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Abstract 
The way of investigating a distribution knowing its interesting properties might be often 
inadequate when the shapes of two real distributions are almost similar. In each of these 
circumstances, the accurate decision about the genesis of a random sample from any of the 
two parent real distributions will be very much ambiguous even in the presence of the 
existing testing procedure of the real data. A sequential discrimination procedure has been 
suggested which is consisting of two tests. It is also invariant to the sample size. The 
pragmatic performance of the proposed discrimination procedure has been evaluated by 
checking its meticulous capacity of detecting the genesis of the known samples from the 
two identically shaped real distributions. Long run simulation studies also show that the 
proposed test is perfectly correct whereas the individual traditional tests were highly 
capricious in between the range of 3% to 75%. Further scopes have also been captivated 
by the proposed tests. 
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1. Introduction 
 
The investigation of a distribution along with its available properties may be very 
ambiguous when several distributions have similar shapes. As for an example, the shapes 
of Gamma and Beta distribution are identical for individual specification of the parameters 
of the corresponding distributions (Adnan et al, 2011, 2010). An accurate decision of the 
genesis of a random sample from any of the two aforesaid parent distributions will be very 
much puzzling. Adnan et al (2012, 2016) demonstrated some new wrapped distributions 
as well as a sequential discriminating procedure for two almost identically shaped wrapped 
distributions. An appropriate step by step test procedure of discrimination has been 
suggested which is also invariant to the size of the sample. The performance of the newly 
suggested discrimination procedure has been evaluated by comparing the overall statistical 
distances between the observed and the fitted models to check whether the discrimination 
procedure can correctly identify the genesis of the known samples from the identically 
shaped distributions with different specification of the respective individual parameters. 
 
The shape characteristics of these two distributions are discussed in section 2. The section 
3 demonstrates the proposed discrimination procedure of the two distributions with two 
steps. In section 4, a simulation study shows the activities and performance of the proposed 
discrimination procedure. Section 5 focuses on the use and application of the proposed test. 
Conclusion has been drawn in section 6.  
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2. Densities and Basic Properties 
 

The basic properties (Mood, Graybill and Boes and Devore, J. L., 2016) and the shape 
characteristics of both the Normal and Laplace Double Exponential distributions are 
discussed first. The Normal distribution, denoted by N(𝜇𝜇,𝜎𝜎), has the density function of 
the form 

          f(𝑥𝑥, 𝜇𝜇,𝜎𝜎)  =  1
𝜎𝜎√2𝜋𝜋

𝑒𝑒− 12 �𝑥𝑥−𝜇𝜇𝜎𝜎 �
2

, −∞ < x < ∞                                               (1) 
 

and distribution function as 

F(𝑥𝑥, 𝜇𝜇,𝜎𝜎)  =  1
𝜎𝜎√2𝜋𝜋

∫ 𝑒𝑒− 12 �𝑥𝑥−𝜇𝜇𝜎𝜎 �
2

𝑥𝑥
−∞ 𝑑𝑑𝑥𝑥,                                               (2) 

 
where 𝜇𝜇 and 𝜎𝜎 represent the location and the scale parameters respectively. The shape of 
the density depends on 𝜎𝜎 but not on 𝜇𝜇. The density is bell-shaped. On the other hand, the 
density function of Laplace distribution, represented by 𝐿𝐿(𝜃𝜃, 𝑏𝑏) 
 

   f(𝑥𝑥,𝜃𝜃, 𝑏𝑏)  =  1
2
𝑒𝑒−�

𝑥𝑥−𝜃𝜃
𝑏𝑏 �, −∞ < x < ∞                                                   (3) 

 
and the distribution function is 
 

    F(𝑥𝑥,𝜃𝜃, 𝑏𝑏)  =  1
2𝑏𝑏 ∫ 𝑒𝑒−�

𝑥𝑥−𝜃𝜃
𝑏𝑏 �𝑑𝑑𝑥𝑥𝑥𝑥

−∞                                                                              (4) 
 
𝜃𝜃, 𝑏𝑏 are the location as well as scale parameters respectively. 𝐿𝐿(𝜃𝜃, 𝑏𝑏) density function is 
symmetric. Now, for some specifications, Laplace Distribution 𝐿𝐿�𝜃𝜃, 𝜆𝜆 = √2�  and the 
Normal Distribution N(𝜇𝜇,𝜎𝜎 = 2), have similar shapes when 𝜃𝜃 = 𝜇𝜇. As for example, in the 
following figure [Figure 1], the shapes of N(10, 2) and L(10, √2) the following graph 
shows that the two distributions have relatively similar shapes. 
 

 
Figure 1: The density functions N(10, 2) and L(10, √2) 
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3. Discrimination Procedure 
 
We want to propose a sequential discrimination procedure consisting of two tests to be 
conducted in two steps which are as below: 
 

(i) Step 1: Maximum likelihood ratio test, 
(ii) Step 2: Kolmogorov Smirnov (KS) two sample test. 

 
Here, maximum likelihood ratio test (Casella and Berger, 2002) in step 1 is employed to 
discriminate two samples for two parent distributions and the KS statistics (Lehman, 2006) 
in step 2 are adopted to check whether the decision results obtained at step 1 are similar to 
those at step 2. At step 2 we not only measure the statistical distances between each of the 
resulted fitted distribution functions and each of the observed empirical distribution 
functions for each of the sample data sets but also want to confirm whether each statistical 
distance (minimum KS test statistic) between the resulted fitted distribution function and 
the observed empirical distribution function for each sample is less (minimum) than the 
statistical distance between the in-discriminated fitted distribution function and the 
observed empirical distribution function. 
 
We intend to quantify to what extent the null hypothesized fitted distribution function, (by 
maximum likelihood estimation) for a discriminated sample data set at step 1, can fit the 
empirical distribution function of the observed data of that sample data set at step 2. At 
step 2, the KS test statistic represents the statistical distance between a fitted distribution 
function (decided at the end of step 1) and the empirically observed distribution function 
of a data set. So, step 2 shows the performance of the discrimination held in step 1 since 
the KS’s two sample test shows whether a discriminated-fitted distribution function is 
statistically closer to the respective empirical distribution function of an observed data set 
compared to the discouraged (alternative hypothesized) fitted distribution function which 
was not supported by discrimination procedure at 1st step. 
 
In step 1, during the Maximum Likelihood Ratio test, we calculate the ratio of the estimated 
maximum likelihood functions using the maximum likelihood estimates of the parameters 
of two distributions based on corresponding realized data sets.   
 
The likelihood ratio test statistic will be 
 

𝑻𝑻 = 𝒍𝒍𝒍𝒍𝒍𝒍 �𝑳𝑳𝟏𝟏
𝑳𝑳𝟐𝟐
�.           (5) 

   
For a given sample of size n, the realized value of T, t, is calculated and compared with 

some ‘specified’ value, 0nc = . If t is greater than nc , the sample is classified as having 
been drawn from the 1st distribution (referred to the numerator of the likelihood ratio test 
statistic).  Otherwise, the sample is classified from the 2nd distribution (referred to the 
denominator of the likelihood ratio test statistic). Here the likelihood decision process for 
real data is different from that of the traditional likelihood decision process for the real data 
since the corresponding likelihood as well as the density functions are not inverse functions 
in real data.  
 
In step 2, the 𝑲𝑲𝑲𝑲’s two sample test statistic for a data set is  
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𝑫𝑫𝒏𝒏𝟏𝟏,𝒏𝒏𝟐𝟐 = 𝑺𝑺𝑺𝑺𝑺𝑺|𝑭𝑭𝟏𝟏(𝒙𝒙) − 𝑭𝑭𝟐𝟐(𝒙𝒙)| 
 
where 𝑭𝑭𝟏𝟏(𝒙𝒙) is the empirical distribution function of an observed data set and 𝑭𝑭𝟐𝟐(𝒙𝒙) is the 
fitted distribution function of a real distribution function. 
 
Again, the 𝑲𝑲𝑺𝑺’s two sample test statistic for that data set is 
 

𝑾𝑾𝒏𝒏𝟏𝟏,𝒏𝒏𝟐𝟐 = 𝑺𝑺𝑺𝑺𝑺𝑺|𝑺𝑺𝟏𝟏(𝒙𝒙) − 𝑺𝑺𝟐𝟐(𝒙𝒙)| 
 
where 𝑺𝑺𝟏𝟏(𝒙𝒙) is the empirical distribution function of the same observed data set and 𝑺𝑺𝟐𝟐(𝒙𝒙) 
is the fitted distribution function of another real distribution. 
 
The minimum value of the two KS test statistic, 𝒎𝒎𝒎𝒎𝒏𝒏�𝑫𝑫𝒏𝒏𝟏𝟏,𝒏𝒏𝟐𝟐 ,𝑾𝑾𝒏𝒏𝟏𝟏,𝒏𝒏𝟐𝟐�, is chosen for the 
current data set. It is inferred that this data set fits better the real distribution having 
minimum statistical distance between the fitted distribution function and the empirical 
distribution function of the observed data. The similar process is carried for second data 
set to confirm that the second data set come from the other real distribution.  
 
So, we should calculate Kolmogrov-Smirnov test statistic for each of the two distributions 
for both the data sets. If for a data set, KS test statistic is less and insignificant at 
100(1 )%α− level of significance for one of the two distributions, we will infer that the 
current sample data comes from that distribution. And another data set comes from the 
other distribution.  
 

4. Simulation Study 
 
Two data sets, each of size n = 10, will be simulated independently from Real Normal and 
Real Double Exponential distributions. After confirming statistically, the origins of the 
data sets, drawn from the original distributions, it will be examined how better or worse 
the same data set fits the other distribution through the traditional chi-square goodness of 
fit test for real data. If the first data set drawn from one distribution fits better another 
distribution and vice versa, it would be claimed that the two individual data sets, coming 
from Real Normal and Real Double Exponential distributions, are not distinguishable for 
detecting their genesis from the respective original populations due to the lack of proper 
testing facilities.  
 
In these circumstances, if the proposed discrimination method can accurately detect the 
original population individually for each of the known drawn data sets, the proposed 
method will be an appropriate discrimination procedure for the two aforesaid distributions. 
Kolmogorov Smirnov two sample test statistics will measure the statistical distance 
between each of the fitted distribution functions and the empirically observed distribution 
functions of the data sets. 
 
4.1. Random Sample Generation 
At first, we generate two random samples, each of which is of size n = 10, from N(10,2) 
and L(10,√𝟐𝟐).  
 
Data set N(10,2):  6.945648, 11.148451, 13.028798, 6.910681, 12.707729, 11.374669, 
10.277903, 10.943627, 9.613667, 9.030217. 
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Data set L(10,  √𝟐𝟐): 10.010082, 9.291294, 9.383203, 12.313524, 9.853225, 9.355582, 
9.839410, 9.165526, 10.199624, 10.507477. 
 
Figure 2 indicates the similar shape of the density functions of N and L.  
 

 
 
Figure 2: The Empirical density functions N, L for two data sets N(10,2) and L(10, √2) 
 
After confirming statistically as the first data set coming from Real Laplace Double 
Exponential distribution, we assume that our null distribution is Real Normal. Again, after 
confirming the second data set coming from Real Normal distribution, we assume that our 
null distribution is Real Laplace Double Exponential. We test each of the null hypotheses 
by traditional goodness of fit test for two real data sets. If the available test fails to detect 
the genesis of the samples properly, we will conduct our proposed test by having step 1 
check whether it can detect the genesis of the samples properly and then step 2 to check 
whether the statistical distance between each of the fitted distributions and the empirically 
observed distributions of the data sets are minimum for own individual cases.  
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To visualize the distance between the fitted distributions and the observed models, two 
graphical representations have been displayed in figure 3 and 4. The empirical distribution 
function, fitted Real Normal distribution function, and fitted Real Laplace Double 
Exponential distribution function for the data set L(10,  √2 ) are plotted in figure 3. 
Similarly, the empirical distribution function, fitted Real Normal, and Real Laplace Double 
Exponential distribution functions for the data set N(0,2) are plotted in figure 4. 
 
4.2. Traditional Goodness of Fit Test for Real Data  
Now to check whether the data set L(10, √2) from Real Laplace Double Exponential 
distribution is drawn from Real Normal distribution, the traditional Kolmogorov Smirnov 
goodness of fit test has been conducted. As such, assuming 0H : the data set L(10, √2) is 
drawn from Real Normal distribution, we obtain 
 

𝐷𝐷𝑛𝑛 = 𝑆𝑆𝑆𝑆𝑆𝑆(𝐹𝐹𝑛𝑛:𝐿𝐿 − 𝐹𝐹𝐻𝐻0:𝑁𝑁) 
 
Hence at 5 % level of significance, it is observed that the data set L(10, √2) comes from 
Real Normal distribution. Similarly, it is also noticed at the same level of significance that 
the data set N(10,2) comes from Real Laplace Double Exponential distribution. So, the 
Kolmogorov Smirnov test fails to accurately decide of the genesis of the two sample data 
sets. 
 
4.3. Maximum Likelihood Estimation for Real Laplace Double Exponential and Real 
Normal Distributions 
Kundu, D. (2005) used Maximum likelihood ratio statistic for discriminating Real Normal 
and Real Laplace distributions. Suppose that 𝑥𝑥1, 𝑥𝑥2, . . . 𝑥𝑥𝑛𝑛 are independent and identically 
distributed random sample from N (𝜇𝜇,σ). The likelihood function of the Real Normal 
N(𝜇𝜇, σ) is  

           𝐿𝐿𝑁𝑁(𝜇𝜇,σ) = ∏ 𝑓𝑓𝑛𝑛:𝑁𝑁(𝜇𝜇,σ)𝑛𝑛
𝑖𝑖=1 = � 1

σ√2𝜋𝜋
�
𝑛𝑛
𝑒𝑒− 12∑�

𝑥𝑥𝑖𝑖−𝜇𝜇
σ �

2

          (6) 
 

and hence the maximum likelihood estimators are 
 

�̂�𝜇  =  ∑𝑥𝑥𝑖𝑖
𝑛𝑛

, 𝜎𝜎2�= ∑(𝑥𝑥𝑖𝑖−�̅�𝑥)2

𝑛𝑛
. 

 
Similarly, if the random sample  𝑦𝑦1,𝑦𝑦2, . . . ,𝑦𝑦𝑛𝑛 of the real data comes from the Real Laplace 
distribution, then the concerned likelihood function is  
 

𝐿𝐿𝐿𝐿(𝜃𝜃, 𝑏𝑏) = ∏ 𝑓𝑓𝑛𝑛:𝐿𝐿(𝜃𝜃, 𝑏𝑏)𝑛𝑛
𝑖𝑖=1 = � 1

2𝑏𝑏
�
𝑛𝑛
𝑒𝑒−  ∑�

𝑦𝑦𝑖𝑖−𝜃𝜃
𝑏𝑏 �         (7) 

 
and hence the maximum likelihood estimators are   
 

𝜃𝜃�  =  𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦1,𝑦𝑦2, . . . ,𝑦𝑦𝑛𝑛), 𝑏𝑏� = ∑�𝑦𝑦𝑖𝑖−𝜃𝜃
��

𝑛𝑛
 . 

 
4.4. Proposed Step by Step Tests cum Discrimination Procedure 
Since the available test (Kolmogorov Smirnov test) fails to detect the genesis of the 
samples properly, we will conduct our proposed test by having step 1 check whether it can 
detect the genesis of the samples properly and then by having step 2 check the performance 
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of step 1 by computing the statistical distance between each of the fitted distributions and 
the empirically observed distributions of the data sets.  
 
Step1: Maximum Likelihood Ratio (RML) Method 
Now according to the Maximum Likelihood Ratio (RML) method 
 

RML =  
𝐿𝐿𝑁𝑁��̂�𝜇,𝜎𝜎2��
𝐿𝐿𝐿𝐿�𝜃𝜃�, 𝑏𝑏��

 

 
where ��̂�𝜇,𝜎𝜎2��  and �𝜃𝜃�, 𝑏𝑏�� are the maximum likelihood estimators of 𝐿𝐿𝑁𝑁  and 
𝐿𝐿𝐿𝐿  respectively. 
 
Let us consider, the likelihood ratio test statistic is 
 

( )logT RML= , 

or, T = log 𝐿𝐿𝑁𝑁�𝜇𝜇� ,𝜎𝜎2��
𝐿𝐿𝐿𝐿�𝜃𝜃� ,𝑏𝑏��

 

or, T = log 
� 1
𝜎𝜎�√2𝜋𝜋

�
𝑛𝑛
𝑒𝑒− 12𝑛𝑛

� 1
2𝑏𝑏�
�
𝑛𝑛
𝑒𝑒− 𝑛𝑛

 

Therefore,  T  = −nlog𝜎𝜎�- 𝑛𝑛
2
𝑙𝑙𝑙𝑙𝑙𝑙2 −  𝑛𝑛

2
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑛𝑛

2
+ 𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙2 +  𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏� +  𝑚𝑚            (8) 

 
or, T  = −nlog𝜎𝜎� +  𝑛𝑛

2
𝑙𝑙𝑙𝑙𝑙𝑙2 −  𝑛𝑛

2
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  +  𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏�  + 𝑛𝑛

2
 

 
For a given sample of size n, the realized value of T, t, is calculated and compared with 
some ‘specified’ value, 𝑐𝑐𝑛𝑛 = 0. If t is greater than 𝑐𝑐𝑛𝑛, the sample is classified as having 
been drawn from the Real Normal distribution. Otherwise, the sample is classified from 
the Real Laplace Double Exponential distribution. Thus, in step 1, for a given real data, if 

0T > , then we choose Normal distribution as the preferred model, otherwise we choose 
the Laplace distribution.  
 
For the data set L(10, √2) the maximum likelihood test statistic has been found as T= -1.31 
< 0 which leads us to infer that the data set L(10, √2) comes from Real Laplace Double 
Exponential distribution. Moreover, for the sample data N(0, 2) the maximum likelihood 
test statistic is, T= 0.74 > 0 that confers that the data set N(0,2) comes from the original 
Real Normal distribution. So, step 1 of the proposed test can easily detect the genesis of 
both samples. 
 
Step 2: Kolmogorov Smirnov Two Sample Test 
Now we want to check whether the results obtained, using maximum likelihood method, 
at step 1 are similar to the results to be carried by a distance-based KS test at step 2. We 
should calculate KS test for each of the two distributions Real Normal and Real Laplace 
Double Exponential for both the data set. If for a data set, KS is less and insignificant at 
100(1 − 𝛼𝛼)% level of significance for one of the two distributions, we will infer that the 
current sample data comes from that distribution. And another data set comes from the 
other distribution.  
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For the data set L(10, √2 ) the KS two sample test statistic between the empirical 
distribution function for the observed data and fitted Real Laplace distribution function due 
to discrimination, using the MLEs of the parameters 𝜃𝜃� = 9.846317 and 𝑏𝑏� = 0.5848916 , is 
0.1734847 with the P-value >> 0.2. Similarly, for the same data set, the KS two sample 
test between the empirical distribution function for the observed data and the fitted Real 
Normal distribution function due to indiscrimination, having the MLEs of the parameters 
used as �̂�𝜇  = 9.991895 and 𝜎𝜎�  = 0.8769763, is 0.9493495 with the P-value <<0.001. 
Henceforth, the smaller value (0.1734847) of the KS two sample test statistic (less 
statistical distance between the empirical distribution function of the observed data set 
L(10, √2) and the fitted Real Laplace Double Exponential distribution function due to 
discrimination) suggests that the data set L(10, √2) fits better (with greater P-value >> 0.2) 
the Real Laplace Double Exponential distribution (which is also clear from the figure 3).  
 
Again for the sample data N(10, 2)  the KS two sample test statistic between the empirical 
distribution function for the observed data and the fitted Real Normal distribution function 
due to discrimination, using the MLEs of the parameters as �̂�𝜇  = 10.19814 and 𝜎𝜎�  = 
2.006286,  is 0.1475073  with the corresponding P-value >> 0.2. Similarly, for the same 
data set, the KS two sample test statistic between the empirical distribution function for the 
observed data and the fitted Real Laplace Double Exponential distribution function due to 
indiscrimination, having the MLEs of the parameters used as 𝜃𝜃�  = 10.61076 and 𝑏𝑏�  = 
1.642516, is 0.8926376 with the P-value >> 0.2. Henceforth, the smaller value (0.1475073) 
of the KS two sample test statistic (less statistical distance between the empirical 
distribution function of the observed data set N(10, 2) and the fitted Real Normal 
distribution function due to discrimination) suggests that the data set N(10, 2) fits better 
(with greater P-value >> 0.2) the Real Normal distribution (which is also evident from the 
figure 4). Hence the proposed discrimination procedure along with steps 1 and 2 can 
accurately detect the origins of the two real data sets. 
 
The graphical representation of the distances between the empirical cdf for each of the 
observed data sets and each of the fitted cdfs has been displayed to show the closeness 
between the empirical distributions and the fitted distributions. Figure 3 addresses that the 
empirical distribution for the data set L(10, √2) stays more close to the fitted Real Laplace 
Double Exponential distribution. Figure 4 shows that the empirical distribution for the data 
set N(10,  2)is more close to the fitted Real Normal distribution. The graphs demonstrate 
the same results as addressed by the proposed discrimination procedure. 

 
Figure 3: Empirical distribution function, fitted distribution functions of Laplace and 
Normal for data L(10, √2). 
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Figure 4: Empirical distribution function, fitted distribution functions of Laplace and 
Normal for data N(10, 2). 
 
4.5. Long Run Behavior of the Proposed Tests  
The tests have been carried out for 10,000 times. At least 25 % cases, the individual 
likelihood ratio test miscalculates that the samples come from the Laplace distribution 
L(10, √2) whereas the true distribution is Normal N(10, 2). The individual likelihood ratio 
test cannot properly conclude the genesis of the Normal N(10, 2) samples for more than 
55% cases, rather concludes them come  from Laplace distribution L(10, √2 ). The 
empirical ratio of concluding the genesis of the samples from distributions by likelihood 
ratio test is 40:60 whereas it should be 50:50. For at least 96% times, the individual 
traditional KS test demonstrates that the two types of samples come from the same 
distribution whereas they originated from two distributions.  
 
Since the empirical ratio (40:60) of concluding the genesis of the samples from 
distributions by likelihood ratio test is close to 50:50, the likelihood ratio test can be carried 
in the first step of the sequential tests.  
 
In step 2 for the sequential tests for 10,000 times, the proposed KS tests have been found 
to be perfectly correct in deciding the genesis of the samples. Therefore, the sequential test 
consisting of steps 1 and 2 can perfectly detect the genesis of the sample from the true 
population. The following table (table 1) shows the percentage of correct decisions by the 
individual tests for the genesis of samples. 
 

Table 1: Percentage of Correct Decision by the tests for the Genesis of Samples 
 
Samples LRT KS Sequential 

Tests 
Correct Decision  

N(10, 2) 45% 3% 100% Samples come 
from N(10, 2) 
Distribution. 

 
L(10, √2) 

 
75% 

 
3% 

 
100% 

 
Samples come 
from L(10, √2 ) 
Distribution. 
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5. Justification of Using the Sequential Tests and its Applications 
 
Adnan and Kiser (2010) developed a Generalized Double Exponential distribution from 
where most of the exponential distributions like Normal, Lognormal, Gamma, Rayleigh, 
Laplace, etc can be unfolded through proper specification of the parameters of the 
generalized form. The generalized forms of the Exponential, Gamma, Chi-square, t, F and 
a three parameter Double Exponential Distributions were developed via the parameters of 
the Generalized Double Exponential distribution. It can generate (Adnan and Kiser, 2011) 
a couple of other probability distributions such as Generalized Gamma, Generalized Chi-
square, generalized  𝑡𝑡 , Generalized  𝐹𝐹 , etc. Generalized Beta 1st kind and 2nd kind 
distributions are also addressed from the generalized exponential distribution. The basic 
properties and the shape characteristics of the generalized double exponential distribution 
has been discussed here. The two-parameter generalized double exponential distribution 
was defined as a distribution of a random variable X having the probability density function 

                                                    𝑓𝑓(𝑥𝑥) = 𝑑𝑑 √𝑎𝑎𝑑𝑑

2𝛤𝛤(1𝑑𝑑)
 𝑒𝑒−�𝑎𝑎𝑥𝑥𝑑𝑑�  ;  −∞ ≤ 𝑥𝑥 ≤ ∞.                                 (9) 

where 𝑎𝑎  is the scale-parameter and d  is the shape-parameter such that  𝑎𝑎,𝑑𝑑 > 0 . The 
authors demonstrated a classification of distributions based on various specification of the 
parameters of 𝑎𝑎 and d. The various specifications of 𝑎𝑎 and d along with the classification 
of distributions are addressed in the following table (table 2). 
 

Table 2: A glance of the probability density functions as the special cases of the 
proposed Generalized Double Exponential distribution for various specifications. 

 
Sl. 

 
Name of the 
distribution 
 

 
𝑓𝑓(𝑥𝑥) 

 
Support 

 
𝑎𝑎 

 
𝑑𝑑 

 
𝑥𝑥 

 
Mean 

 
Variance 

 
1 

 
Generalized 
Double 
Exponential 
 

 
𝑑𝑑 √𝑎𝑎𝑑𝑑

2Γ(1
𝑏𝑏)

 𝑒𝑒−�𝑎𝑎𝑥𝑥𝑏𝑏� 

 
−∞ ≤ 𝑥𝑥 ≤ ∞ 

 
𝑎𝑎 

 
d 

 
𝑥𝑥 

 
0 

 
Γ(3
𝑑𝑑)

𝑎𝑎2 𝑑𝑑� Γ �1
𝑑𝑑�

 

 
2 

 
Std. Laplace 1

2
𝑒𝑒−|𝑥𝑥| 

 

 
−∞ ≤ 𝑥𝑥 ≤ ∞ 

 
1 

 
1 

 
𝑥𝑥 

 
0 

 
2 

 
3 

 
Laplace 
 

 
1

2𝜆𝜆
 𝑒𝑒−�

𝑥𝑥−𝜃𝜃
𝜆𝜆 � 

 
−∞ ≤ 𝑥𝑥 ≤ ∞ 1

𝜆𝜆
 

 
1 

 
𝑥𝑥
− 𝜃𝜃 

 
𝜃𝜃 

 
2𝜆𝜆2 

 
4 

 
Standard 
normal  

 
1

√2𝜋𝜋
 𝑒𝑒−

1
2𝑥𝑥

2
 

 
−∞ ≤ 𝑥𝑥 ≤ ∞ 1

2
 

 
2 

 
𝑥𝑥 

 
0 

 
1 

 
5 

 
Normal  
 
 

 
1

√2𝜋𝜋𝜎𝜎
 𝑒𝑒−

1
2(𝑥𝑥−𝜇𝜇𝜎𝜎 )2 

 
−∞ ≤ 𝑥𝑥 ≤ ∞ 

 
1

2𝜎𝜎2
 

 
2 

 
𝑥𝑥 − 𝜇𝜇 

 
𝜇𝜇 𝜎𝜎

2
 

 
6 

 
Log-normal 
 
  

 
1

𝑥𝑥√2𝜋𝜋𝜎𝜎
 𝑒𝑒−

1
2(log𝑥𝑥−𝜇𝜇𝜎𝜎 )2 

 
0 ≤ 𝑥𝑥 ≤ ∞ 1

2𝜎𝜎2
 

 
2 log 𝑥𝑥

− 𝜇𝜇 
𝑒𝑒𝜇𝜇+

1
2𝜎𝜎

2
 𝑒𝑒2𝜇𝜇+𝜎𝜎2{𝑒𝑒𝜎𝜎2

− 1} 

 
7 

 
Exponential 
 

 
𝑎𝑎𝑒𝑒−𝑎𝑎𝑥𝑥 

 
0 ≤ 𝑥𝑥 ≤ ∞ 

 
𝑎𝑎 

 
1 

 
𝑥𝑥 1

𝑎𝑎
 1

𝑎𝑎2
 

 
8 

 
Gamma 
 

𝑥𝑥
1
𝑏𝑏−1𝑒𝑒−𝑥𝑥

Γ(1
𝑏𝑏)

 

 
0 ≤ 𝑥𝑥 ≤ ∞ 

 
1 

 
d 

 
𝑥𝑥1 𝑏𝑏�  1

𝑑𝑑
�  1

𝑑𝑑
�  

 
9 

 
Rayleigh 
 
 

2𝑥𝑥
𝜆𝜆2
𝑒𝑒−

𝑥𝑥2
𝜆𝜆2 

 
0 ≤ 𝑥𝑥 ≤ ∞ 1

𝜆𝜆2
 

 
1 𝑥𝑥 2   

0.886𝜆𝜆 
 

0.215𝜆𝜆2 
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The Generalized Laplace Double Exponential Distribution is the traditional Laplace 
Distribution L(𝜃𝜃, √2) for the specification 𝑎𝑎 = 1

√2
, d = 1 and the Normal Distribution 

N(𝜃𝜃 = 𝜇𝜇, 2) for the specification 𝑎𝑎 = 1
8
, d = 2. So, L(𝜃𝜃, √2) and N(𝜃𝜃 = 𝜇𝜇, 2) are the two 

specifications of the same Generalized Laplace Double Exponential Distribution. As a 
result, the traditional test procedures were unsuccessful in inferring the samples. So, for 
several shaped distributions under each family of distributions, the sequential tests can play 
correct roles compared to the existing ones. 
 

6. Conclusion  
 
The exiting traditional test statistic as well as the discrimination procedure for the real data 
cannot ensure the correct decision about the genesis for two sampled data sets if these 
samples are drawn from two almost identical shaped real distributions. The present 
likelihood-ratio and Kolmogorov Smirnov test based sequential discrimination procedure 
can properly decide the origin of the two types of samples. For the computations and the 
related graphs, we have used R package. This test can be extended to more than two types 
of samples. 
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