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Abstract 
In this study, we perform a novel analysis of the 2015 financial bubble in the Chinese 
stock market by calibrating the Log Periodic Power Law Singularity (LPPLS) model to 
two important Chinese stock indices, SSEC and SZSC, from early 2014 to June 2015. 
The back tests of the 2015 Chinese stock market bubbles indicate that the LPPLS model 
can readily detect the bubble behavior of the faster-than-exponential increase corrected 
by the accelerating logarithm-periodic oscillations in the 2015 Chinese Stock market. 
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1. Introduction 
 
In the past three decades, the Chinese economy has experienced a tremendous growth 
accompanied by a roller coaster ride of the Chinese stock markets, with three large 
bubbles bursting respectively from May 2005 to October 2007, from November 2008 to 
August 2009 and from mid-2014 to June 2015. In mainland China, the organized stock 
market consists of two stock exchanges: Shanghai stock exchange (SHSE) and Shenzhen 
stock exchange (SZSE), the third and the ninth largest stock exchanges in the world by 
market capitalization as of July 2021. The Shanghai stock exchange composite index 
(SSEC) and the Shenzhen stock exchange component index (SZSC) are the most 
important indices for A-shares in SHSE and SZSE. Due to the easy access to credit to 
invest in the stock markets, about 7% of China’s population has been active in stock 
market. From December 31, 2014 to June 12, 2015, the SSEC and SZSC indices soared 
by 60% and 122% in nearly five and a half months, respectively, while the Chinese 
overall economy had significantly cooled down during that time. The 2015 Chinese Stock 
Market bubble can be seen as a result of a strong leverage that the reality of economic 
activity is disconnected from the corporate earnings.  
 
On June 12, 2015, the Chinese Stock Market bubble started to crash. The SSEC index has 
suffered more than 43% drop from the peak on June 12, 2015 to the bottom on August 
26, 2015, and SZSC index has lost 45% over the same period. Figure 1 shows the time 
evolution of the price trajectories of the SSEC index and the SZSC index in the 2015 
Chinese Stock Market bubble. 
 
In this study, we perform a novel analysis of the 2015 financial bubble in the Chinese 
stock market by calibrating the Log Periodic Power Law Singularity (LPPLS) model to 
two important Chinese stock indices, SSEC and SZSC, from early 2014 to June 2015. 
Originating from the interface of financial economics, behavioral finance and statistical 
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physics, the LPPLS model defines a financial bubbles as a process of unsustainably 
super-exponential growth to achieve an infinite return in finite time, forcing a short-lived 
correction molded according to the symmetry of discrete scale invariance (Sornette, 
1998). The LPPLS model combines (i) the economic theory of rational expectation 
bubbles, (ii) behavioral finance on imitation and herding of traders, and (iii) the 
mathematical and statistical physics of bifurcations and phase transitions. The LPPLS 
model takes into account the faster-than-exponential growth in asset prices as well as the 
accelerating logarithm-periodic oscillations to detect the bubbles. So far, the LPPLS 
model has been used to detect bubbles and crashes in many financial markets, such as the 
stock markets (Demirer et al., 2019; Shu, 2019; Shu et al., 2021; Shu & Zhu, 2020a; Song 
et al., 2021; Sornette et al., 2015) and the cryptocurrency market (Shu & Zhu, 2020b; 
Wheatley et al., 2019).  
 
 

 
(a) SSEC index 

 

 
(b) SZSC index 

 
Figure 1: Evolution of the price trajectories of the SSEC index and the SZSC index 
before and after the 2015 Chinese stock market crash. 
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2. Methodology 

 
2.1 The Log-Periodic Power Law Singularity (LPPLS) Model 
The simple mathematical formula of the LPPLS can be described as (Filimonov & 
Sornette, 2013): 
 

LPPLS(𝑡) ≡ 𝐸[ln 𝑝(𝑡)] = 𝐴 + 𝐵(𝑡𝑐 − 𝑡)𝑚 + 𝐶1(𝑡𝑐 − 𝑡)𝑚 cos[𝜔 𝑙𝑛(𝑡𝑐 − 𝑡)]             

+𝐶2(𝑡𝑐 − 𝑡)𝑚 sin[𝜔 𝑙𝑛(𝑡𝑐 − 𝑡)]                                                     (1) 
 

where 𝑝(𝑡) is the observed asset price,  𝑡𝑐 is the critical time, which is the most probable 
time for a regime change. Here 𝑚 is the power parameter with a range between 0 and 1 to 
ensure that not only the price remains finite at the  𝑡𝑐 , but also the expected logarithmic 
price diverges at the  𝑡𝑐 . Furthermore, 𝐴, 𝐵,  𝐶1  and 𝐶2 are four linear parameters. Using the 
Ordinary Least Squares method, the seven parameters ( 𝑡𝑐 , 𝑚, 𝜔, 𝐴, 𝐵,  𝐶1, 𝐶2)  can be 
estimated by calibrating the LPPLS model. In this study, we used the covariance matrix 
adaptation evolution strategy (CMA-ES) (Hansen et al., 1995) to search the best 
estimation of the three nonlinear parameters (𝑡𝑐 , 𝑚, 𝜔 ) to minimize the sum of the 
squared residuals between the fitted LPPLS model and the observed price time series. 
The CMA-ES, rated among the most successful evolutionary algorithms for real-valued 
single-objective optimization, is typically applied to difficult nonlinear non-convex 
black-box optimization problems in continuous domain and search space dimensions 
between three and a hundred. 
 
In order to minimize the fitting problems and address the sloppiness of the model with 
respect to some of its parameters, we applied the following filter conditions: 
 

𝑚 ∈ [0.1,0.9], 𝜔 ∈ [6,13], 𝑡𝑐 ∈ [𝑡2, 𝑡2 + (𝑡2 − 𝑡1)/3] , 𝑚|𝐵|/(𝜔√𝐶1
2 + 𝐶2

2) ≥ 1, 

(𝜔/𝜋) 𝑙𝑛[ (𝑡𝑐 − 𝑡1)/(𝑡𝑐 − 𝑡2)] ≥ 2.5                                            (2) 
 
2.2 Stability of fits and probabilistic forecasts 
In order to test the sensitivity of variable fitting intervals [𝑡1, 𝑡2], we adopted the strategy 
of fixing one endpoint and varying the other one. If 𝑡2 is fixed, the time window shrinks 
in terms of 𝑡1  moving towards 𝑡2 with a step of  𝑑𝑡1 . If 𝑡1  is fixed, the time window 
expands in terms of  𝑡2 moving away from 𝑡1  with a step of  𝑑𝑡2 . Due to the rough 
nonlinear parameter landscape in the LPPLS model and the stochastic nature of solving 
multiple dimensional nonlinear optimization problems, a different set of fitting 
parameters is expected for each implementation of fit process. To investigate an optimal 
region of solution space, the fitting procedure is repeatedly implemented three times per 
window interval. Since the theoretical distribution of  𝑡c is unknown and the sample size 
may be insufficient for straightforward statistical inference, we used the bootstrap 
technique to resample the sample data and perform inference thereafter. Based on 
bootstrap resampling of many intervals, the probabilistic forecasts of the critical time 
 𝑡c can be obtained. 
 

3. Bubble Identification 
 
Sensitivity of parameter estimation for each major Chinese stock index, SSEC or SZSC, 
is tested by varying the size of the fit intervals. In the expanding windows, the start time 
𝑡1= November 3, 2014 is fixed with the end date 𝑡2 increasing from March 27, 2015 to 
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June 10, 2015 in steps of three trading days. In the shrinking windows, the end time 𝑡2= 
April 20, 2015 is fixed with the start time 𝑡1 increasing from January 2, 2014 to January 
30, 2015 in steps of three trading days. In the expanding and shrinking fitting procedures, 
18 times in expanding windows and 89 times in shrinking windows are fitted. Based on 
the LPPLS conditions, 16 (17) and 79 (75) results for SSEC (SZSC) are filtered in 
expanding and shrinking windows, respectively. 
 
Figure 2 (a) illustrates four selected fitting results of the expanding windows for SSEC, 
and (b) illustrates four chosen fitting examples of the shrinking windows for SSEC. The 
20%/80% and 5%/95% quantile range of values of the crash dates 𝑡c are from June 2, 
2015 to July 3, 2015 and from May 19, 2015 to July 9, 2015 for the expanding windows. 
In the figures, the dark shadow box indicates the 20%/80% quantile range of the values of 
the fitted crash date. For the shrinking windows, the 20%/80% and 5%/95% quantile 
range of values of the predicted crash dates  𝑡c  are from June 5, 2015 to July 13, 2015 and 
from May 22, 2015 to July 28, 2015, respectively. The observed market peak date for the 
SSEC is June 12, 2015, which lies in the quantile ranges of the predicted crash dates 
 𝑡c  fitted based on data before the actual stock market crash. 
 
Figure 3 shows the daily trajectory of the logarithmic SZSC index and the sample fits 
using the LPPLS formula in the expanding (a) and shrinking (b) windows, respectively. 
The 20%/80% and 5%/95% quantile range of values of the crash dates  𝑡c  are from June 
9, 2015 to June 24, 2015 and from May 27, 2015 to July 30, 2015 for the expanding 
windows. For the shrinking windows, the 20%/80% and 5%/95% quantile range of values 
of the fitted crash dates 𝑡c  are from June 5, 2015 to July 16, 2015 and from May 27, 2015 
to July 27, 2015, respectively. We see that it is feasible to predict the crash date  𝑡c  in the 
stock market, in advance.  
 

   
(a) Examples of fitting to the expanding windows with the 𝑡1 fixed at November 3, 2014 

and varied 𝑡2 for SSEC. The four fitting examples are corresponding to 𝑡2= 10 June 2015, 
2 June 2015, 25 May 2015, and 1 April 2015. 
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(b) Examples of fitting to the shrinking windows with the 𝑡2 fixed at April 20, 2015 and 

varied 𝑡2 for SSEC. The four fitting examples are corresponding to 𝑡1= 12 December 
2014, 10 October 2015, 14 April 2014, and 2 January 2014. 

 
Figure 2: Daily trajectory of the logarithmic SSEC (a and b) index and the fits using the 
LPPLS formula. The dark shadow box indicates the 20%/80% quantile range of the fitted 
crash date. 
 

 
(a) Examples of fitting to the expanding windows with the 𝑡1 fixed at November 3, 2014 

and varied 𝑡2 for SZSC. The four fitting examples are corresponding to 𝑡2= 10 June 2015, 
2 June 2015, 25 May 2015, and 1 April 2015. 
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(b) Examples of fitting to the shrinking windows with the 𝑡2 fixed at April 20, 2015 and 

varied 𝑡2 for SZSC. The four fitting examples are corresponding to 𝑡1= 11 December 
2014, 9 October 2015, 11 April 2014, and 9 January 2014. 

 
Figure 3: Daily trajectory of the logarithmic SZSC (a and b) index and the fits using the 
LPPLS formula. The dark shadow box indicates the 20%/80% quantile range of the fitted 
crash date. 
 

4. Conclusions 
 
In this study, the back tests indicate that the LPPLS model can well identify the bubble 
behavior of the faster-than-exponential increase corrected by the accelerating logarithm-
periodic oscillations in the 2015 Chinese Stock market using both the SSEC and SZSC 
indices. While the post-mortem analysis of the 2015 Chinese stock market bubble is 
investigated in this study, the more important goal is to identify the bubbles and predict 
the critical time in advance of the demise of the bubble. According to our analysis, the 
LPPLS model may foretell the actual critical day two months before the actual bubble 
crash.  
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