. This context is used to predict the random note that was
selected to be resampled. The prediction comes from the model that was trained to
predict the voice of the note being resampled.

Each voice model is separated into four parts: left LSTM, center fully connected
layer, right LSTM, fully connected output. A voice model starts with 3 main types
of input: previous events, the current event, and future events. The previous
events form a sequence of the previous events and each individual component is
passed through a distinct embedding layer. The sequence of combined embedded
vectors then goes through the left LSTM. A similar process is done to the future
events, but as an additional step, the order of the events are reversed. The current
event input goes through the embeddings and the output is inputted into a fully
connected layer. The right LSTM, center fully connected, and left LSTM outputs
are concatenated and sent through one last fully connected layer which outputs the
note probabilities for the note being resampled.

1155

Figure 5.3.1: The network design of the Deep Bach

Results:

Compared to the 2 other models Deep Bach took an incredibly long time to train.
This is due to the high complexity of the data as one sample’s input consists of
two sequences of seven dimension vectors as well as one six dimensional vector
for the current event. Each voice had to be modeled which also added to the
training time heavily. With a sacrifice of training time however, came a model that
performed far better than the previous two networks. Each voice model was
highly specialized and all of them combined formed a highly effective model.
Only one complete model was trained due to the lengthy training process but the
metrics were extremely impressive.

Voice Model Min Loss Max Accuracy

1156

Soprano 0.171 0.954

Alto 0.221 0.932

Tenor 0.264 0.921

Bass 0.178 0.946

Table 5.3.2: The validation loss and accuracy values for each voice model.

Once again, it is difficult to compare models that have completely different
structures, but Deep Bach clearly performs the best on paper compared to the
Durational Network and On-Off Network. The generated music is also far better.

1. Training time - D
Training all the voice models took hours which makes hyper-tuning and
experimentation nearly impossible.

2. Melody - B+
The melody is much more controlled and tame compared to the other two
networks.

3. Note agreeableness - B+
Most notes go well together locally.

4. Rhythm - A
Rhythm closely mimics the Bach Chorales.

6. Conclusion

Based on the results of the three models trained in this project, it is clear that data
engineering, and model design choices heavily impact performance. The On-Off
Network conveniently took in data that had a structure directly derived from MIDI
and the resulting music was low quality. From here the data was manipulated such
that the note on-note off trend was eliminated. This network objectively
performed far better than the On-Off Network but it still struggled to generate
coherent melodies that wouldn’t spiral out in chaotic directions. This led to the
implementation of an already existing model called Deep Bach which separated
out the music by voice and used the resampling method to generate music. This
model, by far, most effectively learned the existing trends in the Bach Chorales
corpus and was able to generate the best music. This drastic difference in
outcomes among each of the models shows that data engineering and model
design choices hugely determine the success that any given neural network
reaches.

1157

Acknowledgements

Thank you to all my teachers who I have had throughout my time in college and
my honors thesis mentor Wanchunzi Yu.

References

Amidi, Afshine, and Shervine Amidi. "VIP Cheatsheet: Recurrent Neural
Networks." (2018).

Briot, Jean-Pierre, Gaëtan Hadjeres, and François-David Pachet. "Deep learning
techniques for music generation--a survey." arXiv preprint arXiv:1709.01620
(2017).

Chollet, Francois. Deep learning with Python. Simon and Schuster, 2017.

Hadjeres, Gaëtan, François Pachet, and Frank Nielsen. "Deepbach: a steerable
model for bach chorales generation." International Conference on Machine
Learning. PMLR, 2017.

Rothman, Denis. "Transformers for Natural Language Processing Build
Innovative Deep Neural Network Architectures for NLP with Python,
Pytorch, TensorFlow, BERT, RoBERTa, and More." (2021).

1158

