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Abstract
Given the importance of accurate team rankings in American college football (CFB) - due to heavy
title and playoff implications - strides have been made to improve evaluation metrics across sta-
tistical categories, going from basic averages (e.g. points scored per game) to metrics that adjust
for a team’s strength of schedule, but one aspect that hasn’t been emphasized is the complemen-
tary nature of American football. Despite the same team’s offensive and defensive units typically
consisting of separate player sets, that can’t be on the field at the same time, some aspects of your
team’s defensive (offensive) performance may affect the complementary side: turnovers forced by
your defense could lead to easier scoring chances for your offense, while your offense’s ability to
control the clock may help your defense. For 2009-2019 CFB seasons1, we incorporate natural
splines with group penalty approaches to identify the most consistently influential features of com-
plementary football in a data-driven way, conducting partially constrained optimization in order to
additionally guarantee the full adjustment for strength of schedule and homefield factor. We touch
on the issues arising due to reverse-causal nature of certain within-game dynamics, discussing sev-
eral potential remedies. Lastly, game outcome prediction performances are compared across several
ranking adjustment approaches for method validation purposes.

Key Words: group penalty, LASSO, natural splines, regularized estimation, reverse
causality, sports statistics

1. Introduction

American football, while requiring immense physical ability, is an example of an extremely
strategic sport. Requiring full mental engagement on every play from all 11 players your
team puts on the field, it underlines the importance of tactical preparation and accurate
evaluation of the opposing team in advance of the match-up. Besides that, in American
college football specifically, the ability to objectively evaluate team performance is pivotal
for the purposes of rankings, with the latter fully dictating the college teams that get into
the championship playoffs and high-profile bowl games, including all the financial benefits
to come with it. Historically, classical averages have been used to evaluate team’s perfor-
mance in a certain statistical category [1]. For example, American football team’s offensive
output from yardage standpoint is traditionally measured in total yards the team gains per
game; its tendency to turn the ball over to the opposing team is typically captured in their
average turnover count per contest; team’s pure scoring ability is ubiquitously described
by an average amount of points scored per game. While useful, such basic averages are
extremely flawed whenever trying to objectively evaluate and compare teams within the
setup of Football Bowl Subdivision (FBS) of American college football.

Football Bowl Subdivision (FBS), as of year 2019, consists of 131 participating college
football programs, split into 11 conferences. Each team is typically scheduled to play only
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12 opponents during the regular season, with most of the games taking place against the
teams from the same conference, hence leaving the ranking picture incomplete in terms of
relative strengths for teams across the entire FBS. Certain conferences could end up being
especially strong, or weak, during a particular season, leading to uneven quality of opposi-
tion which can’t be reflected in calculating each team’s basic per-game averages alone. That
gave rise to what’s now known as ”strength of schedule” adjustment, originating in [18] via
an offense-defense model where points scored by a team are assumed to be a function that
team’s offensive strength and opposing team’s defensive strength, therefore adjusting for
quality of the opponent. Similar logic was later used in [26] to model goals scored by a
soccer team. Lastly, given the importance of home-field advantage [12, 34], in addition to
adjusting for strength of scheduled opponents [18] also accounted for whether a team had
a home- or road-heavy schedule.

In this work, besides the strength of schedule and homefield adjustments, we wanted
to also incorporate the complementary nature of American football. Unlike most other
sports, in American football offense and defense are played by separate, in most cases non-
overlapping, units of players, that can’t be on the field at the same time. It might lead
to an assumption that performance of a team’s offense could be treated independently of
that same team’s defense. Nonetheless, historically it’s been shown that the two sides are
likely to complement each other, e.g. turnovers forced by your defense could lead to eas-
ier scoring chances for your offense, while your offense’s ability to control the clock may
help your defense. That concept has been termed ”complementary football”, and focus of
this work was on determining the most critical features of collegiate American football in
affecting the complementary side’s performance. Specifically, we utilized a variety of reg-
ularized estimation techniques that impose a penalty for the purposes of variable selection,
implementing partially constrained optimization with the goal of guaranteeing strength of
schedule and homefield adjustment. Somewhat related ideas were studied in [3, 21] but in
application to modelling the dependence between goals scored and allowed by a team in a
soccer match. To the best of our knowledge, there hasn’t been any involved research done
on complementary impacts an American football offense can have on its own defense, and
vice versa, after having adjusted for strength of schedule and homefield factor.

The remainder of the paper is structured as follows. Section 2 lays out the details
of data collection and cleaning, formulates all regularized estimation approaches for the
purpose of finding the most critical complementary football features in affecting certain
statistical categories. The results of feature selection, ensuing ranking adjustments, along
with their impact on predicting game outcomes, are presented in Section 3. Moreover, the
issue of endogeneity is brought up, resulting from reverse causal within-game dynamics
of a football game, and several partial solutions discussed, main one involving the use of
solely efficiency-based statistics. Section 4 contains concluding remarks and discussions
of future work.

2. Materials and methods

2.1 Data collection and cleaning

Game-by-game data for 2009-2019 FBS seasons was obtained via web scraping from
two primary sources: www.sports-reference.com/cfb/ and www.cfbstats.
com/. The former website provides detailed scoring and defensive play, and has webpage
format conducive to seamless scraping of analysis-ready data tables into R Statistical Soft-
ware [31] - primary tool used for statistical analysis in this work - via rvest package [36].
The latter website helped augment the data with more statistical measurements, although
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it required a more profound web scraping effort, including a setup of a Docker image [28]
with subsequent use of RSelenium package [16]. Certain defensive play statistics (e.g.
tackles, sacks, forced fumbles) were lacking for ”non-major” teams, meaning colleges not
in the FBS. Despite rare occurrence of such observations (only about 7%), we wanted to in-
corporate all relevant games into our analysis and, instead of removing them, we performed
data imputation [13] via linear regression. We regressed the missing statistics - e.g. sacks
- on the other statistical categories that were available for non-major teams (e.g. yards,
touchdowns, punts, etc), utilizing observations for all FBS teams in fitting this regression,
to later make predictions of that missing statistic for non-major teams.

Having obtained game-by-game data on teams’ performances in a multitude of statis-
tical categories, we converted it into a format where each observation describes the cumu-
lative performance throughout the game whenever one team’s offensive side (offense or
offensive special teams) - and, consequently, opponent’s defensive side (defense or defen-
sive special teams) - was on the field. E.g. for this team’s offense, it would include yards
gained, touchdowns scored, passes completed, field goals scored, etc, while for opponent’s
defense it would show total tackles, tackles for loss, sacks, quarterback hurries, etc. To clar-
ify, ”offensive special teams” imply the field goal kicking and kick/punt returning player
sets, while ”defensive special teams” represent players participating in field goal blocking
and kick/punt coverage. That data format results into two observations per each game, one
representing plays produced when first team’s offensive side (and second team’s defensive
side) was on the field, second - when second team’s offensive side (and first team’s defen-
sive side) was on the field. This implies potential within-game dependence introduced by
such pairs of observations, but after having calculated Intraclass Correlation Coefficients
[2] across the models considered in this paper, virtually none of those correlations ended
up being over 0.10 in magnitude, pointing to independence as a reasonable assumption for
our data.

2.2 Variable selection methodology outline

Below we introduce the modeling notation and main variable selection approaches to help
adjust team’s offensive (or defensive) quality for the strength of schedule, homefield factor,
and complementary nature of American football.

2.2.1 Notation

Assume we have a total of n teams in the league, and we are interested in a particular
statistical category y, be it yards (per game), turnovers, points, etc. Let yij denote the
performance of team i against team j in category y, ni - total number of opponents team
i has had through the season, i, j = 1, . . . , n. For example, if y = {total yards gained
per game}, then yij would correspond to the amount of yards team i gained when playing
against team j, and, by symmetry, the amount of yards team j allowed in the game against
team i. In case teams i and j had to face each other Lij times during the season, we add
another index l. Then, yijl corresponds to performance of team i in category x during its
lth meeting with team j, i, j = 1, . . . , n, l = 1, . . . , Lij .

Next, let hijl denote a homefield indicator for lth game between teams i and j, taking
on value 1 if team i is at home, 0 if the game site is neutral, −1 if team i is at home. Such
numerical encoding was intuitive (typically easier to play at home than at a neutral site,
and at a neutral site than on the road) and also got confirmed by running a dummy-variable
encoding scheme, having shown increases (in points, touchdowns scored, yards gained) for
home and decreases for road games compared to the neutral site baseline.
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To incorporate adjustment for strength of the schedule, we introduce concepts of offen-
sive (defensive) worth of the ”league-average opponent”, and offensive (defensive) margin
for a team. In regards to a particular statistical category y, one can define the league-average
opponent via two parameters - offensive and defensive worth. E.g. for points per game,
offensive (defensive) worth of the average opponent is the average points per game scored
(allowed) by all teams across all games that could have been played against one another
throughout the course of the season. Due to symmetry (team i scoring yij points against
team j is equivalent to team j allowing yij points to team i), both offensive and defensive
worth represent the same value for the league-average opponent, which we denote as µ.
Now, for each team i we can posit parameters capturing two aspects of its performance
within a statistical category - offensive margin αi and defensive margin βi. Offensive
(defensive) margin describes by how much a team would outperform the aforementioned
defensive (offensive) worth µ of the average opponent. The main assumption when adjust-
ing for strength of schedule is that performance of team i against team j in category y is
attributable to both the offensive margin αi of team i and defensive margin βj of team j.

Lastly, presuming that we considerC complementary football statistics, let’s use xc,jil, c =
1, . . . , C, to denote the value of cth statistic that’s complementary to the yijl, meaning that
xc,jil is obtained when the defense (complementary unit for the offense) of ith team and
offense (complementary unit for the defense) of jth team were on the field during their lth

game of the season between these two teams.

2.2.2 Natural cubic splines

To model potentially non-linear effects of complementary football features, as a well-
known method we utilized natural cubic splines [19], where one uses a mixture of piece-
wise cubic and linear polynomials, smoothly connected at a set of K knots placed across
the range of the explanatory variable. It results into each complementary statistic xc being
represented by a set of basis functions N1(xc), N2(xc), . . . , NK−1(xc). For more detail,
see [19], keeping in mind that the intercept basis function N(xc) = 1 for each individ-
ual complementary statistic xc in our case is omitted from the basis due to being folded
into the overall model’s intercept. We chose to use K = 5 knots placed at 0.00-, 0.25-,
0.50-, 0.75- and 1.00-quantiles, providing just enough flexibility to capture any clear non-
linearity, while decreasing chances of overfitting and low interpretability that come with
overly flexible fits. That results into each complementary statistic xc being represented by
four basis functions, with its partial effect on response calculated via a linear combination
of these functions.

2.2.3 Partially constrained group penalization

Natural splines approach leads to each complementary football feature being represented by
a group of several parameters, where inclusion of a feature into the model implies including
the entire said parameter group, while exclusion indicates setting that whole group of pa-
rameters to zero. Such setting warrants use of group penalization approaches [20, 35, 37].
As we also want to guarantee adjustment for homefield effect and strength of schedule,
certain parameters will be left unpenalized, resulting into the following general format of
partially constrained group penalization criteria:
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min
µ,δ,{αi}n1 ,{βj}n1
{γγγc}K−1

1 , c=1,...,C

n∑
i,j=1

Lij∑
l=1

(yijl−(µ+δhijl+αi+βj+
K−1∑
k=1

γ1,kNk(x1,jil)+· · ·+
K−1∑
k=1

γC,kNk(xC,jil)))
2+

λ

C∑
c=1

Pc(||γγγc||2), (1)

where γγγc = (γc,1, . . . , γc,K−1), capturing all the natural cubic spline coefficients for cth

complementary statistic; ||γγγc||2 =
√∑K−1

k=1 γ
2
c,k - the Eucledian (L2) norm; Pc(·) indicates

a specific group penalty function to be utilized for the coefficients of cth complementary
statistic; λ - tuning parameter responsible for strength of penalty (larger λ implies larger
penalty for high values of ||γγγc||2). Here, the penalty is imposed solely on coefficients
γγγ1, . . . , γγγC for complementary football statistics, with the goal of inferring the most critical
ones for statistical adjustment purposes. This partially constrained optimization criteria
guarantees inclusion of homefield effect (δ) and strength of schedule adjustment effects
(αi, βj , i, j = 1, . . . , n).

We considered an array of various group penalties, to subsequently identify the most
consistently selected features regardless of a particular penalty choice. First, we utilized a
classic group least absolute shrinkage and selection operator (group LASSO, [37]), Pc(||γγγc||2) =
||γγγc||2, which is a natural extension of regular LASSO [33] and selects variables in a
grouped manner. Due to applying the same strength of penalty (λ) to all coefficients, reg-
ular LASSO was shown to struggle with efficiency [14] and model selection [23]. Given
the shared nature of the penalty function, similar issues persist for group LASSO. In case
of regular LASSO, adaptive LASSO [39] method was proposed to address this issue via
introducing coefficient-specific weights, subsequently yielding consistent variable selec-
tion and estimators satisfying oracle property. The exact same intuition was carried out
in [35] to implement adaptive group LASSO. In our case, it leads to penalty function
Pc(||γγγc||2) = wc||γγγc||2, wc = 1/||γ̂γγLSc ||

γ
2 , where γ̂γγLSc denotes the least squares esti-

mate for the effect of cth complementary statistic resulting from optimizing criteria (1),
but with the penalty term (λ

∑C
c=1 Pc(||γγγc||2)) excluded. While adaptive LASSO poses

a two-stage approach, with estimation of weights {wc} preceding the actual penalization,
non-convex penalties present a single-stage alternative that achieves analogous bias reduc-
tion for large regression coefficients. We used two of the most popular non-convex penalties
- smoothly clipped absolute deviations (SCAD) [14] and minimax concave penalty (MCP)
[38] - which were originally defined for regular LASSO, but can be naturally extended to
group LASSO setting. For details on the exact functional form Pc(·) for those penalties
see [20]. Three aforementioned penalties - adaptive, SCAD, MCP - have an extra tuning
parameter (generally denoted as ”γ” in the original papers), that in each case we picked in a
data-driven way according to Bayesian Information Criterion (BIC) [29]. Another consid-
eration was to run elastic net [40] extension of optimization criteria (1) by adding a ridge
penalty λridge||(γγγ1, . . . , γγγC)||22, with the latter improving selection consistency whenever
groups of correlated relevant variables exist in the data. Instead, we decided to dispose
of collinearity by hand in advance via conducting variable pre-filtering based on domain
knowledge as opposed to automated procedures (see Section 3.1.1 for details).

To implement all of the aforementioned group LASSO penalties for optimization task
(1) we utilized grpreg package [6], along with 20-fold cross-validation (CV) [8] and BIC
[29] to select several candidate values for the tuning parameter λ. For CV, we opted to use
a λ value that achieved CV test error within one standard deviation of the minimal CV test
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error, while providing a sparser model (selecting less variables). Moreover, to reduce the
randomness effect of the 20-fold CV procedure, we ran it five times for each season, only
counting features that got selected at least four out of five times. We used BIC and sparse
CV λ-value - as opposed to alternatives such as Akaike Information Criterion (AIC), Mal-
low’s Cp, classic minimal CV error λ-value - because these ones imposed strongest penal-
ties on overly complicated models, leading to a small set of the most important features.
Most importantly, if a complementary football feature gets selected by these criteria, it is
virtually guaranteed to also be selected by any other ubiquitous criteria.

Each complementary statistic was evaluated on consistency of its selection across 2009-
2019 FBS seasons by each of four main variable selection methodologies outlined in Sec-
tion 2 (classic and adaptive group LASSO, group SCAD and MCP penalties). Specifically,
each method was given equal weight of 1

4 in the final consistency metric, while within any
individual method an equal weight of 1

2 was granted to each of the two considered tuning
parameter selection approaches (BIC and sparse CV λ-value).

Lastly, to calculate the final adjustment for each season, natural cubic splines were
fitted solely with the complementary football features that were consistently picked across
variable selection methods, while centering variables representing complementary statistics
around their respective means. That way, team i’s offensive worth µ + αi and defensive
worth µ+ βi will be projected not only onto league-average opponent and neutral site, but
also onto league-average complementary side.

2.2.4 Modeling assumptions given response variable type

We considered six statistics to be adjusted, breaking it down by the type of a statistic
(points, touchdowns, yards) and whether ”counter-plays” are being accounted for or not.
”Counter-plays” are plays that happen directly after a turnover, before (if at all) the com-
plementary side takes the field. For example, we could solely count touchdowns that your
offense scored, or we could also take the margin between touchdowns they scored and
touchdowns they allowed the opposing defense to score (via a returned interception or fum-
ble). Same for points and yards. The primary reason for creating these margin-statistics is
to eventually use them as features to forecast game outcomes, given that they account for
totality of the impact whenever a particular side took the field, rather than reflecting solely
their positive impact.

Provided the discrete, low-count, nature of the touchdowns category (while points and
yards are well-approximated by continuous distributions), we also considered Poisson and
negative binomial generalized linear models [9, 27] as alternatives to (Gaussian) linear
regression. Having fitted the candidate models, and conducted model residual diagnostics
via R package DHARMa [17], linear regression yielded a fit of either superior or similar
quality to that of the alternatives, hence was picked moving forward.

3. Results

This section is broken up into two main parts based on the complementary football feature
sets being considered. First part works with the entire set of statistical categories originally
obtained from www.sports-reference.com/cfb/ and www.cfbstats.com/.
Second part discusses using an efficiency-based feature set of solely per-play and per-
possession statistics as a way to partially address the issue of reverse causality permeating
the first set. Both feature sets can be found in Appendix A.
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3.1 Using entire feature set of complementary football statistics.

3.1.1 Collinearity.

Prioritizing interpretation and consistency of variable selection results, we disposed of
both perfect and near-perfect multicollinearity amongst our features. For perfect multi-
collinearity cases of one statistical category representing a sum of sub-categories (e.g.
passing attempts equals completions plus incompletions) we chose to go with the sub-
categories (e.g. retain completions and incompletions, while dropping passing attempts).
The only exceptions were the cases where breakdown into sub-categories was not useful
in terms of its effects on the complementary side. For example, as long as it is a turnover,
distinguishing between fumbles and interceptions is unnecessary, as the impact on the com-
plementary side won’t change based solely on that aspect. On the other hand, there is
a considerable difference between scoring turnovers (when defense instantly scores) and
non-scoring ones (complementary side gets the ball back in the latter case, doesn’t in the
former), or between pass completions and incompletions (the latter stops the game clock,
the former - doesn’t). For near-perfect multi-collinearity cases, predominantly represented
by strong pairwise correlations (over 0.90 in magnitude), we picked the more ubiquitously
used statistic to represent the highly correlated group. For example, points per game being
are strongly correlated with touchdowns per game (consistently over 0.95 each season),
and we pick points per game as a more all-encompassing and recognizable statistic. For the
feature set resulting from this step, which ended up containing roughly 50 variables, see
the Table 3 in Appendix A.

3.1.2 Selected complementary statistics, issue of reverse causality.

Among statistical categories that were consistently selected as affecting team’s complemen-
tary side in regards to points scored/allowed in a game, we got rushing attempts, pass in-
completions, non-scoring turnovers, number of attempted special teams returns of the ball,
and yards gained on those returns. Some of these are perfectly reasonable, e.g. non-scoring
turnovers provide the complementary side with the ball and a potentially easy scoring op-
portunity. For a statistic such as pass incompletions, while expectedly having a positive
impact on the points scored on complementary side (stopping the clock, hence leaving
more game time to complementary side), it rarely features in football discussions of the
most pivotal factors driving complementary scoring. Lastly, several statistical categories
simply don’t make as much sense, e.g. number of attempted returns or rushes, regardless
of yards gained on such plays.

Why do we observe such unintuitive strong effects for some of the statistics? Reverse
causality is the most likely answer. For example, while pass incompletions facilitate com-
plementary side scoring, they can also be a partial function of play selection by the team
that’s behind in the score. Such team would be forced to throw the ball more often in order
to gain yards quicker and catch up, while also stopping the clock in case of an unsuccessful
play (unlike an ineffective rushing attempt, an incompleted pass actually stops the clock),
trying to score while taking as little of the game clock as possible. Similarly for sacks, when
a team goes down in score, it’s play calling becomes predictably pass-heavy, and opposing
defense has more chances to sack the quarterback who holds on to the ball longer. For rush-
ing attempts, on the other hand, reverse logic applies in terms of play selection: the leading
team is likely to call more rushing plays to keep the game clock running, while the trailing
team is less likely to do so, creating a reverse-causal component in estimating the effect of
that complementary football feature. Lastly, the special teams return play data (attempts,
yards) suffers from the same issue, but has an even clearer time-sequential component to it:
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a return attempt tends to follow directly after someone having just scored on the comple-
mentary side. Despite lack of access to sequential play-by-play data, game-by-game data
allowed to calculate that 68% of attempted returns followed after a kickoff, which in its
turn is most likely to come after a score on the complementary side (60% chance it was a
7-point touchdown, 18% chance - a 3-point field goal). This clearly shows a reverse-causal
pattern of a special teams return following a complementary side score, not the other way
around.

The previous paragraph was not to say that reverse causality is the sole reason for all
the aforementioned unintuitive effects. For example, if your offense manages to accumu-
late rushing attempts, whether you team is leading in the score or not, you will indeed
be taking time away from your opponent’s offense, hence limiting their chances to score.
Reverse is true for pass incompletions by your quarterback, which might subsequently pro-
vide the opposing offense with more time remaining. Lastly, high return yardage, while
in most cases directly following a score by the opposing team, in of itself indicates that
your offensive special teams managed to gain a lot of yards in a short period of time, hence
potentially decreasing the time of possession for the offense, and leaving more game clock
for the complementary side. Combination of both aspects - direct and reverse causality -
likely amplifies the observed effects for the respective complementary statistics, as opposed
to evaluating its direct impact only.

How can we potentially alleviate these reverse-causal effects? There are several po-
tential solutions, the most obvious one being to obtain play-by-play data across all games.
With careful consideration and proper domain understanding, knowledge of play sequenc-
ing could provide us with further insight into the causal flow of within-game dynamics. At
the very least, it could make clear that return attempts by one’s offense typically directly
follow after the score by the opposing offense, avoiding the aforementioned reverse-causal
trap. Likewise, it could be very helpful to know at what game stage (who was leading,
how much time was left, etc) do most rushing attempts, sacks, pass incompletions occur, in
order to improve one’s chances of disentangling reverse-causal effects. Unfortunately, in
many cases one lacks the capability to access and process such fine-grained play-by-play
data, and therefore is left looking for more feasible alternatives.

Second approach could be adjusting for endogeneity, which broadly refers to cases of
an explanatory variable being correlated with an error term, hence violating one of the least
squares modeling assumptions and subsequently biasing the estimates. Reverse causality
is a special case of endogeneity, with explanatory variables suffering from it being called
”endogenous”, due to being determined by factors ”within the system” (e.g. within the
game situation), as opposed to ”exogenous”, which are fully defined by external factors
(e.g. weather). Issue of endogeneity has been discussed across several application domains
[10, 22, 32], with instrumental variables [5] proposed as one of the most ubiquitous reme-
dial approaches. A strong instrumental is an exogenous variable that strongly correlates
with the endogenous explanatory variable, while being uncorrelated with the error term.
Such variables have been notoriously difficult to find, resulting into cases where weak in-
struments only exacerbated estimation bias [4]. Moreover, in our specific case, virtually
every complementary football feature can be considered endogenous due to being a partial
byproduct of within-game dynamics, making it that much harder to find good exogenous
instrumental variables, which left us looking for other alternatives. That brought us to an
alternative of internal instrumental variable methods [11, 24, 25, 30], which create the in-
struments based solely on the variables already present in the data. One caveat is that such
approaches rely on the assumption of each endogenous predictor having a non-Gaussian
marginal distribution, which allows separating the exogenous part of its effect on the re-
sponse from the its endogenous part (the one correlating with the Gaussian-distributed error
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term). Unfortunately, for majority of variables considered in our data that assumption was
not satisfied, rendering internal instrumental variable method not applicable.

Lastly, with unavailability of play-by-play data and complexity of endogeneity adjust-
ment logistics, we decided to pursue an intuition-driven approach of focusing solely on
efficiency statistics. While such cumulative metrics as pass incompletions or rushing at-
tempts can be a strong function of strategic play selection within the context of the game,
efficiency-based statistics are more reflective of team’s effectiveness once a certain play was
called, rather than heavily depending on the overall game context. For example, if a team
pursues a pass-heavy strategy in an effort to catch up with the opponent, their cumulative
passing statistics - attempts, completions, incompletions, yards - will inevitably increase,
while their efficiency-based alternatives - completion percentage, yards per attempt - are
not guaranteed to change one way or the other. Hence, to reduce the chance of reverse
causality, we opt for using solely efficiency-based statistical categories, showing how suc-
cessful a team is once a certain play was called, as opposed to getting overly affected by
contextual strategic play choices.

3.2 Using only efficiency-based complementary football statistics

3.2.1 Efficiency-based features

Having disposed of collinearity issues and unnecessary statistical category breakdowns (see
Section 3.1.1 for analogous reasoning), in the row names of Figure 1 one can witness the
efficiency-based complementary football statistics that ended up being utilized for variable
selection. For each statistical category we had to decide between using a per-play or per-
possession efficiency. We selected to look at plays that terminate a possession (turnover,
points scored, punt, etc) on per-possession basis, making them into possession percentages.
For example, Off ST.NonScoring.TO.PossPct corresponds to the percentage of pos-
sessions ending in the team’s offensive side turning the ball over to their defensive side (as
opposed to turning it over for an instant score by the opposing defensive side, which is cap-
tured via Def ST.TD.PossPct). Punts and safeties got combined into the same category
because, despite safeties also resulting into points scored, the biggest advantage of either
play is the possession turning over to the other side, along with the similarity of the ball
getting punted across the field in both cases. Safety representing an extremely rare event,
while not being that different from punts in terms of the impact, was not getting picked
up by regression, being upstaged by more frequently occurring punts. Hence, we decided
to combine those into a more encompassing single category. For offensive scoring, we
decided against breaking it down scoring possessions into touchdowns and field goals, in
big part due to both outcomes resulting into same direct impact on the complementary side
(a kickoff). Nonetheless, percentage of scoring (and non-scoring) possessions was heavily
correlated with a more recognizable and informative metric of points per possession, hence
was dropped in favor of the latter. Lastly, punts and safeties were combined into a single
category because, despite safeties also resulting into two points scored (unlike zero points
in case of punts), the biggest advantage of either play is the possession turning over to the
other side, along with the similarity of the ball getting punted across the field in both cases.

On the other hand, virtually all other metrics were treated on per-play basis, including
yards or first downs gained, overall tackles, tackles for loss, forced fumbles. For yards
gained, there were several alternative considerations to simply looking at average yards per
play by the offense: breaking it down into yards per pass and rush attempt, or also including
special teams returns as plays into the overall per-play yardage. The former idea was tested
via cross-validation, having shown that total yards per play outperformed the pass/rush
yardage breakdown approach. The latter idea resulted into special teams return yardage
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overly affecting the per-play efficiency values, leading to this statistic getting selected every
single time, mostly due to the aforementioned reverse causality issue pertaining to return
play data. Meanwhile, some other statistics would result into percentages due to their
binary nature, e.g. pass completion, third down conversion, blocked kicks/punts. One
may notice that we didn’t include statistics such as field goal percentage, average yards
per punt or per attempted return, red zone conversion percentage, etc. That is due to the
issue of a low (sometimes zero) denominator, where efficiency is calculated over a really
small sample size within a game (e.g. only over two field goal attempts), and hence is not
necessarily representative of team’s true ability in that category, or the statistic’s impact on
the game. Moreover, in relatively frequent cases when sample size is zero, the value has to
be set to zero or left undefined, neither option being optimal.

Lastly, such statistical categories as ”sacks to pass attempts ratio” were defined in an
effort to adjust for effects of pass-heavy play calling being conducive to such defensive
plays as sacks or quarterback hurries. While a sack is not recorded as a passing attempt,
and ideally one needs the number of quarterback dropbacks to create a proper efficiency
metric, due to data limitations this was a reasonable alternative. In similar vein, percentage
of forced fumbles by defense was only counted for rushing attempts and pass completions
- the only plays where a fumble was possible.

3.2.2 Selected complementary statistics.

Figure 1 demonstrates the efficiency-based features of complementary football (rows) that
affected each respective statistical category to be adjusted (columns). As described in Sec-
tion 2.2.4, ”margin” accounts for counter-plays in a respective category (e.g. not only
counting touchdowns scored by the offense, but also subtracting any touchdowns that of-
fense yielded to opposing defense while on the field).

One can witness nonscoring turnover percentage forced by your defensive side (or com-
mitted by opponent’s offensive side, hence the ”Off ST ” prefix) as the sole statistic that
is consistently picked (≥ 74% of the time) in terms of impacting points and touchdowns
scored by your (complementary) offensive side. Meanwhile, for both total yardage re-
sponse categories, the only complementary football statistic picked with strong stability is
the total yards per play (≥ 94% of the time). To evaluate the nature of these consistently
selected complementary statistics, we fit the respective natural cubic spline regressions,
with Figure 2 depicting the effects of your defense’s forced non-scoring turnovers on your
offensive scoring (left), and of per-play yardage allowed by your defense (or gained by op-
ponent’s offense, hence the ”Off” prefix) on total yardage gained by your offense (right).
Each non-scoring turnover forced by your defense mostly leads to higher offensive scoring,
with majority of years exhibiting an approximately linear relationship. This is a reasonable
finding due to each such turnover giving your offense the ball with a high potential for a
good scoring opportunity. On the other hand, yards allowed per play by your defense ex-
hibit a clear non-linear impact on your offense’s ability to gain yards, which actually aligns
well with the intuition. It is reasonable to expect for defenses allowing either extremely
few (< 2.5) or very many (> 5) yards per play to take less of the game clock themselves,
albeit for polar opposite reasons. Good defenses (low per-play yardage allowed) would
quickly stop the opposing offense from scoring, and get the ball over to their complemen-
tary offense (typically via a punt), putting the latter in a position to gain yards of their own.
Bad defenses (high per-play yardage allowed) would let the opposing offense score points
quickly, which still leads to their complementary offense getting the ball. Meanwhile, if
your defense allows moderate per-play yardage (2.5 to 5), that typically makes for longer
offensive possessions by the opponent, taking away from your own offensive unit the game
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Figure 1: A weighted proportion of times a natural cubic spline representing a particular
complementary football statistic (rows) was selected across different group penalties and
tuning parameter selection approaches.

Figure 2: Non-linear effects of complementary statistics on respective response categories,
controlling for strength of schedule and homefield factor. Left: Effect of non-scoring
turnovers forced by your defense on points scored by your offense. Right: Effect of per-
play yardage allowed by your defense on yards gained by your offense. These particular
effect graphics were obtained for a Navy versus Army match-up at a neutral site, with the
choice of match-up would only affecting the intercepts, not the nature of the effect.
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Team Points Scored Non-Scoring Turnovers Forced
(Per Game) (Per Possession)

Oregon
Louisiana Tech

Texas A&M
Oklahoma State

Baylor
Clemson

Oklahoma
Alabama

West Virginia
Tennessee

Texas Tech
Georgia

....
South Florida

....
Washington

....

Value (Shift) Rank (Shift)
48.43 (⇓ 1.02) 1 (0)
47.12 (⇑ 0.19) 2 (0)
46.67 (⇑ 0.75) 3 (⇑ 1)
46.15 (⇑ 0.11) 4 (⇓ 1)
45.25 (⇑ 0.01) 5 (0)
41.02 (⇑ 0.08) 6 (0)
40.93 (⇑ 0.26) 7 (⇑ 1)
40.57 (⇓ 0.17) 8 (⇓ 1)
39.74 (⇓ 0.06) 9 (0)
39.69 (⇑ 0.58) 10 (⇑ 2)
39.44 (⇑ 1.22) 11 (⇑ 4)
38.98 (⇓ 0.19) 12 (⇓ 1)

... ...
21.99 (⇑ 1.16) 87 (⇑ 6)

... ...
23.72 (⇓ 1.02) 80 (⇓ 5)

... ...

Value Rank
0.19 4
0.13 52
0.08 114
0.12 75
0.12 61
0.12 67
0.09 111
0.17 13
0.10 97
0.09 108
0.06 124
0.16 23

... ...
0.06 123

... ...
0.19 5

... ...

Table 1: Final 2012 season rankings (and ranking shifts) in points scored per game by
team’s offense, adjusted for defense’s ability to turn the ball over to team’s offense.

time that could be used to gain more yards.
Note that, given the two-sided nature of game sports, the reasoning above could also be

observed from the opposing team’s viewpoint of their offensive side affecting their com-
plementary defensive side. Each gain on offense could be considered as a loss on defense
(e.g. a touchdown scored on offense is a touchdown allowed on defense) and vice versa
(e.g. a sack gained by the defense is a sack allowed by the offense). Hence, the effects of
complementary football could be interpreted in either direction, but for the sake of clarity
we chose to go in the direction of defense’s impact on the offense.

3.2.3 Ranking shifts in points scored per game.

To illustrate the mechanism behind adjustments for complementary football features, we
showcase its impact on a team’s offensive scoring ranking if one accounts for turnovers
forced by that team’s defense. Table 1 demonstrates the ranking shifts in points per game
scored by offense in 2012 season when, on top of adjusting for strength of schedule and
homefield factor, defense’s ability to turn the ball over to the offense is accounted for.
Oregon’s scoring, while still remaining the best in FBS, dipped strongly (by 1 point per
game) once projected onto an average complementary unit, vastly due to their defense being
Top-4 in forcing the non-scoring turnovers (same happened to the Washington offense,
complemented by a Top-5 defense). On the other hand, Texas A&M’s offense climbed into
Top-3 as it didn’t benefit from as opportunistic of a defense (ranked outside Top-100). The
biggest increases in projected points per game happened to Texas Tech and South Florida
offenses, both working aside some of the worst defenses in terms of forcing turnovers
(ranked 124th and 123rd, respectively, out of 125 teams). The intuition behind ranking
shifts in other years was identical.

If one is interested in the dynamics of defensive ranking shifts, see the Table 5 in Ap-
pendix B. Symmetrically, the strongest positive (negative) impacts happened to the defen-
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Binary Game Outcome Score Differential
Adjustment (Won/Lost, AUROC) (MAE)

None
SOS+HF

SOS+HF & Efficiency Cmpl.
SOS+HF & Any Cmpl.

Training Test
0.790 (0.017) 0.704 (0.028)
0.810 (0.017) 0.715 (0.026)
0.808 (0.016) 0.717 (0.033)
0.790 (0.019) 0.707 (0.026)

Training Test
14.76 (0.57) 17.39 (1.20)
13.78 (0.58) 17.12 (1.18)
13.83 (0.57) 17.13 (1.18)
14.58 (0.58) 17.53 (0.93)

Table 2: Predicting binary game outcomes (won/lost) via logistic regression, and numerical
scoring differentials via linear regression, across 2009-2019 seasons by using variously
adjusted points per game margin stats. Training metric obtained from fitting the model to
entire season, while test metric is obtained from using only first 9 weeks to predict the rest
of the season.

sive units accompanied by offensive sides unable (able) to consistently secure the ball.

3.2.4 Using adjusted statistics as features for game outcome prediction.

In addition to exploration of the most impactful complementary football features, we com-
pared predictive performances for statistics that were adjusted in various ways. Specifically,
we pitched the following four methods against one another: no adjustment (classical aver-
ages), adjusting solely for strength of schedule and homefield factor (SOS+HF), adjusting
also for efficiency-based complementary statistics (our main method), or for any comple-
mentary statistic. The last approach is included for sanity check purposes, to demonstrate
how reverse causality hurts predictive performance (see Section 3.1.2 for more details).

Table 2 shows the results of using logistic regression for binary game outcome pre-
diction (whether team won or lost), and classic linear regression for modeling the score
differential, respectively. As our five predictors we used offensive and defensive points-
per-game margins for both teams, along with the homefield indicator. As prediction quality
metrics, we used area under the curve (AUROC) [15] for binary game outcome, and mean
absolute error (MAE) for score differential. To produce training errors, we utilized the full
season data for each year in the 2009-2019 span. For test errors, we used the first 9 weeks
to train the model and subsequently yield predictions for the rest of the season (using other
cut-offs, e.g. 8, 10, 11 weeks, led to similar results).

Performances are mostly similar across the methods, with all the average metrics being
within less than two standard deviations of one another. Nonetheless, SOS+HF and our
method consistently show better average performances (higher AUROC, lower MAE val-
ues). When adjusting for any complementary football features, rather than only efficiency-
based ones, the performance was as suboptimal as the classical averages, confirming the
dangers of reverse causality in case of plainly using the game totals. Lastly, provided
that our method doesn’t exhibit a tangible improvement over basic SOS adjustment, it
shows the need for further study into reliability of effect estimation for complementary
features, which could still be impacted by reverse causality (albeit not as strongly as the
non-efficiency statistics).

We also carried out an analogous study using random forests [7] instead of linear and
logistic regression, and the hierarchy of predictive performance across adjustment methods
remained unchanged (see the Table 4 in Appendix C for details).
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4. Discussion and future work

We have applied several group penalization techniques in combination with natural cubic
splines to detect the most consistent features of American college football in terms of the
impact on the complementary side of your team (e.g. your offense affecting your defense,
or vice versa). Partially constrained optimization was implemented to also guarantee the
adjustment for strength of the opponent and homefield factor. Issue of reverse causality for
internal dynamics of a football game was discussed, along with several remedies, the most
feasible being to focus solely on the efficiency-based statistics (e.g. yards per play, points
per possession, etc). Benefits of using efficiency statistics were shown in evaluating game
outcome predictions based on various adjustments, where efficiency-based complementary
statistics outperformed arbitrary complementary statistics, with the latter suffering from
reverse causality more heavily.

Among the findings, we unsurprisingly showed the non-scoring turnovers (possession
percentage) forced by your defensive unit as the most consistent feature in positively im-
pacting the scoring by your offensive unit. This is reasonable due to such turnovers giving
the your offensive side an extra possession along with the potential for a good starting
field position. Hence, the ranking shifts in points or touchdowns scored per game that re-
sulted from this adjustment tended to penalize offensive units complemented by a defensive
side that forced many non-scoring turnovers (conversely, in points or touchdowns allowed,
most penalized were defensive units complemented by offensive sides that committed few
turnovers).

On the other hand, team’s defensive statistic mostly affecting the total yardage gained
by the offensive unit was the yards allowed per play. This effect was non-linear, with de-
fenses allowing a moderate per-play yardage (about 3 to 5) being less conducive to their
complementary offensive units gaining yards in that game, while defenses on more extreme
ends of the spectrum - allowing either tons (e.g. ≥ 6) or very few (e.g. ≤ 2.5) yards per play
- tend to give more opportunities for their offense to gain yards. As thoroughly discussed
in Section 3.2.2, this finding is intuitive due to the moderate yards per play generally indi-
cating the inability of your defense to stop the opposing offense from controlling the game
clock, hence preventing your offense from gaining yards by keeping it on the sidelines.

In future work, we plan on gaining access to the play-by-play data and incorporating
it into the analysis for the purpose of alleviating the reverse causality issue, resulting into
more accurate evaluation of complementary football feature effects. Although using solely
efficiency-based statistics leads to reasonable results, it constitutes only a partial solution
for scenarios of limited data access (e.g. game-by-game total statistics rather than play-by-
play) and could still suffer from endogeneity, which manifests in lack of improvement over
pure strength-of-schedule and homefield factor (SOS+HF) adjustment for game outcome
predictions. Lastly, given the fact that the assumptions of internal instrumental variable
approaches for endogeneity correction are not satisfied in case of this data, one may con-
sider trying to find strong exogenous instrumental variables, which has been a notoriously
difficult task.
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Appendix

Appendix A. Feature sets.

All features (not only efficiency-based).

After disposing of strong pairwise correlations (e.g. Off.P ts, Off.TD, Off w ST.TD
all have a correlation of 0.95+ with the more all-encompassing and ubiquitously used
Off w ST.P ts, etc), perfect multi-collinearities (e.g. instead of including passing at-
tempts, completions and incompletions, only retaining the individual breakdown stats of
completions and incompletions), unneeded statistic breakdowns (e.g. there is no difference
to the complementary side if it was an individual or assisted tackle, whether the turnover
was an interception or a fumble, etc), and all low-denominator efficiency statistics (field
goal, red zone, fourth down conversion percentages, punt and return yards per attempt,
etc), we were left with the features in Table 3. Note that the overall turnovers by offense
and offensive special teams are not included because they cause multi-collinearity with
non-scoring turnovers and defensive (plus defensive special teams) touchdowns, with that
breakdown warranted due to difference of the impact on the complementary side.
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Name Description
Off.Tot Total first downs
Off.Cmp Pass completions

Off.Incmp Pass incompletions
Off.Pct Pass completion percentage

Off.Pass.Y ds Total passing yards
Off.Pass.Avg Average yards per pass attempt
Off.Rush.Att Rush attempts
Off.Rush.Y ds Total rushing yards
Off.Rush.Avg Average yards per rush attempt

Off.FGM Field goals made
Off.FGF Field goals failed

Off.X3rdDown..Conversions Third downs converted
Off.X3rdDown..Failed Third downs failed

Off.X3rdDown..Conversion.. Third down conversion percentage
Off.X4thDown..Conversions Fourth downs converted

Off.X4thDown..Failed Fourth downs failed
Off.RedZone..TD Red zone touchdowns
Off.RedZone..FG Red zone field goals

Off.XPF Extra points failed
Off.ST.Punting.Punts Punts

Off.ST.Return.TD Return touchdown (punt or kickoff)
Off.ST.Return.Y ds Total return yards (punt or kickoff)
Off.ST.Return.Ret Total returns attempted (punt or kickoff)

Def.Sfty Safeties
Def.QB.Hurries Quarterback hurries

Def.KicksPunts.Blocked Kicks or punts blocked
Def.Tackles.Tot Total tackles
Def.Tackles.Loss Tackles for loss
Def.Tackles.Sk Sacks

Def.Int.PD Passes defended
Def.Fumbles.FF Fumbles forced
Off w ST.P ts Points scored

Off w ST.Tot.TO.NonScoring Non-scoring turnovers
Def w ST.TD Touchdowns scored (by defensive side )
Def w ST.Y ds Yards gained (by defensive side)

Table 3: Glossary of all original complementary football features. Off stands of ”offense-
only”, Def - ”defense-only”, Off.ST - ”offensive special teams”, Off w ST - ”offense
with offensive special teams”, Def w ST - ”defense with defensive special teams”.
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Name Description
Off.Pct Pass completion percentage

Off.Pass.Avg Average yards per pass attempt
Off.Rush.Avg Average yards per rush attempt
Off.Tot.Avg Average yards per play

Off.X1stDowns.Avg Average first downs gained per play
Off.X3rdDown..Conversion.. Third down conversion percentage
Def.KicksPunts.Blocked.Pct Percentage of kicks and punts blocked

Def.Tackles.Tot.Avg Tackles per play
Def.Tackles.Loss.Avg Tackles for loss per play

Def.QB.Hurries.To.Pass.Att.Ratio Ratio of QB hurries to pass attempts
Def.Tackles.Sk.To.Pass.Att.Ratio Ratio of sacks to pass attempts

Def.Int.PD.Avg Defended passes per pass attempt
Def.Fumbles.FF.Avg Forced fumbles per play

Off w ST.Punt.Sfty.PossPct Punt or safety
Off w ST.Tot.TO.NonScoring.PossPct Non-scoring turnovers

Off w ST.P ts.PerPos Points scored
Def w ST.TD.PossPct Touchdowns scored (by defensive side)

Table 4: Glossary of all efficiency-based complementary football features. Off stands of
”offense-only”, Def - ”defense-only”, Off.ST - ”offensive special teams”, Off w ST
- ”offense with offensive special teams”, Def w ST - ”defense with defensive special
teams”, PossPct - ”possession percentage”, Avg - per-play average, PerPos - ”per pos-
session”.

Efficiency-based features.

Just like in case of the original feature set, we dispose of strong pairwise correlations, per-
fect multi-collinearities, unneeded statistic breakdowns, and all low-denominator efficiency
statistics. As described in the main manuscript, for each statistical category we had to de-
cide on whether to use a per-play or per-possession efficiency. We’ve selected to look at
plays that terminate a possession, e.g. turnover, points scored, punt, on per-possession ba-
sis, making them into possession percentages. For example,Off w ST.NonScoring.TO.PossPct
corresponds to the percentage of possessions that ended in the offense turning the ball over
to their defense (as opposed to turning it over for an instant score by the opposing defense,
which is captured via Def ST.TD.PossPct). On the other hand, virtually all other met-
rics were treated on per-play basis, including yards or first downs gained, overall tackles,
tackles for loss, forced fumbles. Lastly, one can notice such statistical categories as ”sacks
to pass attempts ratio”, which were defined in an effort to adjust for effects of pass-heavy
play calling being conducive to such defensive plays as sacks or quarterback hurries. While
it’s understood that sack (or quarterback hurry) is not recorded as a passing attempt, and
ideally one would need the number of quarterback dropbacks to make it a proper efficiency
percentage, but due to data limitations this was a reasonable alternative. In similar vein,
percentage of forced fumbles by defense was only counted for rushing attempts and pass
completions, meaning the plays where fumble was possible. Table 4 demonstrates all the
efficiency-based features considered.

Appendix B. Ranking shifts in points allowed per game.

Table 5 shows the strongest positive (negative) impacts to the defensive units accompanied
by offensive sides unable (able) to consistently secure the ball. E.g. teams like Illinois,
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Team Points Allowed Non-Scoring Turnovers Committed
(Per Game) (Per Possession)

Alabama
Notre Dame

Florida
Michigan State

Stanford
Brigham Young
South Carolina

Florida State
Rutgers

Kansas State
....

Pittsburgh
....

Illinois
....

Value (Shift) Rank (Shift)
8.70 (⇑ 0.42) 1 (0)

11.85 (⇑ 0.42) 2 (⇑ 1)
11.88 (⇑ 0.80) 3 (⇓ 1)
14.03 (⇑ 0.46) 4 (⇑ 1)
14.05 (⇑ 0.88) 5 (⇓ 1)
14.26 (⇑ 0.10) 6 (0)
15.74 (⇓ 0.60) 7 (⇑ 1)
15.97 (⇓ 0.44) 8 (⇑ 1)
16.56 (⇓ 0.31) 9 (⇑ 2)
16.84 (⇑ 0.88) 10 (⇓ 3)

... ...
25.07 (⇑ 1.26) 51 (⇓ 8)

... ...
27.41 (⇓ 1.27) 64 (⇑ 5)

... ...

Value Rank
0.09 21
0.10 32
0.09 19
0.09 14
0.10 29
0.13 70
0.13 77
0.15 92
0.13 69
0.08 9

... ...
0.06 2

... ...
0.20 124

... ...

Table 5: Final 2012 season rankings (and ranking shifts) in points allowed per game by
team’s defense, adjusted for offense’s ability to take care of the ball and not turn it over to
opposing offense.

Florida State, South Carolina, all sporting below-average offensive units in terms of ball
security, had their defensive units experience value and ranking improvements. On the
other hand, teams like Pittsburgh, Kansas State, or any college in the Top-5, all exhibited
a deterioration in defensive values due to being accompanied by offensive units that took
care of the ball (all in the Top-35).

Appendix C. Random forest with adjusted statistics as features for game outcome
prediction.

Table 4 demonstrates similar hierarchy of predictive performances across the four meth-
ods considered, with SOS+HF and our method (adding efficiency-based complementary
statistics) showing marginally higher accuracy than the non-adjusted and the game total
complementary statistics method (SOS+HF & Any Cmpl.). Overall, random forest clearly
showed worse performance across most settings, besides a comparable test error perfor-
mance for score differential prediction.

Binary Game Outcome Score Differential
Adjustment (Won/Lost, AUROC) (MAE)

None
SOS+HF

SOS+HF & Efficiency Cmpl.
SOS+HF & Any Cmpl.

Training Test
0.755 (0.014) 0.687 (0.028)
0.771 (0.016) 0.705 (0.023)
0.772 (0.023) 0.710 (0.032)
0.763 (0.022) 0.699 (0.031)

Training Test
15.97 (0.57) 17.46 (1.02)
15.37 (0.59) 17.00 (1.00)
15.40 (0.56) 17.08 (1.01)
15.93 (0.54) 17.34 (0.76)

Table 6: Predicting binary game outcomes (won/lost) and numerical scoring differentials
via random forest, across 2009-2019 seasons by using variously adjusted points per game
margin stats. Training metric obtained from fitting the model to entire season, while test
metric is obtained from using only first 9 weeks to predict the rest of the season.
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