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Abstract 
Gold-standard dementia ascertainment, involving neuropsychological testing, clinical 
exams, and diagnosis adjudication by a panel of clinicians, is resource-intensive and 
infeasible in large population-representative studies, presenting a barrier to understanding 
population-level burden and determinants of dementia. Algorithmic dementia 
classification methods are an alternative, but lack key measures used for clinical 
dementia ascertainment (e.g., detailed neuropsychological assessments). The first step to 
strengthening algorithmic dementia classification in large cohorts is developing 
frameworks that can make use of these important measures. We developed a Bayesian 
latent class mixture modeling framework for algorithmic dementia classification that 
incorporates neuropsychological measures and sociodemographic, health, and health 
behavior information.  
 
Methods were demonstrated and validated using detailed neuropsychological measures 
from the Aging, Demographics, and Memory Study (ADAMS, n = 520), a substudy of 
the US Health and Retirement Study that included detailed neuropsychological 
assessments and clinical dementia adjudication (unimpaired n=211, cognitive impairment 
due to other conditions (other) n=86, mild cognitive impairment n = 65, dementia 
n=158). Utilizing a portion of the ADAMS data as a training sample (n=364), Bayesian 
methods were used to fit latent class mixture models and generate synthetic datasets with 
subgroups distinguished based on impairment characteristics, a process that overlaps with 
what has been termed “algorithmic dementia classification” in the epidemiologic and 
aging literature. The remaining hold-out portion of the ADAMS data (n=156) was used to 
evaluate the model’s external validity. 
 
We generated one thousand synthetic version of ADAMS training and hold-out samples. 
Data quality checks showed that synthetic samples reproduced characteristics of the 
ADAMS cohort (e.g., similar covariate distributions between synthetic datasets and 
observed data). Algorithmic dementia classification within the ADAMS training sample 
yielded 95% credible intervals that captured the observed count in all ADAMS 
impairment classes (unimpaired, other, MCI, dementia) with the mean count for the 
dementia class possessing the largest discrepancy compared with ADAMS observed 
counts (25 individuals out of 364 in the sample). Algorithmic dementia classification in 
the ADAMS hold-out sample yielded 95% credible intervals that captured the observed 
count in all ADAMS impairment classes with the largest mean-count discrepancy being 
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five individuals in the MCI class (out of 156 in the sample). Thus, our model for 
algorithmic dementia classification was highly concordant with ADAMS clinical 
diagnoses. This work demonstrates opportunities for improving algorithmic dementia 
classification in large cohorts where clinical diagnoses are unavailable.  
 
Key Words: Bayesian models, latent class mixture models, algorithmic dementia 
classification, HRS, ADAMS, HCAP 
 
 

1. Introduction 
 
Dementia is characterized by cognitive impairment severe enough to impact functional 
ability; it is heterogenous in presentation, making clinical diagnosis challenging 
(Alzheimer’s Association, 2021). Accepted gold-standard dementia diagnosis involves 
hours of neuropsychological testing, a clinical exam, informant interview, medical 
history, and consensus diagnosis by an expert panel (Langa et al., 2005; Mayeux et al., 
2011; McKhann et al., 2011). This time- and resource- intensive procedure is infeasible 
in population-based surveys, which are of considerable public health interest to develop 
dementia prevention strategies and reduce disparities in incidence and treatment across 
subgroups. Algorithmic dementia classification methods have been developed to predict 
individuals’ probability of dementia in these large studies (Gross et al., 2017; Kasper et 
al., 2013; Prina et al., 2019), but the lack of available data on neuropsychological testing 
in population-based surveys has been a persistent limitation of existing dementia 
classification strategies (Gianattasio et al., 2019). The aim of the present work is to 
develop an algorithmic dementia classification framework incorporating additional 
predictors known to be important in gold-standard dementia diagnosis, specifically 
detailed neuropsychological measures that are available in a substudy of a population-
based survey.  
 
The Health and Retirement Study (HRS) is a large, ongoing (1992-present) population-
representative study in which a variety of algorithmic dementia classification methods 
have been used to predict participants’ probability of dementia (Gianattasio et al., 2019). 
HRS collects measures associated with aging and thus, has extensive information 
available on sociodemographic characteristics, lifestyle and health variables, and general 
cognitive assessments (Sonnega et al., 2014). Though HRS does not have detailed 
neuropsychological assessments available for all participants, the Aging, Demographics, 
and Memory Study (ADAMS [2001-2009]) (Langa et al., 2005) and the Harmonized 
Cognitive Assessment Protocol (HCAP [2016-present]) (Weir et al., 2016) collected 
neuropsychological test data for a subset of HRS participants. In this present paper, we 
develop methods that lay the groundwork for translating information from detailed 
neuropsychological assessments available in studies like ADAMS or HCAP to 
population-representative surveys like HRS to strengthen algorithmic dementia 
classification in population-representative samples. 
 

2. Methods 
 
2.1 Data Example: Aging, Demographics, and Memory Study (ADAMS)  
Methods in the present paper were validated using ADAMS, a substudy of HRS that 
included detailed neuropsychological assessments and clinical dementia adjudication 
(Heeringa et al., 2009). There are four waves of ADAMS data (A-D) spanning the years 
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2001-2009. ADAMS was a stratified random sample of n=856 HRS participants aged 70 
or older with strata determined by performance on HRS general cognitive assessments in 
2001 (cognitively normal, borderline impaired, low functioning). All ADAMS 
participants received a clinical impairment diagnosis, and participants were followed 
until death or dementia diagnosis.  
 
Wave A ADAMS data was used for the present analysis. The sample was restricted to a 
complete-case subset of participants for which all relevant covariate measures were 
available (n=520). We collapsed ADAMS impairment diagnoses into four general 
categories: (1) Unimpaired (n=211), (2) Other (cognitive impairment due to conditions 
other than dementia, e.g., depression or traumatic brain injury, n=56), (3) Mild Cognitive 
Impairment (MCI, n=65), and (4) Dementia (n=158). The complete-case data was split 
into 70% training (n=364) and 30% hold-out (n=156) for internal and external model 
validation. All analyses were done using R version 4.0.3 (R Core Team, 2020). 
 
2.2 Important Predictors of ADAMS Cognitive Impairment Diagnoses 
An initial step in model formulation was understanding important predictors of ADAMS 
adjudicated impairment classes. Rather than defining one model for the multi-level 
categorical outcome (Unimpaired vs. Other vs. MCI vs. Dementia), we used multi-part 
models which specify different logistic regression models at each stage of separation. 
Three models were used to distinguish between impairment classes: (1) Unimpaired vs. 
Impaired, (2) Other vs. MCI or Dementia, and (3) MCI vs. Dementia, where models (2) 
and (3) were conditional on individuals being classified as being impaired or having MCI 
or Dementia, respectively. Modeling impairment classes this way naturally 
accommodates non-linear relationships and different subsets of predictors (Olsen & 
Schafer, 2001). 
 
A complete list of candidate predictors for the multi-part models is provided in Appendix 
Table A1. Ordinal categorical variables were analyzed on a continuous scale. Important 
predictors of ADAMS diagnosed impairment class were chosen by fitting multi-part 
models in the ADAMS training sample (n = 364). Variables were entered sequentially 
starting with consideration of fully observed variables as predictors, and variables that led 
to more than 25% missing observations in the model were not considered. As an initial 
simplifying assumption to identify important predictors, predictors of cognitive status 
that were significant at the p = 0.05 level were retained in the models. See Discussion for 
plans to update this process. 
 
Let 𝐺! , 𝑖 = 1,… , 364 denote the ADAMS adjudicated impairment class (group) for each 
individual in the ADAMS training sample,   
 
 

𝐺! =	+

1																				if	participant	𝑖	is	Unimpaired
2					if	participant	𝑖	has	Other	impairment
3																																if	participant	𝑖	has	MCI
4																					if	participant	𝑖	has	Dementia

 (1) 

 
 
 
Letting 𝑋 denote the vector of candidate predictor variables including an intercept and 
𝜸𝟏, 𝜸𝟐, 𝜸𝟑 being vectors of regression coefficients, the following logistic regression 
models were fit in the ADAMS training sample: 
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 𝑙𝑜𝑔𝑖𝑡(𝑃(𝐺 = 1|𝑋)) = 𝜸𝟏𝑋 (2) 
  

𝑙𝑜𝑔𝑖𝑡(𝑃(G = 2|𝑋, 𝐺	 ≠ 1)) = 𝜸𝟐𝑋 
 

(3) 
  

𝑙𝑜𝑔𝑖𝑡(𝑃(𝐺 = 3	|𝑋, 𝐺 ≠ 1, 𝐺 ≠ 2) = 𝜸𝟑𝑋. 
 

(4) 
 
Table 1 lists the specific predictors with non-zero regression coefficients reflecting that 
𝜸𝟏, 𝜸𝟐, 𝜸𝟑 are distinct from one another. 
 
Ideally, all important predictors of impairment would be available for participants we aim 
to classify. Crucial measures are often unavailable in the larger sample where we aim to 
predict impairment but are available in a subset of the study. For example, the Total 
Mini-Mental State Exam (MMSE) Score, which was a consistently important predictor 
across the multi-part models (Table 1) was only available in ADAMS, not HRS. A 
reasonable strategy might be to impute this missing variable for the rest of HRS using 
multiple imputation (Rubin, 1996; Stef van Buuren, 2019) or semi-supervised learning 
methods (Zhang et al., 2019). MMSE is a notoriously skewed variable, though, and 
modeling attempts had difficulty recovering observed values, especially in the tails of the 
distribution.  
 

Table 1: Variables included in multi-part models for predicting different stages of 
impairment. 

 
Model 1 

Unimpaired vs. Impaired 
Model 2 

Other* vs. MCI† or Dementia 
Model 3 

MCI† vs. Dementia 
Total MMSE‡ Score Total MMSE‡ Score Total MMSE‡ Score 
Immediate Word Recall Immediate Word Recall Immediate Word Recall 
Age Age  
Race/Ethnicity   
Serial 7s   
Word List Recall (yes)   
Logical Memory I   
Average Proxy Cognition   
 Delayed Word Recall  
  IADLs# 
  BMI 
  Stroke History (yes/no) 
 
*Other: Cognitive impairment due to other conditions (e.g., depression, traumatic brain injury) 
†MCI: Mild Cognitive Impairment 
‡MMSE: Mini-mental state exam 
#IADL: Instrumental Activities of Daily Living 

 
2.3 Bayesian Latent Class Mixture Model 
Moving from modeling MMSE using a single distribution to a mixture of distributions 
was motivated by the clinical practice of classifying individuals into different impairment 
groups. One of the more challenging steps in modeling data using mixture distributions is 
choosing the number of distributions to use. The 4-class mixture was motivated by 
ADAMS impairment categories and the practice of classifying individuals as having 
dementia, MCI, or no cognitive impairment in cohort studies with gold-standard 
adjudication (Bennett et al., 2012; Demirovic et al., 2003; Knopman et al., 2016; Lopez et 
al., 2012; Manly et al., 2005; Plassman et al., 2007; Trittschuh et al., 2011; Wilson et al., 
2010). Further, visualizing the distribution of MMSE scores stratified by ADAMS  

 
1305



 

 

 
Figure 1: Density plots for continuous variables in Table 1 stratified by ADAMS 
impairment class. 

 
impairment classes revealed that a mixture of distributions might do a better job of 
recovering the overall observed distribution of MMSE scores (Figure 1). To motivate 
modeling Total MMSE scores as a mixture of normal distributions, the Total MMSE 
score was transformed from its original scale [0, 30] to a normalized scale [0, 100] using 
a transformation developed and validated by (Philipps et al., 2014). The distribution of 
normed Total MMSE scores more closely resembled a normal distribution compared to 
raw Total MMSE scores. The transformation function is available in the NormPsy R 
Package (Proust-Lima & Philipps, 2018).  
 
Any dataset could be viewed as a mixture of individuals who have no impairment, other 
impairment, MCI, or dementia. The correct mix of these individuals is the inference goal 
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of algorithmic dementia classification methods. Latent class mixture models 
simultaneously model data and infer individual impairment class membership. We 
embedded the three broad steps of the proposed latent class mixture modeling approach 
for algorithmic dementia classification in a Bayesian framework to incorporate prior 
information in the model: (1) Make a synthetic version of a dataset with detailed 
neuropsychological assessment data but unknown dementia classification. (2) While 
making the synthetic copy, the model will assign impairment status to each individual. 
Since the mixture of impairment classes determines what the synthetic data look like, the 
better the synthetic data quality (i.e., the more it looks like the real data) the more 
trustworthy the inferred impairment classes. (3) generate many synthetic datasets to 
measure uncertainty in inference.  
 
2.3.1 The General Location Model 
The Bayesian latent class mixture model outlined above is an extension of the general 
location model which provides a framework for modeling a mix of categorical and 
continuous variables (Little & Schluchter, 1985; Olkin & Tate, 1961; Schafer, 1997). 
Using the general location model, continuous variables are modeled using normal 
distributions with parameters determined by an observation’s contingency cell 
membership, determined by cross-classification of categorical variables. Density plots of 
continuous variables in Table 1, stratified by ADAMS impairment class are shown in 
Figure 1. By inspection, a number of the variables could reasonably be modeled as 
mixtures of normal distributions, which motivated the use of the general location model 
in this framework.  
 
Following the setup of (Schafer, 1997), let 𝑊%	and 𝑊& be the categorical variables in 
Table 1, race/ethnicity (white, Black, Hispanic) and stroke history (ever/never), and let 
𝑍%, 𝑍&, … 𝑍%' be the continuous variables in Table 1. Let 𝑋 = (𝑊, 𝑍) be an 𝑛	 × 	12 
matrix of observed data. Contingency cell membership in the present analysis was 
determined by cross classification of the two categorical variables race/ethnicity and 
stroke history, yielding 6 possible cells. Let 𝐶 = {𝑐(: 𝑑 = 1, 2, …6} be the vector of 
observed counts for each contingency cell and let 𝑈 be an 𝑛	 × 	𝑑 matrix with rows 𝑢!), 
where 𝑢! is a 𝐷-vector with a 1 in position 𝑑 if observation 𝑖 falls into cell 𝑑 and 0s in all 
other position. All the information about 𝑊 is contained in 𝐶, thus the distribution of 𝑋 
can be characterized as 𝑓(𝑋) = 𝑓[(𝑊, 𝑍)\ = 𝑓[(𝐶, 𝑍)\ = 	𝑓(𝑍	|𝐶)𝑓(𝐶), where  
 
 𝐶	~	𝑀(𝑛, 𝜋)	 (5) 
   
 𝑍!|𝑢! 	~	𝑁(𝜇( , 𝛴). (6) 

 
For the distribution in (5), 𝜋 = {𝜋(: 𝑑 = 1, 2, … , 6} is a vector of cell probabilities 
parameterizing the Multinomial distribution corresponding to 𝐶. Note that the mean of 
the normal distribution in (6) is indexed by 𝑑, denoting that the means are allowed to 
vary by contingency cell but with an assumed constant covariance structure 𝛴 across 
cells. This unrestricted formulation of the general location model includes main effects of 
race/ethnicity and stroke and all race/ethnicity by stroke interactions effects on values of 
the continuous variables 𝑍.  
 
Due to small cell counts, however, the model had difficulty estimating all race/ethnicity 
by stroke interaction effects. on 𝑍. We moved to a restricted general location model 
where 𝜇 = {𝜇(: 𝑑 = 1,… , 6} is restricted to the form 
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 𝜇 = 𝐴𝛽, (7) 
 
and 𝐴 is an ANOVA-like design matrix that specifies main effects of race/ethnicity and 
stroke on 𝑍 only. 
 
2.3.2 The Synthetic Data Generating Model 
The restricted general location model described in Section 2.3.1 was embedded in a 
Bayesian latent class mixture model to generate synthetic versions of observed data. 
Markov Chain Monte-Carlo (MCMC) was used to sample from posterior distributions of 
the parameters. At iteration 𝑏 of an MCMC chain, let 𝐺* be the predicted impairment 
class from the multi-part models described in Section 2.2. The restricted general location 
model was used to model data within each subset defined by 𝐺*. The impairment group-
specific Bayesian specification of the restricted general location model at iteration 𝑏 for 
was 
 
 𝑍!|𝑢! 	~	𝑁%'(𝜇+ , 𝛴+) 

 
(7) 

 𝐶+ 	~	𝑀(𝑛+ , 𝜋+)	 
 

(8) 

 𝛽+|𝛴+ 	~	𝑀𝑁,×%'(𝛽', 𝑉', 𝛴+/𝜅') 
 

(9) 

 𝛴+ 	~	𝑊.!
/%(𝛬'/%)	 

 
(10) 

 𝜋+ 	~	𝐷(𝛼+) 
 

(11) 

with hyperparameters 𝜅', 𝜈', 𝛼+ , and 𝛬'/%, and where 𝜇+ = 𝐴𝛽+  
 
A diagram of the data generating model is provided in Figure 2, including the specific 
posterior distributions from which variables were sampled. Posterior distributions were 
derived using similar techniques to those outlined in (Schafer, 1999) and (Gelman et al., 
2014). 
 
2.3.3 Data-driven Priors via Bootstrap Sampling 
Sampling in this framework was fast and convenient due to conjugate distributions, thus 
computational time was not a challenge in this model. Small contingency cell counts led 
to difficulty defining priors in this model, however. Non-informative priors led to model 
convergence issues. Increasing prior cell counts by defining priors based on cell counts 
from the larger HRS sample improved convergence but led to poor model fit due to the 
difference in case mix between HRS and ADAMS. Defining data-driven priors based on 
bootstrap sampling proved to be a valuable technique to overcome these challenges.  
 
Bootstrapping uses resampling with replacement to obtain realistic replicates of the data 
(Efron & Tibshirani, 1994). Since the goal of this analysis was to create realistic 
synthetic versions of ADAMS, bootstrapping seemed like a promising way of 
reproducing the empirical distribution of the data while avoiding the need to make 
oversimplifying distributional assumptions. Replicate data were obtained through a three-
step process: (1) Resample ADAMS data with replacement, drawing a sample of equal 
size to the original sample. (2) Calculate and store parameter estimates characterizing 
effects of covariates on impairment class membership, contingency cell counts, and 
effects of contingency cell membership on continuous covariates. (3) Repeat the process  
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Figure 2: Data-generating model for iteration 𝑏 of an MCMC chain.  
𝑀 = Multinomial distribution; 𝐷 = Dirichlet distribution; 𝑁 = Normal distribution; 
𝑀𝑁 = Matrix normal distribution; 𝑊/% = Inverse Wishart distribution; 𝑉+  and 𝑣0 are 
parameters for the posterior 𝑀𝑁 distribution that were derived using usual techniques. 
 

10,000 times to represent both sampling variability and estimation uncertainty in model 
parameters. This process was motivated by Bayesian non-parametric methodology 
(Rubin, 1981) and empirical Bayes concepts (Casella, 1985). 
 

3. Bayesian Model Diagnostics 
 
Understanding how model assumptions encoded in the prior interact with the likelihood 
to affect posterior inferences is an important part of Bayesian modeling.(Gabry et al., 
2019) discuss the value of visualizations at every stage of Bayesian modeling and outline 
the workflow for prior predictive checks, model diagnostics, and posterior predictive 
checks using a real data example. Each of these modeling checks is described below as it 
relates to the present analysis. All checks were performed for both ADAMS training and 
ADAMS hold-out samples. 
 
3.1 Prior Predictive Checks 
Prior predictive checks are visualizations of synthetic datasets generated from prior 
distributions only. These checks are meant to answer the question “are the priors 
compatible with the data?” In other words, do assumptions encoded in the prior lead to 
realizations of the data that capture the full range of possible values? In developing prior 
distributions, we embraced the perspective of (Gabry et al., 2019) where prior predictive 
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checks are envisioned as part of an iterative process of specifying models, fitting models, 
evaluating model fit, and updating model specifications. 
 
In the present analysis, prior predictive checks were performed for distributions of 
contingency cell counts stratified by ADAMS impairment class and for continuous 
predictors in the model. One thousand synthetic ADAMS datasets were generated from a 
model using only prior distributions. Contingency cell counts and distributions of 
continuous variables were stored for each synthetic dataset. Ideal prior predictive 
distributions for 1000 synthetic contingency cell counts would be centered at the true 
count. Ideal distributions of synthetic continuous variables would be slightly more 
variable than the observed distributions to ensure that the full range of values were 
captured features encoded in the priors.  
 
3.2 Model Convergence Diagnostics 
Once prior predictive checks are satisfactory, many synthetic datasets should be 
generated from the full model and convergence assessed across these runs. MCMC 
chains of all model parameters are monitored for convergence. Ideal MCMC plots look 
like “fuzzy caterpillars” that stabilize around some value (Gelman et al., 2014). A lack of 
convergence signals the need for model tuning by adjusting hyperparameters until proper 
convergence is achieved. In this analysis, MCMC chains of impairment class proportions 
and continuous variable means and covariances stratified by contingency cells were 
monitored for convergence. 
 
Model stability can be assessed by monitoring convergence of multiple chains initiated at 
different locations in the sample space. Ideal diagnostic plots for multiple chain 
convergence would look like overlapping “fuzzy caterpillars” which would demonstrate 
that each chain has converged and that the chains mix well (i.e., model convergence is 
robust to the starting point in the sample space). In the present analysis, MCMC chains 
were initiated in different parts of the sampling space based on proportions of impairment 
class membership. Five chains were monitored: (1) a “warm start” chain with impairment 
class proportions close to observed proportions (40% Unimpaired, 20% Other, 10% MCI, 
30% Dementia), (2) a “random” chain with equal proportions for all impairment classes 
(25% Unimpaired, 25% Other, 25% MCI, 25% Dementia), (3) “mostly dementia” chain 
where proportion of dementia dominated other impairment classes (10% Unimpaired, 
20% Other, 30% MCI, 40% Dementia), (4) “mostly MCI” chain where proportion of 
MCI dominated other impairment classes (10% Unimpaired, 30% Other, 40% MCI, 20% 
Dementia), and (5) “mostly impaired” chain where only 5% of participants were initiated 
in the unimpaired class (5% Unimpaired, 15% Other, 25% MCI, 55% Dementia).  
 
3.3 Posterior Predictive Checks 
Once proper model convergence is achieved, posterior predictive checks assess whether 
salient features of the data are captured by the model. Analogous to prior predictive 
checks, ideal posterior predictive distributions would be centered around the observed 
value of the statistic of interest. In the present analysis, posterior distributions of 
contingency cell counts and median and skew for continuous variables were assessed. All 
posterior statistics were stratified by ADAMS impairment class.  

 
4. Results 

 
The Bayesian latent class mixture model was fit in ADAMS training and hold-out 
samples and 1000 synthetic versions of each sample were produced. Results from  
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Figure 3: Prior predictive distributions based on 1000 synthetic datasets for (a) 
contingency cell counts in the ADAMS Unimpaired group, (b) contingency cell counts 
in the ADAMS Dementia group, and (c) Total MMSE in all ADAMS impairment 
groups. 
 
selected prior predictive checks in the ADAMS training sample are presented in 
Figure 3. As expected from bootstrap prior distributions, prior predictive contingency 
cell counts were centered around observed counts (colored lines in Figures 3a-b). By 
nature of resampling the data, any observed 0 cell counts remained 0 in prior predictive 
distributions (Hispanic + Stroke group, Figure 3a). Prior predictive distributions for 
Total MMSE stratified by ADAMS impairment class were more variable than the 
observed ADAMS data in most of the 1000 synthetic datasets, which demonstrated 
that the full range of observed values was captured by prior distributions (Figure 3c). 
Figure 3c shows Total MMSE prior predictive distributions overlayed on observed 
ADAMS training data for one synthetic dataset; an animated gif cycling through all 
1000 synthetic datasets was used to determine whether there was enough variability 
across the 1000 synthetic datasets.  
 
All MCMC chains showed model parameter convergence. Analyses of multiple chains 
of impairment class proportions showed good convergence and mixing, demonstrating 
that the model was stable regardless of the starting point (Figure 4).  
 
Results from selected posterior predictive checks in the ADAMS training sample are 
presented in Figure 5. Posterior cell counts for Black and Hispanic participants were 
satisfactory while those for white participants were less so. Distributions of posterior  
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Figure 4: Five MCMC chains of proportion of impairment class membership, 
stratified by impairment class. Each chain was initiated at different points in the 
parameter space. Chain 1 (warm start): 40% Unimpaired, 20% Other, 10% MCI, 30% 
Dementia; Chain 2 (random chain): 25% Unimpaired, 25% Other, 25% MCI, 25% 
Dementia; Chain 3 (mostly dementia): 10% Unimpaired, 20% Other, 30% MCI, 40% 
Dementia; Chain 4 (mostly MCI): 10% Unimpaired, 30% Other, 40% MCI, 20% 
Dementia; Chain 5 (mostly impaired): 5% Unimpaired, 15% Other, 25% MCI, 55% 
Dementia.  

 
counts for white participants captured true counts, but only in the tails of the distributions 
(Figure 5a-b). Of note, a desirable property of this model is that cell counts that were 0 
in the prior did not remain zero in the posterior. Since the 0 cell counts were random, not 
structural, realistic replicates of the dataset would be expected to have small, non-zero 
cell counts. Posterior distributions of continuous variable medians were roughly centered 
around observed medians in the ADAMS data apart from a couple variables (Figure 5c).  
 
The complete set of prior predictive checks including animated gifs for continuous 
variables, MCMC convergence plots, and posterior predictive checks for both ADAMS 
training and testing samples is accessible at https://github.com/cshawsome/link-transport-
integrate. 
 
Figure 6 shows 95% credible intervals of participant counts in each impairment class 
across 1000 synthetic ADAMS training datasets. Every credible interval captured the 
observed ADAMS impairment class count; the largest discrepancy in mean count was in 
the dementia group where the model overestimated the count by just 25 people on 
average. The modeling process described in Section 3 was repeated for the hold-out 
sample. 
 
Figure 7 shows 95% credible intervals of participant counts in each impairment class 
from 1000 synthetic ADAMS hold-out datasets. Again, every credible interval captured 
the observed ADAMS impairment class count, and in the hold-out sample the largest 
discrepancy was in the MCI group where the model underestimated the count by just 5 
people on average. 
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Figure 5: Posterior predictive distributions based on 1000 synthetic datasets for (a) 
contingency cell counts in the ADAMS Unimpaired group, (b) contingency cell counts 
in the ADAMS Dementia group, and (c) selected continuous variables important in 
each multi-part model. 
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Figure 6: ADAMS training sample results. 95% credible intervals for participant counts within 
each impairment group across 1000 synthetic datasets compared to observed ADAMS counts. 

 

 
Figure 7: ADAMS hold-out sample results. 95% credible intervals for participant counts within 
each impairment group across 1000 synthetic datasets compared to observed ADAMS counts. 

 
5. Conclusion 

 
We have illustrated an algorithmic dementia classification framework that incorporates 
information from sociodemographic characteristics, health and health behaviors, general 
cognitive assessments, and detailed neuropsychological measures which are crucial in 
clinical dementia diagnosis; but due to a lack of availability in large studies, are currently 
not used in dementia classification algorithms. Understanding the relationship between 
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detailed neuropsychological measures and participants’ impairment status is an important 
first step to translating information from these measures to more general samples so that 
the information can be used in algorithmic dementia classification methods. By 
successfully creating synthetic versions of ADAMS using a Bayesian latent class mixture 
model, we have laid the groundwork for translating key measures to and strengthening 
algorithmic dementia classification in population-based surveys. 
 
An immediate next step in this project is to expand this framework to handle participants 
with missing covariate information by performing multiple imputation (Stef van 
Buuren, 2019) on the dataset prior to fitting the Bayesian latent class mixture model. 
The variable selection procedure described in Section 2.2 involved simplifying 
assumptions that will be relaxed once data are multiply imputed and all candidate 
variables can be given full consideration. 
 
Posterior predictive checks of contingency cell counts showed some lack of fit for 
categorical variables. Additional next steps for this project are to remedy this by relaxing 
some modeling assumptions. One possible strategy is to use a flexible covariance 
structure across impairment classes and contingency cell categories if necessary (Liu & 
Rubin, 1998).  
 
Methods in the present work were demonstrated and validated using the ADAMS 
substudy of HRS. Our next goal is to apply this algorithmic dementia classification 
framework to HCAP, a newer (initiated in 2016) and larger (n=3,496) HRS substudy with 
neuropsychological assessments. HCAP, however, did not perform clinical dementia 
ascertainment for its participants. Models are currently being developed by HCAP 
investigators to predict probability of impairment for HCAP participants (Langa et al., 
2020). In contrast to existing methods that predict probability of dementia for 
participants, the Bayesian latent class mixture modeling framework presented here would 
classify HCAP participants into multiple impairment classes by leveraging 
sociodemographic characteristics, lifestyle and health variables, general cognitive 
assessments, and detailed neuropsychological assessments. The ultimate goal of this work 
is to generalize synthetic versions of HCAP to the full HRS sample for algorithmic 
dementia classification in a population-representative study. 
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Appendix 

 
Table A1: Candidate variables for inclusion in multi-part models of predicted 

ADAMS impairment classes (unimpaired, other, MCI, dementia). 
 
Sociodemographic 
Characteristics 

Neuropsychological Exam and  
Cognition 

Health and  
Health Behaviors 

Age Total MMSE‡ Score Stroke History (yes/no) 
Sex/Gender Backwards Count (20, 86) Hypertension (yes/no) 
Race/Ethnicity Serial 7s Diabetes (yes/no) 
Education Item Naming (scissors, cactus) CVD (yes/no) 
Marital Status President/VP Naming BMI 
Retirement Status Animal Naming IADLs# 

 Boston Naming Test ADLs 
 Word Recall  

(Immediate, Delayed) 
Depression 

 Word list recall (Yes, No) Smoking 
 Story Recall  

(Immediate, Delayed) 
Alcohol Use 

 Constructional Praxis 
(Immediate, Delayed) 

 

 Symbol/Digit Substitution  
 Trails (A, B)  
 Subjective Change in Cognition  
 Average Proxy Cognition  
 

‡MMSE: Mini-mental state exam 
#IADL: Instrumental Activities of Daily Living 
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