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Abstract 
Artificial intelligence (AI) is increasingly being incorporated into medical devices in 
efforts to provide results used alone or with other information to help assess a 
subject’s present or future state of health. Increased computing power, greater 
availability of data, and the availability of deep learning and other AI methods have 
opened many opportunities for developing AI-enabled medical devices with increased 
capabilities. Performance validation of AI-enabled medical devices is essential in order to 
assess safety and efficacy. We focus on statistical methods to assess the combination of 
two or more AI diagnostic devices in order to improve diagnostic accuracy – e.g., 
sensitivity, specificity, positive and negative predictive value, diagnostic likelihood ratio.   
After providing a brief discussion of AI machine learning, including convolutional neural 
networks with application to diagnostic medical imaging, we present some basic 
probabilistic considerations and statistical techniques regarding combination of two 
binary-output AI-enabled devices in order to produce combined outputs with improved 
performance.  We also review common methods for calculating a confidence interval on 
an accuracy proportion, e.g., sensitivity. Our goal is to provide information to non-
statistician device developers and device users for their consideration of ways to increase 
clinical decision accuracy.    
 
Key Words:  Medical Devices, Endpoints, Machine Learning, Combination Rule, 
Convolutional Neural Network, Diagnostic Test Accuracy 
 
 

1. Introduction 
 
Adaptive computational (i.e. computerized “machine learning”) models, if incorporated 
into medical devices, offer great potential to improve patient outcomes in many areas of 
healthcare.  Although a variety of adaptive computational techniques have existed for 
many decades, further refinement of neural networks such as multi-layered convolutional 
neural networks, increased computational power, and greater amounts of data, now allow 
such models to be considered by some measures to be as good as humans for certain tasks 
[1,2,3].   
 
The United States Food and Drug Administration (FDA) is seeing a dramatic increase in 
interest from both medical device developers and healthcare providers in pursuing 
adaptive machine learning methods for more capable medical devices.  Among the most 
advanced and powerful machine learning techniques is the neural network model, which 
uses adaptive weighting of computer-modeled “neurons” to produce functions that map 
input to a desired output. One important application of neural networks is mapping data 
into separate output classes.  (See Figure 1.)  One may consider the neurons in these 
models to be “networked” via their weighted connections to other neurons, in a way that  
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have similarities to how axons and dendrites of biological neurons connect to other 
biological neurons.  Although the detailed ways of how computer neural networks (that 
generally use integrated circuit [IC] chips) learn and operate can be substantially different 
from the way biological neural networks (e.g. the human brain), both computer neural 
networks and the human brain include neuron units that adapt (i.e. learn) in order to 
produce a desired result.  Other “non-neural network” machine learning techniques also 
involve parameters that are adjusted/learned.  For these techniques however, the 
adaptable parameters were generally not called “neurons”.  While some may use the 
terms “artificial intelligence”, “AI”, and “machine learning” interchangeably, others take 
great care when deciding which term to use, since for example, not all adaptive models 
use neural network “artificial intelligence” architectures [4,5].   
 
Deep learning is a type of machine learning based on artificial neural networks, in which 
multiple layers of processing are used to extract progressively higher level features from 
data. The increase in efforts to incorporate deep learning into imaging devices is one 
important area of interest for many involved with medical device use and development.  
One important and powerful example is the convolutional neural network (CNN or 
“ConvNet”), a type of a deep learning architecture that is being incorporated into medical 
imagers, including computed tomography (CT) imagers, magnetic resonance (MR) 
imagers, ultrasound imagers, retinal imagers, and devices to analyze skin lesions, the 
latter for example, to classify skin lesions as cancerous or non-cancerous  The latter is 
also an example where devices have been designed so that either a licensed healthcare 
provider or a layperson can take an image of skin lesion, and then send the image to an 
“AI server” in the computer server cloud which then provides its skin condition 
classification.  In addition to image analysis, AI-enabled devices can be used to analyze 
signals in the time domain, for example in electrocardiograms (ECG), 
electroencephalograms (EEG), lung sounds, etc.  Speech recognition is another example 
where AI can be used to analyze time-domain signals.  While one may consider speech 
analysis to be very different than ECG, EEG, lung sounds, etc., often many of the basic 
concepts involved can be similar with regard to producing AI models of these time-
domain signals. 
 
Binary output (or “dichotomous”) decisions – e.g.., positive test result/decision to take a 
clinical action or negative test result/decision to not take a clinical action – are a routine 
part of clinical practice. More generally, classification is not a new problem in statistics.  
A variety of approaches for classification are available [6], including linear discriminant 
analysis [7], regression trees, artificial neural networks [8], [9] and nearest neighbor 
techniques.  While AI-enabled devices can be used to classify outputs into more than just 
two categories (i.e. binary output classification), given the importance of binary test 
results used by healthcare, this article focuses mainly on statistical validation 
considerations for binary-output AI-enabled devices. 
 
We focus on statistical measures for combining AI-enabled devices, with the goal of 
appropriate combinations in order to produce results that increase measures of diagnostic 
accuracy such as sensitivity, specificity, positive predictive value (PPV), negative 
predictive values (NPV), positive- and negative-likelihood rations, and area under the 
ROC curve.  We believe that this focus with regard to combining separate AI-enabled 
devices is important at least for the following reasons: While many AI-enabled device 
developers may focus on methods to produce a single AI-enabled device that uses 
multiple data types as input (e.g., a device with both imaging and time-domain inputs), 
there are situations where such a single device is not the optimal choice or is not available 
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to the decision maker.  While our examples involve combination of neural network 
device outputs, many of the statistical concepts discussed in this article can also be used 
for combining outputs from devices other than AI-enabled devices.      
 
 
1.1 Neural Networks 
 
A gentle introduction to neural networks that includes R programming code is Chapter 8 
in [12], which is freely available at http:/www.comp-approach.com. Here, we present a 
brief overview on neural networks that is hoped to provide helpful information to those 
new to the subject. To point out an important theoretical concept on the power of 
artificial neural networks, we encourage the reader to gain some familiarity with the 
“universal approximation theorem” [20-22].   
 
Neural networks are algorithms that utilize weighted “neural connections” of “neurons” 
to map input datapoints to desired output datapoints.  For many computer neural network 
models, one may consider a neuron as an element which takes a weighted sum of its 
inputs and uses this weighted sum as input to a mathematical function, such as a sigmoid 
function, hyperbolic tangent function, step function, piecewise linear function (eg. Relu 
function), etc.  The output of this neuron can then serve as an input into the next layer of 
neurons, and so on.  In a fully-connected neural network, the outputs of each and every 
neuron serve as inputs to each and every neuron of the next layer.  In some cases, this 
may work sufficiently, while in other cases, all of the connections are not present in the 
initial architecture by design, or are eliminated during the process of adjusting the model 
parameters (e.g. pruning of connections).  Neurons in a neural network also often include 
weighted “bias” inputs to neurons that do not have inputs from other neurons.  A bias 
input provides a constant input to its respective neuron.  The numbers of layers, the 
numbers of neurons in the layers, the type of output functions that the neurons use, etc. 
all can vary for the particular task.  In binary-output AI models, a single output layer 
neuron is often used, consisting of a weighted sum of neuronal outputs from the previous 
layer, which we refer to as an “index”, which is then inputted to a sigmoid function.  In 
our discussion, we consider models where a threshold value can be applied to the index 
values that are produced when the trained model is presented with input samples.  The 
threshold serves as a separation point to determine whether the index value produced will 
be considered a positive or negative test output.  In our discussion, the threshold value 
can be varied with the goal of producing the best desired output characteristics.      
 
There are a variety of techniques used to adjust (i.e. “train”) the parameters (e.g. weights) 
in order  to map the input to the desired output.  We refer the reader to the literature for a 
detailed discussion on this subject, and only briefly mention a “supervised learning” 
approach.  For simplicity, one may wish to consider supervised learning as adjusting the 
parameters by first using a training data set with known inputs and known outputs.  This 
input data is fed initially into an untrained network (e.g. with random initial weights), 
which first likely does not produce the desired output.  The difference (i.e. error) in the 
actual output and the desired output is a function (i.e. error function) involving the 
neuronal weights and the non-linear functions in the various layers of the network. The 
variables are then adjusted with the goal of reducing the error to a minimum, or to find 
minima or maxima of other functions in order optimize the desired results.  Again, there 
are many specific methods, and we refer the reader to the literature. The adjustment of 
the model’s variable parameters typically takes numerous iterations, or epochs, of 
adjustment to the weights.  While cloud servers or optimized hardware can be used by  
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deep-learning device developers, even some commonly-available laptop computers have 
sufficient computational speed to train some useful deep learning neural network 
classifiers.  After training, the network is tested with a test set to validate the device’s 
model and accuracy.  
 
A convolutional neural network (CNN or “ConvNet” – See Figure 1) is a type of neural 
network (typically a “deep learning” multiple layer neural network model) that contains 
“convolutional filters”.  We refer the reader to the internet and literature with many 
sources of detailed information regarding CNNs.  However, for a basic example you may 
wish to consider the following example explanation of at least some CNN components:  
An input layer convolutional filter typically multiplies individual pixel (or “voxel”) 
values of a small area of the image by the filter’s weights. The results of the individual 
multiplications are summed and then fed into a mathematical  function (e.g. Relu 
function) in order to produce a value (typically a voxel element) in the next neural 
network layer.  The convolutional filter is then moved to another location on the image, 
where the filter weights are again multiplied by the pixel values of the new local area on 
the image, and again summed and fed into the output function to produce another voxel 
element value.  This continues until the image is scanned.  The new layer of voxels is 
called a “feature map” layer.  It is not unusual to have many convolutional filters which 
in turn produce many feature-map layers.  There can be other operations involved, 
including taking averages and medians of area of feature maps, moving (i.e. “rastering”) 
the convolutional filters by steps greater than one along the input image or feature maps), 
etc. (4, 23).  At some layer in the CNN, often the feature maps are “unwound” 
(“flattened”) into a single layer which may then be connected to successive connected 
layers with neuron weights, etc.  Finally, for binary output CNN devices, the output layer 
are typically fed as a linear combination (again which we refer to as an “index”) and 
often into a single sigmoid function, which is thresholded to produce a binary output.  
During training, images are presented to the network, so that the weights can be adjusted 
(i.e. learn) to minimize the error function, or to find minima or maxima of other functions 
(which are functions of the network’s convolution filter weights, neuron output function 
[e.g. sigmoid, Relu, etc.], etc.) with a goal of optimizing production of correct binary 
outputs (e.g. “0” for a negative disease condition and “1” for a positive disease 
condition).  After training the network is tested with a test set to validate the device’s 
accuracy. 
 
Figure 1: Example of a Convolutional Neural Network (CNN, ConvNet) 
 
 
 
 
 
 
 
 
 
 
 
1.2 Performance Measures for Diagnostic Devices with Binary Output 
 
When a binary-output device needs to be assessed for its accuracy, a common practice is 
for the device to be tested in a prospective study on samples or subjects that have been 
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“ground truthed” using a “gold standard”, or reference method to be either positive or 
negative for the health condition of interest.  The device is tested with the reference 
positive and negative samples to determine the fractions (percentages) of each that the 
device determines correctly.  The analyses are often characterized with a table that is 
similar to the one shown in Table 1.  
 
Table 1: 2 x 2 Confusion Matrix for Performance of a Diagnostic Test   
 

 True Conditions  
Reference Positive Reference Negative Row Totals 

 
Test 

Results 

Positive 
Test Result 

TP FP TP + FP 

Negative 
Test Result 

FN TN FN + FP 

 Column 
Totals 

TP + FN FP + TN  

 
 
Reference standard  samples tested by the device generate test results assigned to one of 
the four cells labeled True Positive (TP), False Positive (FP), True Negative (TN), and 
False Negative (FN) in Table 1.   The device’s sensitivity and specificity estimates are as 
follows:  
Sensitivity = [TP / (TP + FN)] x 100% 
Specificity = [TN / (FP + TN)] x 100% 
Test Accuracy or Overall Agreement = [(TP + TN)/(TP + FN + FP + TN) x 100% 
Positive predictive value (PPV) = [TP / (TP + FP)] x 100% 
Negative predictive value (NPV) = [TN / (FN + TN)] x 100% 
 
These point estimates are usually cited as fractions or percentages.  Confidence intervals 
for these performance measures can be derived from the test results and are essential for 
quantifying estimation uncertainty.  Given the variety of statistical methods, 
distributional characteristics, and study designs that may be involved, we later describe 
some common methods for obtaining confidence interval for these measures.  
 
The sensitivity of a device is the probability that it returns a positive test results on a 
subject with the health condition (i.e. as determined by the reference). Specificity of the 
device is the probability that it returns a negative test result on a subject without the 
health condition.  In a clinical study, the sample estimate of sensitivity is the proportion 
of subjects with the condition who test positive.  In probability notation, P (T = 1 | D = 1) 
is the population parameter for the estimated sensitivity where T = test condition {1 = if 
positive, 0 = otherwise}, and D = Disease condition {D = 1 if disease present, 0 
otherwise}.  Similarly, specificity is a measure of the probability of a testing device to 
return a negative test result when the device has been given a sample that has been 
confirmed to be negative.  In probability notation, P (T = 0 | D = 0) is the population 
parameter for the estimated specificity. 
 
The positive predictive value (PPV) is a measure of the post-test probability of the 
condition being present, given that a positive test result was returned by the device.  In 
probability notation this is P (D = 1 | T = 1).   Similarly, the negative predictive value 
(NPV) is a measure of the post- test probability of the condition not being present, given 
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that a negative test result was returned by the device. In probability notation, this is P (D 
= 0 | T = 0).  We note that with PPV, NPV, and accuracy, it is essential that prevalence, 
the a priori probability of the condition, be included.  In Figure 2 we show examples of 
how prevalence can affect PPV, NPV, and accuracy below with the same sensitivity and 
specificity. 
 
    
Figure 2: Examples of Prevalence Affecting PPV, NPV and Accuracy 
 

 
 
Another important pair of measures are the diagnostic likelihood ratios. The positive 
likelihood ratio (PLR) is defined by Sensitivity divided by (1 – Specificity), and negative 
likelihood ratio (NLR) is defined by (1 – Sensitivity) divided by Specificity of a test. By 
Bayes theorem, PLR confers the relative change in the odds of disease given a positive 
result compared with the pre-test odds p / (1 – p), where p = prevalence of the disease. 
Thus, a PLR of 10 means that the odds of disease are 10 times greater for subjects who 
test positive compared to the odds in  the population (i.e.. the pre-test odds). Likewise, 
NLR confers the relative change in the odds of disease given a negative result compared 
with the pre-test odds p / (1 – p), where p = prevalence of disease.  Thus, an NLR of 0.1 
means the odds of disease are 10 times less for subjects who test negative than the odds 
in the  population.  
 
 

2. Combining Devices 
 
2.1 Considerations Regarding Correlation of Neural Network Output Layers  
 
While continuing refinement of AI devices has led to increased accuracy, many AI 
devices still are substantially less than 100% sensitive and 100% specific.  To improve 
performance, AI device developers may wish to consider using data from multiple data 
modalities for input into one AI device.  For example, a device developer may have a 
camera to take images of the skin lesions, and also a non-imaging infrared spectral 
analyzer which gathers infrared spectra for some sample points on lesions.  In addition, 
the developer has training data set for positive and negative skin cancer lesions with 
images and spectra for each sample.  The developer devises and trains an AI-enabled 
device that can use both the images and spectra for the input to a single deep learning 
neural network with a binary output (positive or negative for skin cancer).  However, 
there are situations where the data is at physically separate locations, and the device may 
not have access to both sets of data.  For this situation with a single device with two 
modalities for inputs (e.g. image and spectroscopy), it still may be possible to train a 
single neural network for situations where data is missing, and that such a network can 
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still perform with only one data modality.  Further, one may argue that such a large single 
device with potentially more interconnected neurons may achieve better performance 
than the combination of two separate neural networks.  Thus one might conclude that 
considering combination of separate devices is not particularly worthwhile.  However, as 
a matter of reliability, there is still is the potential situation where one single device (e.g., 
one physical device that has two data modalities for input) is unable to operate (e.g.,  
power failure, device malfunction, device is damaged, etc.) or provide a useful result 
(e.g., due to missing input data) . With two separate neural networks however, if only one 
device goes into a failure mode, the other device can still provide its standalone 
classification output.  Further, there are healthcare providers/device users who will only 
have separate devices, and there are developers who only will develop devices for one 
modality.  Indeed too, developers may only focus in one technology area, for example in 
image analysis, and only develop their devices to classify images, while other developers 
may also be experts in another modality, for example with infrared spectral analysis.  So 
not only can users (who find themselves with separate devices) and their patients 
potentially benefit from increased classification accuracy from an analysis of combining 
outputs from separate devices, but device developers may also find their devices in higher 
demand from the combined increased performance.      
 
We note here that our discussion focuses on the situation for improved combined 
performance where both devices are always available to report their results. Otherwise, 
when only one device is present with the strategies we will discuss, the sensitivity and 
specificity is that for one single device. We leave it to the reader to consider other 
strategies such as serial strategy where the second device’s output may or may not be 
requested, pending the output of the first device. One may also wish to consider such a 
serial strategy along with the second device’s reliability, for example if the second device 
is available less than 100% of the time to provide a result after being requested to do so. 
Again, at the present we leave analysis of such strategies for the reader to consider.  
  
Figure 3: Examples of conditionally uncorrelated, conditionally positively-correlated, and 
conditionally negatively-correlated index values. The index values are inputs to the 
devices’ binary output function (e.g. sigmoid function).  
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Figure 3 shows two separate neural network devices.  As an example, device 1 uses infrared 
spectra of skin lesions as input, and it is trained with the goal to produce an output of 1 
when the spectra presented is from a skin lesion that is positive for skin cancer, and to 
produce an output of 0 when the spectra presented is from a skin lesion that is negative for 
skin cancer.  Device 2 uses images of skin lesions as input, and is trained with the goal to 
also produce an output of 1 when the image is from a skin lesion that is positive for skin 
cancer and to produce an output of 0 when the image is from a skin lesion that is negative 
for skin cancer.   
 
 
2.1 Performance Metrics for Combining Devices/Tests  
 
When evaluating performance of two devices, we consider it essential to know the 
strategy being utilized for the system, e.g.  parallel or series.  In a parallel strategy, a 
positive result from either device 1or device 2 is considered a positive combined result.  
This may also be referred to as a “believe the positive” strategy.  Also with the parallel 
strategy, both devices must return a negative for the combined result to be considered 
negative.  Two tests are said to be in series when both tests need to be positive in order 
for the combined result to be considered positive.  With this latter serial strategy, only 
one of the two devices needs to return a negative result for the combined result to be 
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considered negative.  Thus, this series strategy may also be referred to as a “believe the 
negative” serial strategy. 
 
Above we have introduced the basic performance measures derived from the confusion 
matrix.  The confusion matrix for a binary output device is a two-by-two table (See Table 
1 above.) that contains four outcomes.  Sensitivity and specificity are derived from the 
confusion matrix.  Receiver operating characteristic (ROC) curves  can be generated from 
this 2 x 2 confusion matrix from binary output devices by varying the output threshold.  
That is, the dividing point on the index scale that divides positive outputs from negative 
outputs.  When the true positives and true negatives are weighted by prevalence, other 
important measure such as positive predictive value (PPV), negative predictive value 
(NPV), and accuracy are also derived from the 2 x 2 confusion matrix.  Estimates for the 
overall sensitivity (sometimes called “net sensitivity”) and overall specificity (sometimes 
called “net specificity”) for the two tests in combination can be obtained using 
probability and statistical methods.  
 
2.1.1. “Series” Strategy Combination of Device Outputs for Sensitivity  
As mentioned above, sensitivity is an estimate of the ability of the device to correctly 
produce a positive result when a positive sample confirmed by a gold standard method 
has been given to the device.  The sensitivity of applying tests A and B in series is 
represented by the Table 2. Algebraically, combined sensitivity for A and B in series 
equals sensitivity of A times sensitivity of B. In probability notation, this is Pa( T = 1 | D 
= 1) x Pb( T = 1 | D = 1) where subscript a indicates device A and subscript b indicates  
device B. 
 
Table 2: Data Matrix for Systems in Series 

Device A Device B Test Result 
Positive Positive Positive 
Positive Negative Negative 
Negative Positive Negative 
Negative Negative Negative 

 
 
2.1.2. Parallel Combination of Device Outputs for Sensitivity 
 
If, instead, tests A and B are applied in parallel, so that a positive result on either test 
causes the overall result is to be classified as positive, then the combined sensitivity for 
the combination is sensitivity of A + sensitivity of B – sensitivity of A x sensitivity of B, 
assuming the two tests are conditionally independent (uncorrelated) among subjects with 
the health condition. In probability notation, this is Pa(T = 1 | D = 1) + Pb( T = 1 | D = 1) 
- Pa( T = 1 | D = 1) x Pb( T = 1 | D = 1).  Conditional independence may be plausible if 
tests A and B are based on different technologies and different biological input 
modalities, for example, combining lung sound spectral signals, respiration rate, oxygen 
saturation, skin temperatures, and previous lung x-ray scans, to screen for a respiratory 
condition. 
 
Table 3: Data Matrix for Parallel Systems 

Device A Device B Test Result 
Positive Positive Positive 
Positive Negative Positive 
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Negative Positive Positive 
Negative Negative Negative 

 
 
2.1.3 Correct classification of non-cases – combining specificities:  
 
Specificity evaluates the ability to identify non-cases.  If A and B are applied in parallel, 
then only the non-cases that are correctly classified by both tests will be considered a 
negative result in the combined classification.  
 
In order to have a correct classification of non-cases with two tests read in parallel, both 
tests must be negative.  So, the overall probability of correct classification of non-cases 
(the overall specificity) from applying tests A and B is in parallel is Specificity of A x 
Specificity of B. In probability notation, this is Pa( T = 0 | D = 0) x Pb( T = 0 | D  = 0).   
 
If instead tests A and B are applied in series, only  one correct negative  result from  
either test is needed for the overall result to be classified as negative.  Thus, the 
specificity of the combination is represented algebraically by Specificity of A + 
Specificity of B – (Specificity of A x Specificity of B).  In terms of probability, this is 
Pa(T = 0 | D = 0) + Pb(T = 0 | D = 0) – Pa(T = 0 | D = 0) x Pb(T = 0 | D = 0), assuming 
the tests are conditionally independent among subjects without the health condition.   
 
Below is a table that provides combined sensitivities and combined specificities for 
different thresholds for two example devices.  From the examples in Table 4, one  can 
observe  that a desired  combined sensitivity and combined specificity can depend not 
only on the specific thresholds, but also on the particular strategy.  
 
Table 4: Combining Deep Learning Outputs – Changing Thresholds 

Threshol
d 

Device 1 
  

Device 2 
  

Parallel Strategy 
  

Serial Strategy 
  

  Sens Spec Sens Spec Combine
d Sens 

Combine
d Spec 

Combine
d Sens 

Combine
d Spec 

1 0.90 0.80 0.90 0.80 0.99 0.64 0.81 0.96 
2 0.90 0.55 0.90 0.60 0.99 0.33 0.81 0.82 
3 0.70 0.85 0.70 0.95 0.91 0.81 0.49 0.99 
4 0.95 0.60 0.95 0.55 0.9975 0.33 0.90 0.82 

 
 
However, when combining devices using convolutional neural networks and determining 
their combined performance measures, there are three possibilities; the two systems could 
be (1) conditionally uncorrelated (independent) (2) conditionally correlated, and (3) 
conditionally negatively-correlated. In each of these possibilities, the performance 
metrics may be computed differently than the traditional methods. The first of the 
possibilities has been presented above, the latter two will be presented elsewhere.   
 
 
2.1.1 Confidence Intervals Procedures for Net Performance Measures  
A binomial proportion confidence interval is a confidence interval for the probability of 
success calculated from the outcome of a series of Bernoulli trials. In other words, a 
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binomial proportion confidence interval is an interval estimate of a success probability p 
when only the number of experiments n and the number of successes x’s are known.  
 
There are several formulae for a binomial confidence interval, but all of them rely on the 
assumption of a binomial distribution. In general, a binomial distribution applies when an 
experiment is repeated a fixed number of times, each trial of the experiment has two 
possible outcomes (success and failure), the probability of success is the same for each 
trial, and the trials are statistically independent. To calculate this confidence interval, a 
variety of large sample approximations and exact methods are commonly used, all with 
their own trade-offs in accuracy and computational intensity.  
 
A commonly used formula for a binomial confidence interval relies on approximating the 
distribution of error about a binomially-distributed observation, �̂�𝑝, with a normal 
distribution. This approximation is based on the central limit theorem and is unreliable 
when the sample size is small or the success probability is close to 0 or 1. Using the 
normal approximation, the success probability (i.e. combined sensitivity) is estimated as 

�̂�𝑝 ± 𝑧𝑧� 𝑝𝑝�(1− 𝑝𝑝�)
𝑛𝑛

. This normal approximation interval is sometimes even called the Wald’s 

interval.  Although easy to compute the Wald interval for a binomial proportion can have 
surprisingly poor coverage compared with the nominal confidence level even in 
moderately sized samples [13].  
 
The Wilson score interval [11] is an improvement over the normal approximation interval 
in that the actual coverage probability is closer to the nominal value. The success 

probability p is estimated as 
𝑝𝑝�+ 𝑧𝑧

2

2𝑛𝑛

1+𝑧𝑧
2
𝑛𝑛

± 𝑧𝑧

1+ 𝑧𝑧
2
𝑛𝑛

� 𝑝𝑝�(1− 𝑝𝑝�)
𝑛𝑛

+  𝑧𝑧
2

4𝑛𝑛2
.   This interval has good 

properties even for a small number of trials and/or extreme probability.  
 
The Clopper-Pearson interval is a very common  method for calculating binomial 
confidence intervals. This is often called an ‘exact’ method because it is based on the 
cumulative probabilities of the binomial distribution (i.e. exactly the correct distribution 
rather than an approximation). Because of a relationship between the binomial 
distribution and the beta distribution, the Clopper-Pearson interval is sometimes 
presented in an alternate format that uses quantiles from the beta distribution. 
𝐵𝐵 �𝛼𝛼

2
; 𝑥𝑥,𝑛𝑛 − 𝑥𝑥 + 1� <  𝜃𝜃 < 𝐵𝐵(1 − 𝛼𝛼

2
; 𝑥𝑥 + 1,𝑛𝑛 − 𝑥𝑥) where x is the number of successes, 

n is the number of trials, and B(p, v, w) is the pth quantile from a Beta distribution with 
shape parameters v and w. The Clopper-Pearson interval is an exact interval since it is 
based directly on the binomial distribution rather any approximation to the binomial 
distribution. This interval never has less than the nominal coverage for any population 
proportion, but that means that it is usually conservative. For example, the true coverage 
rate of a 95% Clopper-Pearson interval may be well above 95%, depending on n and θ. 
Thus, the interval may be wider than it needs to be to achieve 95% confidence.  
 
Suppose, in a sample of 114 diseased patients, net sensitivity is 98.25% (112/114). Then 
the Clopper-Pearson interval for this estimate is (93.8%, 99.8%) and the Wilson’s score 
interval is (93.8%, 99.5%). Below the table shows the variety of confidence intervals for 
estimates for net sensitivity. Similar approach can also be used to compute confidence 
interval for net specificities.  
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For positive and negative likelihood ratios, the Wald confidence interval method is 
described in [14].  A score method is described in [15].  
 
Table 5: Confidence Interval Procedures for Net Sensitivity Estimates 

Combined 
Sensitivity 
Estimate 

95% Wald’s 
Confidence Interval 

95% Clopper-
Pearson 
Confidence Interval 

95% Wilson’s 
Score Interval 

4.00% (5/114) (0.63%, 8.15%) (1.44%, 9.94%) (1.89%, 9.86%) 
21.93% (25/114) (14.33%, 29.53%) (14.72%, 30.65%) (15.32%, 30.37%) 
39.47% (45/114) (30.50%, 48.45%) (30.45%, 49.06%) (30.98%, 48.65%) 
57.02% (65/114) (47.93%, 66.11%) (47.41%, 66.25%) (47.85%, 65.73%) 
74.56% (85/114) (66.57%, 82.56%) (65.55%, 82.25%) (65.86%, 81.66%) 
92.11% (105/114) (87.16%, 97.06%) (85.54%, 96.33%) (85.67%, 96.79%) 

 
 
3.0 Concluding Remarks  
 
There are some quantitative tests with two cut-offs/thresholds instead of a single threshold 
based on the clinical context where the need was to have a high rule-in and rule-out claim. 
However, these thresholds need to be fixed prior to clinical validation studies to evaluate 
performance of the test in a clinical study. It should be noted that this also applies when 
combining two tests/devices since combining the data prior to cut-off may or may not result 
in same distributional assumption as with one test. 
 
We have focused on combining two tests in parallel or serially that are assumed to be 
conditionally uncorrelated.  Conditional independence might be plausible if the two tests 
are based on different technologies, concepts, and inputs. For example, to diagnose 
presence or absence or prostate cancer, the assumption that a prostate specific antigen test 
is conditionally independent of a digital rectal exam by a physician is plausible. 
However, regardless of plausibility, the condition independence assumption needs to be 
evaluated for adequacy in any given study.  The conditional independence assumption 
could be exploited in serial combinations of tests to obtain confidence intervals on 
combined sensitivity and combined specificity, but was not explored.  
 
In a prospective study of diagnostic test accuracy, sample estimates PPV and NPV are 
unbiased, assuming that the study is well-conducted.  However, for health conditions of 
low prevalence, many if not most diagnostic accuracy studies are retrospective so that the 
study can be enriched with subjects having the condition. In retrospective studies, PPV 
and NPV are distorted because prevalence is much higher in the study than in the 
population intended for the test. For retrospective enriched studies, an external estimate 
of prevalence can be combined with study estimates of sensitivity and specificity to 
obtain valid estimates of PPV and NPV via Bayes Theorem.  Alternatively, study 
estimates of positive and negative likelihood ratios are unbiased in retrospective enriched 
studies and, as mentioned, confer the relative change in the odds of having the condition 
given the test result compared with the pre-test odds.  
 
We have considered believe-the-positive (BTP) and believe-the-negative (BTN) 
combinations of tests in parallel or serially, with a focus on AI-enabled tests.  BTP and 
BTN combinations are special cases of logic rules for combining two or more test results 
[16] – [19]. For example, Wolf et al [19] considers ordinal logic regression. 
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