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Abstract 

Since a high dimensional missing value resembles not only an unknown high dimensional 
data of an unknown high dimensional probability distribution but also their unknown 
characteristics, it is better to construct a basket of characteristics based on assumed high 
dimensional missing values. The missing technique, as demonstrated by Sharna et al (2017, 
2016), is a check and balance method for estimating missing value(s). In this paper we 
offer an extended version of the iterative estimation method for high dimensional missing 
value. This paper also demonstrates a resampling method for generating 1 or 2 correlated 
observations from the same high dimensional distribution from where the original sample 
is drawn. 

Key Words: Average Log Likelihood Function, Combination, Dummy Missing Value, 
Likelihood Rate, Simple Random Sample. 

1. Introduction

Missing data pattern describes which values are observed in the data matrix and which 
values are missing, and missing data mechanism addresses the relationship between 
missing value and the available values in the data matrix. Missing value estimation is a 
common problem in several statistical studies. The problem synchronized a lot when the 
sample size is very small and sensitive. Missing data mechanisms addresses the 
dependencies among the missing data and the available data. Rubin (1976) developed a 
device of treating the missing data indicators as random variables along with a distribution. 

The literature on analysis of partially missing data is inaugurated by Afifi and Elashoff 
(1966), Hartley and Hocking (1971), Orchard and Woodbury (1972), Dempster, Laird, and 
Rubin (1977), Litte and Rubin (1983 a), Little and Schenker (1994), and Little (1997) as 
addressed by the book written by Little. R. J. A and Rubin. D. B. (2002). Methods proposed 
by the aforesaid authors can be grouped into the following categories. The categories 
include Procedures Based on Completely Record Units, Weighting Procedures, 
Imputation-Based Procedures and Model-Based Procedures. Broadly there are two ways 
for estimating missing values. These are Missing Value Estimation in Experiment and 
Missing Value Estimation by Likelihood Based Method. Imputation Method, Weighted 
Methods by Complete Case and Available Case Analysis are from class one. And Inference 
based Likelihood method, Factored Likelihood Method, EM Algorithm, Large Sample 
Inference based Maximum Likelihood Method, Bayesian Iterative Simulation Method, 
Robust Method, Partially Classified Contingency Table Method (ML Estimation, Bayes 
Estimation, Log-linear Model, Logistic Regression Method) etc. are from class two.  
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Allan and Wishart’s (1930), Wilkinson’s (1958), Hartley’s (1956), Westmacott (1956), 
Pearce (1965, p.111;1971), Bartlett (1937) demonstrated some methods/modifications for 
estimating missing values. A variety of techniques are available in the literature to estimate 
missing values. These will be reviewed briefly later.  Sharna et al (2017, 2016) proposed 
Missing techniques to estimate one and more than one missing value(s). In this paper we 
extended the paper to develop a Missing Value Estimation Technique to estimate more 
than one missing values for High Dimensional Distribution. 

2. New Method and Methodology

Let there be (𝑛 − 2) observations and 2 missing observations. We want to estimate the 
missing paired observations. We know nothing about missing value or the distribution of 
observation from where the observations are drawn. So, we know nothing about the 
missing value, or the distribution of the observations or the parameters of the distribution 
or other characteristics like mean, median, mode, variance, skewness, kurtosis, and higher 
order moments of the distribution. In this situation we will estimate all the aforesaid 
characteristics and their volatility due to the change of sample size. We will also measure 
the deviation of the estimated characteristics from those of the missing values. So, we 
adjust our estimates of various characteristics due to the exact sample size and bandwidth 
of each of the characteristics. Later all the estimated characteristics will be used to find out 
several relation among themselves to predict the probability distribution. The parameters 
will also be estimated under the predicted probability distribution. Later on the deviation 
of the theoretically estimated characteristics and practically observed characteristics can 
be found to check how better the predicted distribution was by checking the equivalence 
of the theoretical and observed characteristics. Average Maximum Likelihood function and 
the consistent rate of the mean sum of squares of error can be found to confirm that the 
performance of the estimated missing values and the error conducted due to the estimated 
missing values is the least. 

2.1 Estimating First Missing Value from a Sample of Size n 

Let the observations  𝑋1,𝑋2,…, 𝑋𝑛−2 be non-missing and two observations be missing. Let 
the missing observation be Y and Z. We want to estimate Y and Z. So out of (𝑛 − 2) non-
missing observations 𝑛 − 2𝐶𝑛−2−2

 samples each of size (𝑛 − 2 − 2) can be drawn 
assuming two observations for each sample are missing. Assuming two non-missing 
observation as tw missing ones we can generate 𝑛 − 2𝐶𝑛−4

 samples each of which is 
consisting of (𝑛 − 4) non-missing observations pretending the rest non-missing 
observations as the missing observation. So the 𝑛 − 2𝐶𝑛−4

  generated samples are as below: 

n − 2Cn−4
samples each of size (n − 4) Assumed missing observation 

𝑋1,𝑋2, … , 𝑋𝑛−2 𝑋𝑛−1, 𝑋𝑛 
… … 

𝑋1,𝑋3, … , 𝑋𝑛−1 𝑋2,𝑋𝑛 
𝑋3, … , 𝑋𝑛 𝑋1, 𝑋2 

So we have calculated a class of characteristics (demonstrated in Table 1) to develop and 
observe several relationships among themselves (characteristics). For each of these 
characteristics, we will observe it’s deviation from the same characteristic with the 
presence of two dummy missing observations. Let us at first explain the easiest 
characteristic say sample mean and its sample standard deviation from the assumed missing 
value as addressed in Table 2. 
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If we assume one of the aforesaid two missing observations as the estimate of the n-1th 
pretended missing observation, and (if we consider) the available original observations 
𝑋1,𝑋2, … , 𝑋𝑛−2 as the (𝑛 − 2) other non-missing observations then the consecutive 
Maximum Likelihood Function or Likelihood Rate will be  

𝐿 = 𝑓(𝑋1; �̅�, 𝑆)𝑓(𝑋2; �̅�, 𝑆) … 𝑓(𝑋𝑛−2; �̅�, 𝑆) 

log (𝐿) = 𝑙𝑜𝑔[𝑓(𝑋1; �̅�, 𝑆)𝑓(𝑋2; �̅�, 𝑆) … 𝑓(𝑋𝑛−2; �̅�, 𝑆)] 

log(𝐿) = 𝑙𝑜𝑔(𝑓(𝑋1; �̅�, 𝑆)) + 𝑙𝑜𝑔(𝑓(𝑋2; �̅�, 𝑆)) + ⋯ + 𝑙𝑜𝑔(𝑓(𝑋𝑛−2; �̅�, 𝑆)) 

∴
1

𝑛−2
log(𝐿) = 1

𝑛−2
∑ log(𝑓(𝑋𝑖; �̅�, 𝑆))𝑛−2

𝑖=1

which can be termed as the average expected log likelihood function or expected log-  
likelihood rate. Now, we should generate short incremented (various) values for 𝑋 such 
that  

dis(�̅�, 𝑅𝑆)<kAD. 

Here k is a very small number. 

Now, 𝐿′ = 𝑓(𝑋1; �̅�, 𝑆)𝑓(𝑋2; �̅�, 𝑆) …  𝑓(𝑋𝑛−2; �̅�, 𝑆)𝑓(𝑿𝒏−𝟏; �̅�, 𝑆) 

log (𝐿′) = 𝑙𝑜𝑔[𝑓(𝑋1; �̅�, 𝑆)𝑓(𝑋2; �̅�, 𝑆) …  𝑓(𝑋𝑛−2; �̅�, 𝑆)𝑓(𝑿𝒏−𝟏; �̅�, 𝑆)] 

log(𝐿′) = 𝑙𝑜𝑔(𝑓(𝑋1; �̅�, 𝑆)) + 𝑙𝑜𝑔(𝑓(𝑋1; �̅�, 𝑆)) + ⋯ + 𝑙𝑜𝑔(𝑓(𝑿𝒏−𝟏; �̅�, 𝑆)) 

1

𝑛−1
log(𝐿′) = 1

𝑛−1
∑ log(𝑓(𝑋𝑖; �̅�, 𝑆))𝑛−1

𝑖=1

We will search the incremented value of the n-1th observation for which the expected log 
likelihood rate and the observed log likelihood rate will be same i.e.  

1

𝑛−1
log(𝐿′) = 

1

𝑛−1
∑ log(𝑓(𝑋𝑖; �̅�, 𝑆)) ≅𝑛−1

𝑖=1
1

𝑛−2
log(𝐿) = 1

𝑛−2
∑ log(𝑓(𝑋𝑖; �̅�, 𝑆))𝑛−2

𝑖=1

The incremented value of the n-1th observation for which the likelihood functions are same, 
will be an efficiently-estimated value of the n-1th missing observation. 

However, if we get more than two estimates of the missing observation, we can check for 
which estimate of the missing value the first two moments are close to those of the original  
(𝑛 − 2) observations. Hence, we will find the closer estimate of the missing value. 
Therefore, if we get more than two or three or more estimates of a missing observation, we 
can use all the estimates to estimate that missing value. Hence, we will estimate the (n-1)th 
missing observation which is the estimate of one missing value out of two missing value.    

So, we have described how 𝑛 − 2𝐶𝑛−2−2
 samples have been generated assuming two non-

missing observations as two missing ones in each case and calculated their sample averages 
to find out a bandwidth for the first missing value. Here the missing value has been 
determent adding the half of the bandwidth of the 1st missing value with the average of all 
of the available non-missing values. Similarly, several sample characteristics and their 

915



bandwidth can be calculated to find out different characteristics of the missing data as well 
as the distribution from which the sample (consisting of the 1st missing value and non-
missing value) has been drawn. So, sample variance, sample higher order moments, sample 
median, mode, skewness, kurtosis, tail behaviors, etc. can be found using their respective 
bandwidth. Several relationships can be explored from the aforesaid estimated 
characteristics to recognize the pattern of the distribution and its relevant features. The 
relevant features, estimated parameters and the predicted distribution are used to fit the 
observed sample data. So least square fitting or least deviation fitting or any sort of other 
goodness of fit can be used to check the performance of the predicted probabilistic model 
along-with the bandwidth based estimated parameters and the characteristics. After 
checking the fitting performance of the predicted model for the observed data, we can 
observe whether the average log-likelihood function for both the non-missing and the first 
missing value is equivalent that of the average log-likelihood rate for the all non-missing 
values.  

After estimating the first missing value, we will estimate the 2nd as well as the last missing 
value based on the non-missing values and the estimated 1st missing value. Hence, we will 
repeat the previously developed method of estimating one missing value by Sharna et al 
(2016) as follows.  

2.2 Estimating Last Missing Value from a Sample of Size n using the Estimated 

Missing Value 

Suppose there are 𝑛 observations out of which (𝑛 − 1) non-missing observations and one 
missing observation. We also suppose that observations 𝑋1,𝑋2,…, 𝑋𝑛−1 are non-missing 
and one observation 𝑥𝑛 is missing. We want to estimate 𝑥𝑛. So out of (𝑛 − 1) non-missing 
observations, (𝑛 − 1) samples each of which is of size (𝑛 − 2) can be drawn assuming 
each sample has one missing observation. Assuming one non-missing observation as a 
missing one we can generate (𝑛 − 1) samples each of which is consisting of (𝑛 − 2) non-
missing observations pretending the rest non-missing observations as the missing 
observation. So, the (𝑛 − 1) generated samples are as below: 

(𝑛 − 1) samples each of size (𝑛 − 2)                Assumed missing observation 

𝑋1,𝑋2, … , 𝑋𝑛−2 𝑋𝑛−1 
𝑋1,𝑋2, … , 𝑋𝑛−1 𝑋𝑛−2 

… … 
𝑋1,𝑋3, … , 𝑋𝑛−2 𝑋2 
𝑋2,𝑋3, … , 𝑋𝑛−1 𝑋1 

So, we have calculated a class of characteristics (demonstrated in Table 1) to develop and 
observe several relationships among themselves (characteristics). For each of these 
characteristics, we will observe it’s deviation from the same characteristic with the 
presence of dummy missing observation. Let us at first explain the easiest characteristic 
say sample mean and its deviation from the assumed missing value as addressed in Table 
2. 

If we assume any of the aforesaid observations as the estimate of the nth pretended missing 
observation, and (if we consider) the available original observations 𝑋1,𝑋2, … , 𝑋𝑛−1 as the 
(𝑛 − 1) other non-missing observations then the consecutive Maximum Likelihood 
Function or Likelihood Rate will be  
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𝐿′ = 𝑓(𝑋1; �̅�∗, 𝑆∗)𝑓(𝑋2; �̅�∗, 𝑆∗) … 𝑓(𝑋𝑛−1; �̅�∗, 𝑆∗) 

log (𝐿′) = 𝑙𝑜𝑔[𝑓(𝑋1; �̅�∗, 𝑆∗)𝑓(𝑋2; �̅�∗, 𝑆∗) … 𝑓(𝑋𝑛−1; �̅�∗, 𝑆∗)] 

log(𝐿′) = 𝑙𝑜𝑔(𝑓(𝑋1; �̅�∗, 𝑆∗)) + 𝑙𝑜𝑔(𝑓(𝑋2; �̅�∗, 𝑆∗)) + ⋯ + 𝑙𝑜𝑔(𝑓(𝑋𝑛−1; �̅�∗, 𝑆∗)) 

∴
1

𝑛−1
log(𝐿′) = 

1

𝑛−1
∑ log(𝑓(𝑋𝑖; �̅�∗ 𝑆∗))𝑛−1

𝑖=1  

which can be termed as the average expected log likelihood function or expected log-  
likelihood rate. Now, we should generate short incremented (various) values for 𝑋 such 
that 

dis(�̅�∗, 𝑅𝑆∗)<𝑘∗𝐴𝐷∗. 

Here k is a very small number. 

Now, 𝐿 = 𝑓(𝑋1; �̅�∗, 𝑆∗)𝑓(𝑋2; �̅�∗, 𝑆∗) …  𝑓(𝑋𝑛; �̅�∗, 𝑆∗) 

log (𝐿) = 𝑙𝑜𝑔[𝑓(𝑋1; �̅�∗, 𝑆∗)𝑓(𝑋2; �̅�∗, 𝑆∗) …  𝑓(𝑋𝑛; �̅�∗, 𝑆∗)] 

log(𝐿) = 𝑙𝑜𝑔(𝑓(𝑋1; �̅�∗, 𝑆)) + 𝑙𝑜𝑔(𝑓(𝑋2; �̅�∗, 𝑆)) + ⋯ + 𝑙𝑜𝑔(𝑓(𝑋𝑛; �̅�∗, 𝑆)) 

1

𝑛
log(𝐿) = 1

𝑛
∑ log(𝑓(𝑋𝑖; �̅�∗, 𝑆∗))𝑛

𝑖=1

We will search the incremented value of the nth observation for which the expected log 
likelihood rate and the observed log likelihood rate will be same i.e.  

1

𝑛
log(𝐿) = 1

𝑛
∑ log(𝑓(𝑋𝑖; �̅�

∗
, 𝑆∗))𝑛

𝑖=1 ≅
1

𝑛−1
log(𝐿′) = 

1

𝑛−1
∑ log(𝑓(𝑋𝑖; �̅�

∗
, 𝑆∗))𝑛−1

𝑖=1 . 

The incremented value of the nth observation for which the likelihood functions are same, 
will be an efficiently-estimated value of the missing observations. 

However, if we get more than two estimates of the missing observation, we can check for 
which estimate of the missing value the first two moments are close to those of the original  
(𝑛 − 1) observations. Hence, we will find the closer estimate of the missing value. 
Therefore, if we get more than two or three or more estimates of a missing observation, we 
can use all the estimates to estimate that missing value.     

So, we have described how (𝑛 − 1) samples have been generated assuming one non-
missing observation as a missing one in each case and calculated their sample averages to 
find out a bandwidth for the missing value. Here the missing value has been determent 
adding the half of the bandwidth of the missing value with the average of all of the available 
non-missing values. Similarly, several sample characteristics and their bandwidth can be 
calculated to find out different characteristics of the missing data as well as the distribution 
from which the sample (consisting of missing value and non-missing value) has been 
drawn. So, sample variance, sample higher order moments, sample median, mode, 
skewness, kurtosis, tail behaviors, etc. can be found using their respective bandwidth. 
Several relationships can be explored from the aforesaid estimated characteristics to 
recognize the pattern of the distribution and its relevant features. The relevant features, 
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estimated parameters and the predicted distribution are used to fit the observed sample 
data. So least square fitting or least deviation fitting or any sort of other goodness of fit can 
be used to check the performance of the predicted probabilistic model along-with the 
bandwidth based estimated parameters and the characteristics. After checking the fitting 
performance of the predicted model for the observed data, we can observe whether the 
average log-likelihood function for both the non-missing and missing values is equivalent 
that of the average log-likelihood rate for the all non-missing values.  

2.3 Estimating First Missing Value from a Sample of Size 6 

For more clarification let 𝑛 = 6. So there are 4 non-missing observations and 2 missing 
observations. The non-missing observations are 𝑋1,𝑋2,𝑋3, 𝑋4 and the missing observations 
are 𝑋6 and 𝑋5. Assuming two non-missing observations as missing ones we can generate 
6  samples each of which is consisting of 2 non-missing observations assuming the rest 
non-missing observations as the missing observations. So, the 6 samples are as below: 

Samples of size 2 Assumed missing observations

 𝑋1,𝑋2 𝑋3, 𝑋4 
 𝑋1,𝑋3 𝑋2, 𝑋4 
 𝑋1,𝑋4 𝑋2, 𝑋3 
 𝑋2,𝑋3 𝑋1, 𝑋4 
 𝑋2,𝑋4 𝑋1, 𝑋3 
 𝑋3,𝑋4 𝑋1, 𝑋2 

Table 1: Sample means and sample variances for several samples. 

Sample Mean Sample Variance 

𝑋1
̅̅ ̅ =

𝑋1+𝑋2

2 𝑆1 =
(𝑋1 − 𝑋1

̅̅ ̅)(𝑋1 − 𝑋1
̅̅ ̅)′́ + (𝑋2 − 𝑋1

̅̅ ̅)(𝑋2 − 𝑋1
̅̅ ̅)′

2 − 1

𝑋2
̅̅ ̅ =

𝑋1+𝑋3

2 𝑆2 =
(𝑋1 − 𝑋2

̅̅ ̅)(𝑋1 − 𝑋2
̅̅ ̅)′́ + (𝑋3 − 𝑋2

̅̅ ̅)(𝑋3 − 𝑋2
̅̅ ̅)′

2 − 1

𝑋3
̅̅ ̅ =

𝑋1+𝑋4

2 𝑆3 =
(𝑋1 − 𝑋3

̅̅ ̅)(𝑋1 − 𝑋3
̅̅ ̅)′́ + (𝑋4 − 𝑋3

̅̅ ̅)(𝑋4 − 𝑋3
̅̅ ̅)′

2 − 1

𝑋4
̅̅ ̅ =

𝑋2+𝑋3

2 𝑆4 =
(𝑋2 − 𝑋4

̅̅ ̅)(𝑋2 − 𝑋4
̅̅ ̅)′́ + (𝑋3 − 𝑋4

̅̅ ̅)(𝑋3 − 𝑋4
̅̅ ̅)′

2 − 1

𝑋5
̅̅ ̅ =

𝑋2+𝑋3

2 𝑆5 =
(𝑋2 − 𝑋5

̅̅ ̅)(𝑋2 − 𝑋5
̅̅ ̅)′́ + (𝑋3 − 𝑋5

̅̅ ̅)(𝑋3 − 𝑋5
̅̅ ̅)′

2 − 1

𝑋6
̅̅ ̅ =

𝑋3+𝑋4

2 𝑆6 =
(𝑋3 − 𝑋6

̅̅ ̅)(𝑋3 − 𝑋6
̅̅ ̅)′́ + (𝑋4 − 𝑋6

̅̅ ̅)(𝑋4 − 𝑋6
̅̅ ̅)′

2 − 1

�̅� =
𝑋1̅̅̅̅ +𝑋2̅̅̅̅ +𝑋3̅̅̅̅ +𝑋4̅̅̅̅ ++𝑋5̅̅̅̅ +𝑋6̅̅̅̅

6 𝑆 =
𝑆1 + 𝑆2 + 𝑆3 + 𝑆4 + 𝑆5 + 𝑆6

6

So, we have calculated a class of characteristics to develop and observe some relationships 
among them (characteristics). For each of these characteristics we will observe it’s 
deviation from the same characteristic with the presence of assumed missing observation. 
Let us at first explain the easiest characteristics say sample mean and its deviation from the 
assumed missing value in the following table: 
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Table 2: Sample mean difference for several samples. 

Sample Mean of size 2 Assumed 

Missing 

Values 

Difference |𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒| 

𝑋1
̅̅ ̅ =

𝑋1+𝑋2

2
 𝑋3, 𝑋4 𝑋1

̅̅ ̅ −  𝑋3+𝑋4

2
 dis(𝑋1

̅̅ ̅, 𝑋1′̅̅ ̅̅ ) 

𝑋2
̅̅ ̅ =

𝑋1+𝑋3

2
 𝑋2, 𝑋4 𝑋2

̅̅ ̅ −
𝑋2+𝑋4

2
 dis(𝑋2

̅̅ ̅, 𝑋2′̅̅ ̅̅ ) 

𝑋3
̅̅ ̅ =

𝑋1+𝑋4

2
 𝑋2, 𝑋3 

𝑋3
̅̅ ̅ −

𝑋2+𝑋3

2
dis(𝑋3

̅̅ ̅, 𝑋3′̅̅ ̅̅ ) 

𝑋4
̅̅ ̅ =

𝑋2+𝑋3

2
 𝑋1, 𝑋4 

𝑋4
̅̅ ̅ −

𝑋1+𝑋4

2
dis(𝑋4

̅̅ ̅, 𝑋4′̅̅ ̅̅ ) 

𝑋5
̅̅ ̅ =

𝑋2+𝑋3

2
 𝑋1, 𝑋3 

𝑋5
̅̅ ̅ −

𝑋1+𝑋3

2
dis(𝑋5

̅̅ ̅, 𝑋5′̅̅ ̅̅ ) 

𝑋6
̅̅ ̅ =

𝑋3+𝑋4

2
 𝑋1, 𝑋2 

𝑋6
̅̅ ̅ −

𝑋1+𝑋2

2
dis(𝑋6

̅̅ ̅, 𝑋6′̅̅ ̅̅ ) 

Total 
dis(𝑋1

̅̅ ̅, 𝑋1′̅̅ ̅̅ ) + dis(𝑋2
̅̅ ̅, 𝑋2′̅̅ ̅̅ ) + 

dis(𝑋3
̅̅ ̅, 𝑋3′̅̅ ̅̅ ) + dis(𝑋4

̅̅ ̅, 𝑋4′̅̅ ̅̅ ) + 
dis(𝑋5

̅̅ ̅, 𝑋5′̅̅ ̅̅ ) + dis(𝑋6
̅̅ ̅, 𝑋6′̅̅ ̅̅ ) 

Average Absolute 
Difference (AD) 

dis(𝑋1̅̅̅̅ ,𝑋1′̅̅ ̅̅ ̅)+dis(𝑋2̅̅̅̅ ,𝑋2′̅̅ ̅̅ ̅)+ 

dis(𝑋3̅̅̅̅ ,𝑋3′̅̅ ̅̅ ̅)+ 

dis(𝑋4̅̅̅̅ ,𝑋4′̅̅ ̅̅ ̅)+

dis(𝑋5̅̅̅̅ ,𝑋5′̅̅ ̅̅ ̅)+dis(𝑋6̅̅̅̅ ,𝑋6′̅̅ ̅̅ ̅)

6

Now, 
𝐿 = 𝑓(𝑋1; �̅�, 𝑆)𝑓(𝑋2; �̅�, 𝑆)𝑓(𝑋3; �̅�, 𝑆)𝑓(𝑋4; �̅�, 𝑆) 

log (𝐿) = 𝑙𝑜𝑔[𝑓(𝑋1; �̅�, 𝑆)𝑓(𝑋2; �̅�, 𝑆)𝑓(𝑋3; �̅�, 𝑆)𝑓(𝑋4; �̅�, 𝑆)] 

log(𝐿) = 𝑙𝑜𝑔(𝑓(𝑋1; �̅�, 𝑆)) + 𝑙𝑜𝑔𝑓(𝑋2; �̅�, 𝑆)) + 𝑙𝑜𝑔(𝑓(𝑋3; �̅�, 𝑆)) + 𝑙𝑜𝑔(𝑓(𝑋4; �̅�, 𝑆)) 

1

4
log(𝐿) =1

4
∑ log(𝑓(𝑋𝑖; �̅�, 𝑆))4

𝑖=1  

Which can termed as the average expected likelihood or expected likelihood rate. 

Now, we should generate short incremented various values form the range  

dis(�̅�, 𝑅𝑆)<kAD 

Here k may be 1

1000
 or 1

100
 or 1

10
 or so on. The increment ℎ can take the value 0.01 or 0.05 

or 0.10 and so on. The values could be 
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dis (
1

4
∑ 𝑋𝑖

4

𝑖=1

, 𝑅𝑆) < 𝑘
dis(𝑋1

̅̅ ̅, 𝑋1′̅̅ ̅̅ ) + dis(𝑋2
̅̅ ̅, 𝑋2′̅̅ ̅̅ ) + dis(𝑋3

̅̅ ̅, 𝑋3′̅̅ ̅̅ ) + dis(𝑋4
̅̅ ̅, 𝑋4′̅̅ ̅̅ ) + dis(𝑋5

̅̅ ̅, 𝑋5′̅̅ ̅̅ ) + dis(𝑋6
̅̅ ̅, 𝑋6′̅̅ ̅̅ )

6

If we assume any one of the two afore said observations as the 5th observation and the four 
other observations are the given original observations 𝑋1,𝑋2,𝑋3, 𝑋4; then the consecutive 
average observed likelihood or observed likelihood rate will be  

𝐿′ = 𝑓(𝑋1; �̅�, 𝑆)𝑓(𝑋2; �̅�, 𝑆)𝑓(𝑋3; �̅�, 𝑆)𝑓(𝑋4; �̅�, 𝑆) 𝑓(𝑹𝑺 = 𝑿𝟓; �̅�, 𝑆)  

log (𝐿′) = 𝑙𝑜𝑔[𝑓(𝑋1; �̅�, 𝑆)𝑓(𝑋2; �̅�, 𝑆)𝑓(𝑋3; �̅�, 𝑆)𝑓(𝑋4; �̅�, 𝑆)𝑓(𝑹𝑺 = 𝑿𝟓; �̅�, 𝑆)] 

log(𝐿′) = 𝑙𝑜𝑔(𝑓(𝑋1; �̅�, 𝑆)) + 𝑙𝑜𝑔(𝑓(𝑋2; �̅�, 𝑆)) + 𝑙𝑜𝑔(𝑓(𝑋3; �̅�, 𝑆)) + 𝑙𝑜𝑔(𝑓(𝑋4; �̅�, 𝑆))
+ 𝑙𝑜𝑔(𝑓(𝑹𝑺 = 𝑿𝟓; �̅�, 𝑆))

1

5
log(𝐿′) =1

5
∑ log(𝑓(𝑋𝑖; �̅�, 𝑆))5

𝑖=1  

If we get more than two estimates of the missing observation (since we get two values of 
the 5th observation for whom the likelihood rates are same), we can check for which 
estimate of the missing value the first two moments are close to those of the original 4 
observations. Hence, we will find the estimate of the missing values.  

We will search the incremented value of the 5th observation for which the expected 
likelihood rate and the observed likelihood rate will be same i.e.  

1

5
log(𝐿′) = 1

5
∑ log(𝑓(𝑋𝑖; �̅�, 𝑆))5

𝑖=1 ≅
1

4
log(𝐿) = 1

4
∑ log(𝑓(𝑋𝑖; �̅�, 𝑆))4

𝑖=1 . 

If we get more than two or three or more estimates of each of the missing observations, we 
can have the corresponding averages all the estimates of the missing values and can assume 
that as the estimate of that missing value. Hence, we have obtained the 5th observation. We 
will now estimate the 6th (last) observation in the next step.    

2.4 Estimating Last Missing Value from a Sample of Size 6 using the Estimated 

Missing Value

Now let 𝑛 = 6. So there are 4 non-missing observations and one missing observation. The 
non-missing observations are 𝑋1,𝑋2,𝑋3, 𝑋4, 𝑋5 and the missing observation is 𝑋6. So, 
assuming one non-missing observation as a missing one we can generate 5 samples each 
of which is consisting of 4 non-missing observations assuming the rest non-missing 
observations as the missing observation. So, the 5 samples are as below: 

Samples of size 4       Assumed missing observation 

𝑋1,𝑋2,𝑋3, 𝑋4 𝑋5 
𝑋1,𝑋2,𝑋3, 𝑋5 𝑋4 
𝑋1,𝑋2,𝑋4,𝑋5 𝑋3 
𝑋1,𝑋3,𝑋4,𝑋5 𝑋2 
𝑋2,𝑋3,𝑋4,𝑋5 𝑋1 

Table 3: Sample means and sample variances for several samples. 
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Sample Mean Sample Variance 

𝑋1
̅̅ ̅ =

𝑋1+𝑋2+𝑋3+𝑋4

4
 

𝑆1 =

(𝑋1−𝑋1̅̅̅̅ )(𝑋1−𝑋1̅̅̅̅ )′́ +(𝑋2−𝑋1̅̅̅̅ )(𝑋2−𝑋1̅̅̅̅ )′+

(𝑋3−𝑋1̅̅̅̅ )(𝑋3−𝑋1̅̅̅̅ )′́ +(𝑋4−𝑋1̅̅̅̅ )(𝑋4−𝑋1̅̅̅̅ )′

4−1

𝑋2
̅̅ ̅ =

𝑋1+𝑋2+𝑋3+𝑋5

4
 

𝑆2 =

(𝑋1−𝑋1̅̅̅̅ )(𝑋1−𝑋1̅̅̅̅ )′́ +(𝑋2−𝑋1̅̅̅̅ )(𝑋2−𝑋1̅̅̅̅ )′+

(𝑋3−𝑋1̅̅̅̅ )(𝑋3−𝑋1̅̅̅̅ )′́ +(𝑋5−𝑋1̅̅̅̅ )(𝑋5−𝑋1̅̅̅̅ )′

4−1

𝑋3
̅̅ ̅ =

𝑋1+𝑋2+𝑋4+𝑋5

4
 

𝑆3 =

(𝑋1−𝑋1̅̅̅̅ )(𝑋1−𝑋1̅̅̅̅ )′́ +(𝑋2−𝑋1̅̅̅̅ )(𝑋2−𝑋1̅̅̅̅ )′+

(𝑋4−𝑋1̅̅̅̅ )(𝑋4−𝑋1̅̅̅̅ )′́ +(𝑋5−𝑋1̅̅̅̅ )(𝑋5−𝑋1̅̅̅̅ )′

4−1

𝑋4
̅̅ ̅ =

𝑋1+𝑋3+𝑋4+𝑋5

4
 

𝑆4 =

(𝑋1−𝑋1̅̅̅̅ )(𝑋1−𝑋1̅̅̅̅ )′́ +(𝑋3−𝑋1̅̅̅̅ )(𝑋3−𝑋1̅̅̅̅ )′+

(𝑋4−𝑋1̅̅̅̅ )(𝑋4−𝑋1̅̅̅̅ )′́ +(𝑋5−𝑋1̅̅̅̅ )(𝑋5−𝑋1̅̅̅̅ )′

4−1

𝑋5
̅̅ ̅ =

𝑋2+𝑋3+𝑋4+𝑋5

4
 

𝑆5 =

(𝑋2−𝑋1̅̅̅̅ )(𝑋2−𝑋1̅̅̅̅ )′́ +(𝑋3−𝑋1̅̅̅̅ )(𝑋3−𝑋1̅̅̅̅ )′+

(𝑋4−𝑋1̅̅̅̅ )(𝑋4−𝑋1̅̅̅̅ )′́ +(𝑋5−𝑋1̅̅̅̅ )(𝑋5−𝑋1̅̅̅̅ )′

4−1

�̅�∗ =
𝑋1̅̅̅̅ +𝑋2̅̅̅̅ +𝑋3̅̅̅̅ +𝑋4̅̅̅̅ +𝑋5̅̅̅̅

5
𝑆∗ =

𝑆1+𝑆2+𝑆3+𝑆4+𝑆5

5
 

Table 4: Sample mean difference for several samples. 

Sample 

Mean of 

size 5 

Assumed 

Missing 

Values 

Difference |𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒| 

𝑋1
̅̅ ̅ 𝑋5 𝑋1

̅̅ ̅ − 𝑋5 dis(𝑋1
̅̅ ̅, 𝑋5) 

𝑋2
̅̅ ̅ 𝑋4 𝑋2

̅̅ ̅ − 𝑋4 dis(𝑋2
̅̅ ̅, 𝑋4) 

𝑋3
̅̅ ̅ 𝑋3 𝑋3

̅̅ ̅ − 𝑋3 dis(𝑋3
̅̅ ̅, 𝑋3) 

𝑋4
̅̅ ̅ 𝑋2 𝑋4

̅̅ ̅ − 𝑋2 dis(𝑋4
̅̅ ̅, 𝑋2) 

𝑋5
̅̅ ̅ 𝑋1 𝑋5

̅̅ ̅ − 𝑋1 dis(𝑋5
̅̅ ̅, 𝑋1) 

Total dis(𝑋1
̅̅ ̅, 𝑋5) + dis(𝑋2

̅̅ ̅, 𝑋4) + 
dis(𝑋3

̅̅ ̅, 𝑋3) + dis(𝑋4
̅̅ ̅, 𝑋2) + 

dis(𝑋5
̅̅ ̅, 𝑋1) 

Average 
Absolute 

Difference 

𝐴𝐷∗ dis(𝑋1
̅̅ ̅, 𝑋5) + dis(𝑋2

̅̅ ̅, 𝑋4) +

dis(𝑋3
̅̅ ̅, 𝑋3) + dis(𝑋4

̅̅ ̅, 𝑋2) + dis(𝑋5
̅̅ ̅, 𝑋1)

5
 

So, we have calculated a class of characteristics (Table 3) to develop and observe some 
relationships among them (characteristics). For each of these characteristics we will 
observe it’s deviation from the same characteristic with the presence of assumed missing 
observation. Let us at first explain the easiest characteristics say sample mean and its 
deviation from the assumed missing value in the Table 4. 
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Now, 
𝐿 =  𝑓(𝑋1; �̅�∗, 𝑆∗)𝑓(𝑋2; �̅�∗, 𝑆∗)𝑓(𝑋3; �̅�∗, 𝑆∗)𝑓(𝑋4; �̅�∗, 𝑆∗)𝑓(𝑋5; �̅�∗, 𝑆∗) 

log (𝐿)
= 𝑙𝑜𝑔[𝑓(𝑋1; �̅�∗, 𝑆∗)𝑓(𝑋2; �̅�∗, 𝑆∗)𝑓(𝑋3; �̅�∗, 𝑆∗)𝑓(𝑋4; �̅�∗, 𝑆∗)𝑓(𝑋5; �̅�∗, 𝑆∗)] 

log(𝐿) = 𝑙𝑜𝑔(𝑓(𝑋1; �̅�∗, 𝑆∗)) + 𝑙𝑜𝑔(𝑓(𝑋2; �̅�∗, 𝑆∗)) + 𝑙𝑜𝑔(𝑓(𝑋3; �̅�∗, 𝑆∗))
+ 𝑙𝑜𝑔(𝑓(𝑋4; �̅�∗, 𝑆∗)) + 𝑙𝑜𝑔(𝑓(𝑋5; �̅�∗, 𝑆∗))

1

5
log(𝐿) = 

1

5
∑ log(𝑓(𝑋𝑖; �̅�∗, 𝑆∗))5

𝑖=1  

which can termed as the average expected log likelihood or expected log likelihood rate. 

Now, we should generate short incremented various values form the range  

dis(�̅�∗, 𝑅𝑆∗)<𝑘∗𝐴𝐷∗ 

or, dis (
1

5
∑ 𝑋𝑖

5
𝑖=1 , 𝑅𝑆∗) < 𝑘∗ |𝑋1

̅̅ ̅̅̅−𝑋5|+|𝑋2
̅̅ ̅̅̅−𝑋4|+|𝑋3

̅̅ ̅̅̅−𝑋3|+|𝑋4
̅̅ ̅̅̅−𝑋2|+|𝑋5

̅̅ ̅̅̅−𝑋1|

5

Here k may be 1

1000
 or 1

100
 or 1

10
 or so on. 

If we assume any of the afore said observations as the 6th observation and the four other 
observations are the given original observations 𝑋1,𝑋2,𝑋3, 𝑋4, 𝑋5; then the consecutive 
maximum likelihood function or observed likelihood rate will be  

𝐿′ = 𝑓(𝑋1; �̅�∗, 𝑆∗)𝑓(𝑋2; �̅�∗, 𝑆2)𝑓(𝑋3; �̅�∗, 𝑆2)𝑓(𝑋4; �̅�∗, 𝑆2) 𝑓(𝑋5; �̅�∗, 𝑆2)𝑓(𝑅𝑆∗ = 𝑿𝟔; �̅�∗, 𝑆2) 

log (𝐿′) = 𝑙𝑜𝑔[𝑓(𝑋1; �̅�∗, 𝑆∗)𝑓(𝑋2; �̅�∗, 𝑆2)𝑓(𝑋3; �̅�∗, 𝑆2)𝑓(𝑋4; �̅�∗, 𝑆2) 𝑓(𝑋5; �̅�∗, 𝑆2)𝑓(𝑅𝑆∗ = 𝑿𝟔; �̅�∗, 𝑆2)] 

log(𝐿′) = 𝑙𝑜𝑔(𝑓(𝑋1; �̅�∗, 𝑆∗)) + 𝑙𝑜𝑔(𝑓(𝑋2; �̅�∗, 𝑆∗)) + 𝑙𝑜𝑔(𝑓(𝑋3; �̅�∗, 𝑆∗))
+ 𝑙𝑜𝑔(𝑓(𝑋4; �̅�∗, 𝑆∗)) + 𝑙𝑜𝑔(𝑓(𝑋5; �̅�∗, 𝑆∗))
+ 𝑙𝑜𝑔(𝑓(𝑅𝑆∗ = 𝑋6; �̅�∗, 𝑆∗)))

1

6
log(𝐿′) =1

6
∑ log(𝑓(𝑋𝑖; �̅�∗, 𝑆∗))6

𝑖=1  

We will search the incremented value of the 6th observation for which the expected log 
likelihood rate and the observed log likelihood rate will be same i.e.  

1

6
log(𝐿′) =1

6
∑ log(𝑓(𝑋𝑖; �̅�∗, 𝑆∗))6

𝑖=1 ≅
1

5
log(𝐿) = 1

5
∑ log(𝑓(𝑋𝑖; �̅�∗, 𝑆∗))5

𝑖=1 . 

The incremented value of the 5th observation for which the likelihood functions are same, 
will be the estimated value of the missing observations. If we get more than two estimates 
of the missing observation (since we get two values of the 5th observation for whom the 
likelihood rates are same), we can check for which estimate of the missing value the first 
two moments are close to those of the original 4 observations. Hence, we will find the 
estimate of the missing value.  
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3. Real Life Examples

We like to simulate a couple of samples each of which is of size 𝑛 from a probability 
distribution with specified parameters. Later we will keep one observations a complete 
missing observation and pull it out from the original sample. Hence the original sample 
turns to a sample of size 𝑛 − 2. Out of 𝑛 − 2 available observations of the sample, we will 
draw  samples each of which is of size 𝑛 − 2. For each of the 𝑛𝐶𝑛−2

 samples of size 𝑛 − 2, 
we will assume the two absent observations as two dummy missing values of the sample. 
So, for each of the 𝑛𝐶𝑛−2

 samples, there are 𝑛 − 2 available observations and two dummy 
missing values. From each of the 𝑛𝐶𝑛−2

 samples, we will have one absolute dispersion 
between the average of 𝑛 − 2 available observations and the average of the two dummy 
missing observations. So, we will have 𝑛𝐶𝑛−2

 absolute between differences for 𝑛𝐶𝑛−2
 pairs 

of averages and dummy missing values. Averaging the 𝑛𝐶𝑛−2
  absolute differences, we will 

calculate average absolute difference. Based on the average absolute difference, we will 
generate a possible range of the original missing value. We will generate several values of 
that range starting from the lower limit and will get several valued for fixed increment upto 
to upper limit of that range. We will check whether the average likelihood of the 𝑛 −
2 original observations is similar for which 𝑛-1th 𝑛th observed missing values from the 
generating range and the 𝑛 − 2 observations. 

Let 𝑛 = 10. So there are 8 non-missing observations and two missing observations. The 
non-missing observations from Normal with mean vector and variance covariance matrix  

(7.788 170.760 65.540 21.232), 

(

18.970465 291.0624 4.386204 22.991412
291.0624 6945.1657 312.2751 519.2691
4.386204

22.991412
312.2751
519.2691

209.518776
55.768082

55.768082
87.72916

) 

are 𝑋1 = (12.620704 214.43815 80.47159 31.211845) 
𝑋2 = (7.551823 188.28706 59.65852 19.726793) 
𝑋3 = (1.345236 12.45771 58.83213 −1.312026) 

𝑋4 = (13.707797 303.77786 83.23562 34.149916) 
 𝑋5 = (9.777255 131.52619 62.66918 16.799206) 
𝑋6 = (7.984191 263.11509 83.55288 41.809556) 
𝑋7 = (5.948454 168.88802 84.60518 27.419772) 
𝑋8 = ( 7.807614 162.97018 55.55015 29.249890) 

and the missing observations are 

𝑋9 = ( 6.593975 172.79172 55.72927 19.105670) 
𝑋10 = (10.267980 160.04332 59.76657 13.548488) 

Now, assuming two non-missing observations as two missing ones we can generate 
28 samples each of which is consisting of 6 non-missing observations assuming the rest 
two non-missing observations as two missing observations. So, the 28 samples (as 
addressed in table 3) each consisting of 6 non-missing values are as below (the bold 
numbers in the last row are representing here the assumed missing value for each sample): 
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Table 3: The 28 samples each consisting of 6 non-missing values. 

   Sample    |   Non-Missing Part                Missing Part 

1 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋1 𝑋2 

2 𝑋2 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋1 𝑋3 

3 𝑋2 𝑋3 𝑋5 𝑋6 𝑋7 𝑋8 𝑋1 𝑋4 

4 𝑋2 𝑋3 𝑋4 𝑋6 𝑋7 𝑋8 𝑋1 𝑋5 

5 𝑋2 𝑋3 𝑋4 𝑋5 𝑋7 𝑋8 𝑋1 𝑋6 

6 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋8 𝑋1 𝑋7 

7 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋1 𝑋8 

8 𝑋1 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋2 𝑋3 

9 𝑋1 𝑋3 𝑋5 𝑋6 𝑋7 𝑋8 𝑋2 𝑋4 

10 𝑋1 𝑋3 𝑋4 𝑋6 𝑋7 𝑋8 𝑋2 𝑋5 

11 𝑋1 𝑋3 𝑋4 𝑋5 𝑋7 𝑋8 𝑋2 𝑋6 

12 𝑋1 𝑋3 𝑋4 𝑋5 𝑋6 𝑋8 𝑋2 𝑋7 

13 𝑋1 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋2 𝑋8 

14 𝑋1 𝑋2 𝑋5 𝑋6 𝑋7 𝑋8 𝑋3 𝑋4 

15 𝑋1 𝑋2 𝑋4 𝑋6 𝑋7 𝑋8 𝑋3 𝑋5 

16 𝑋1 𝑋2 𝑋4 𝑋5 𝑋7 𝑋8 𝑋3 𝑋6 

17 𝑋1 𝑋2 𝑋4 𝑋5 𝑋6 𝑋8 𝑋3 𝑋7 

18 𝑋1 𝑋2 𝑋4 𝑋5 𝑋6 𝑋7 𝑋3 𝑋8 

19 𝑋1 𝑋2 𝑋3 𝑋6 𝑋7 𝑋8 𝑋4 𝑋5 

20 𝑋1 𝑋2 𝑋3 𝑋5 𝑋7 𝑋8 𝑋4 𝑋6 

21 𝑋1 𝑋2 𝑋5 𝑋5 𝑋6 𝑋8 𝑋4 𝑋7 

22 𝑋1 𝑋2 𝑋3 𝑋5 𝑋6 𝑋7 𝑋4 𝑋8 

23 𝑋1 𝑋2 𝑋3 𝑋4 𝑋7 𝑋8 𝑋5 𝑋6 

24 𝑋1 𝑋2 𝑋3 𝑋4 𝑋6 𝑋8 𝑋5 𝑋7 

25 𝑋1 𝑋2 𝑋3 𝑋4 𝑋6 𝑋7 𝑋5 𝑋8 

26 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋8 𝑋6 𝑋7 

27 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋7 𝑋6 𝑋8 

28 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 
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Table 4: The Bandwidth for each of the 28 samples. 

 The Expected Average Log Likelihood Rate for 9 observations (8 non-missing and 
one from the generating interval) is -15.11826. By using the formula shown above, 
we get average distance [AD = 

∑ 𝑑(𝑎𝑖𝑗,𝑚𝑖𝑗)8
𝑖<𝑗=1

28
 = 86.68563] from the known vector to 

the missing vector is 86.68563; where k= 1

10000
. We will get average likelihood rate 

for 9 observations. And for k= 1

10000
, we get the same value for the Average 

Likelihood and Observed Average Likelihood. So, our estimated value of the 1st 
missing observation is (8.743209 210.316754  77.413469 20.149505). 

Sample 

# 

Sample Mean Absolute Difference (Euclidean Distance) 

or Bandwidth 

1 𝑎12

=
𝑋3+𝑋4 + 𝑋5+𝑋6 + 𝑋7 + 𝑋8

6

𝑑(𝑎12, 𝑚12)

= 𝑑 (
𝑋3+𝑋4 + 𝑋5+𝑋6 + 𝑋7 + 𝑋8

6
,
𝑋1 + 𝑋2

2
)

2 𝑎13 𝑑(𝑎13, 𝑚13) 
3 𝑎14 𝑑(𝑎14, 𝑚14) 
4 𝑎15 𝑑(𝑎15, 𝑚15) 
5 𝑎16 𝑑(𝑎16, 𝑚16) 
6 𝑎17 𝑑(𝑎17, 𝑚17) 
7 𝑎18 𝑑(𝑎18, 𝑚18) 
8 𝑎23 𝑑(𝑎23, 𝑚23) 
9 𝑎24 𝑑(𝑎24, 𝑚24) 

10 𝑎25 𝑑(𝑎25, 𝑚25) 
11 𝑎26 𝑑(𝑎26, 𝑚26) 
12 𝑎27 𝑑(𝑎27, 𝑚27) 
13 𝑎28 𝑑(𝑎28, 𝑚28) 
14 𝑎34 𝑑(𝑎34, 𝑚34) 
15 𝑎35 𝑑(𝑎35, 𝑚35) 
16 𝑎36 𝑑(𝑎36, 𝑚36) 
17 𝑎37 𝑑(𝑎37, 𝑚37) 
18 𝑎38 𝑑(𝑎38, 𝑚38) 
19 𝑎45 𝑑(𝑎45, 𝑚45) 
20 𝑎46 𝑑(𝑎46, 𝑚45) 
21 𝑎47 𝑑(𝑎47, 𝑚47) 
22 𝑎48 𝑑(𝑎48, 𝑚48) 
23 𝑎56 𝑑(𝑎56, 𝑚56) 
24 𝑎57 𝑑(𝑎57, 𝑚57) 
25 𝑎58 𝑑(𝑎58, 𝑚58) 
26 𝑎67 𝑑(𝑎67, 𝑚67) 
27 𝑎68 𝑑(𝑎68, 𝑚68) 
28 𝑎78 𝑑(𝑎78, 𝑚78) 

Mean AD = 
∑ 𝑑(𝑎𝑖𝑗,𝑚𝑖𝑗)8

𝑖<𝑗=1

28
 = 86.68563 
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Now depending on the 1st missing value and the missing value based, or 9 observa
tions based mean and variance, the likelihood function and likelihood rate for 10 o
bservations have been found. The Expected Log Likelihood Rate is -15.24454. By 
using the formula shown above, we get the distance as 68.85106; where k = 1

1000000
.

For each increment we will get average likelihood rate for 10 observations (8 non-
missing, one estimate of the 1st missing and one from the generating interval for th
e 2nd missing value). We get the same value for the Expected Average Likelihood 
and Observed Average Likelihood. So, our estimated value of the 2nd missing obse
rvation is (16.33900 218.84061  87.58071 22.81895). 

So, the estimates of the two missing values 
( 6.593975 172.79172 55.72927 19.105670), 
(10.267980 160.04332 59.76657 13.548488) 

are  (8.743209 210.316754  77.413469 20.149505) 

and (16.33900 218.84061  87.58071 22.81895) 

along with the distances 43 and 66 respectively. 

Conclusion 

The missing technique is a kind of check and balance method in estimating the missing 
value. In each step it checks the fluctuation due to sample size and balance it by capturing 
the dispersion of the estimate of the known data from the assumed unknown data which is 
really known. So, this method is trying to find the original rate of change of the deviation 
from the missing value for the exact size of the realized sample. So, from two directions, 
one direction from sample size and other direction for the deviation from the missing 
values, the missing technique has been aided to estimate the missing value efficiently 
maintaining a good performance through several goodness of fit tests. This paper also 
demonstrates a resampling method for generating 1 or 2 correlated observations from the 
same distribution from where the original sample is drawn. This paper can also be extended 
to get a resampling method for (n > 2) three or more correlated observations. 
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