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Abstract
Correlated binary data often arise in epidemiological cohort studies. The risk ratio (RR) is one of

three major useful measures of association for summarizing the results from such epidemiological
cohort studies. In applications, the RR and its complement, the percentage reduction in risk, have
a direct interpretation. This usually measures the relative change in the epidemiological risk due
to the application of the treatment. Standard approaches for estimating RR available in software
packages may lead to biased inferences when applied to a correlated binary data. In this paper, we
develop some simple and efficient inference procedures for estimating RR based on a hybrid method
introduced by Zou (2008) using four existing interval methods for a single proportion for correlated
binary data. A simulation study is conducted to investigate the performance of the proposed meth-
ods, and an application to a toxicological study is used to illustrate the proposed methods.

Key Words: correlated binary data, confidence interval, coverage probability, expected length, risk
ratio

1. Introduction

Correlated binary data frequently arise in a wide range of biomedical applications. For
instance, consider a toxicological study originally studied by Paul (1982). In this study, the
data refer to litters of varying sizes, each litter having a number of abnormalities due to a
control group and low dose. As seen, individuals within the same litter respond alike and
hence are correlated. The number of clusters for this study is moderate with the cluster sizes
ranging 1 to 12. Main purpose of such a study is to determine if the treatment affects the
incidence of abnormalities in live foetuses. In order to determine this inference problem,
some important measures of association such as risk difference (RD), risk ratio (RR) and
relative risk difference (RRD) can be used (see Lui, 2004). The preference of one measure
of association over another in drawing statistical inference depends on the study design. RD
is used in public health issues in which the purpose is to measure the magnitude of excess
mortality attributed to each disease (see Lui, 2004, chapter 2). RR is used in toxicological,
etiological and cohort studies to quantify the strength of association between a given disease
and a suspected risk factor. Although some of the inference procedures for RD and RR have
been developed for correlated binary data, little attention is paid to extending numerous
inference procedures available in literature for a single proportion case. In this paper, we
focus on minimizing this gap by extending some of the recommended procedures for a
single proportion to the ratio of the proportions in two treatment groups.
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Let φi, i = 1, 2 be the proportion of abnormalities in live foetuses who received the
ith treatment. Then estimating RR (η = φ1/φ2) will determine whether the treatment
affects the incidence of abnormalities in live foetuses. We, therefore, need to develop some
efficient inference procedures for estimating η = φ1/φ2 for such a design. In this paper, we
construct several explicit asymptotic two-sided confidence intervals (CIs) for η = φ1/φ2
using the method of variance of estimates recovery (MOVER) proposed by Zou and Donner
(2008) and also known as the square-and-add method introduced by Newcombe (1998).
The basic idea is to recover variance estimates required for the proportion ratio from the
confidence limits for single proportions. The CI estimators for a single proportion, which
are incorporated with the MOVER, will include the CIs proposed by Donner and Klar
(1993), Lee and Dubin (1994), Jun and Ahn (2000), and Saha et al. (2016).

2. Confidence Intervals for the Ratio of Two Individual Proportions

Suppose that we independently sample mi clusters from the ith treatment, i = 1, 2. Let
nij be the number of individuals in the jth cluster, j = 1, . . . ,mi, who received the ith
treatment. Furthermore, suppose that Yij of the nij individuals are total successes by the
ith treatment. Under the usual assumption Yij |pij follows binomial (nij , pij), where pij
is the probability that an individual in the jth cluster was cured by the ith treatment. We
further assume that the binomial probability pij is a random variable having mean φi and
variance φi(1 − φi)θi. The unconditional mean and variance of Yij are then nijφi and
nijφi(1−φi)[1+ (nij − 1)θi], respectively. Note that the parameter φi is the proportion of
an individual who received the ith treatment and the parameter θi is the common intraclass
correlation between the binary observations within each cluster in the ith group. In this
article, the parameter of interest is η = φ1/φ2. In particular, we would like to construct
explicitly simple but efficient confident interval procedures of η as follows.

2.1 Hybrid Method

Basically, the hybrid method is known as the method of variance estimates recovery (MOVER)
proposed by Zou and Donner (2008) and also known as the square-and-add method intro-
duced by Newcombe (1998). Using this approach, two separate confidence intervals for
the two individual success rates are combined to construct a single confidence interval for
the ratio of two success rates, η = φi/φ2. In order to construct a confidence interval for η,
first consider a 100(1− α)% CI for φ1 − φ2, where φ1 and φ2 denote any two parameters
of interest. Let φ̂1 and φ̂2 be two estimates of φ1 and φ2, respectively. By the Central Limit
Theorem, a 100(1− α)% CI for φ1 − φ2 is given by (L∗, U∗), where

L∗ = φ̂1− φ̂2− zα/2
√

var(φ̂1) + var(φ̂2) and U∗ = φ̂1− φ̂2+ zα/2
√

var(φ̂1) + var(φ̂2).

However, this procedure performs well only when sample sizes are sufficiently large or
when the sampling distributions of φ̂i (i = 1, 2) are close to normal distribution. From
the above equations, it can be shown that L∗ and U∗ can be regarded as the minimum and
maximum parameter values that satisfy

[(φ̂1 − φ̂2)− L∗]2

var(φ̂1) + var(φ̂2)
= zα/2 and

[U∗ − (φ̂1 − φ̂2)]2

var(φ̂1) + var(φ̂2)
= zα/2,

respectively. Suppose a 100(1 − α)% CI for φi is (li, ui), i = 1, 2, where li = φ̂i −
zα/2

√
var(φ̂i) implies v̂ar(φ̂i) = (φ̂i − li)

2/z2α/2 under φi ≈ li. Similarly, ui = φ̂i +
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zα/2

√
var(φ̂i) implies v̂ar(φ̂i) = (ui − φ̂i)2/z2α/2 under φi ≈ ui. Based on the possible

values (l1, u1) of φ1 and (l2, u2) of φ2, the values closest to the minimum L and maximum
U are l2−u1 and u2− l1, respectively. As a result, for setting L with φ2 ≈ l2 and φ1 ≈ u1,
we have var(φ̂1) + var(φ̂2) = (u1 − φ̂1)2/z2α/2 + (φ̂2 − l2)2/z2α/2, which gives

L∗ = φ̂1 − φ̂2 −
√
(φ̂2 − l2)2 + (u1 − φ̂1)2. (1)

Similarly, we have

U∗ = φ̂1 − φ̂2 +
√
(u2 − φ̂2)2 + (φ̂1 − l1)2. (2)

Now, let (L,U) be the (1− α)100% confidence interval for η = φi/φ2, that is,

P (L ≤ φ1/φ2 ≤ U) = 1− α.

Equivalently,
P (φ1 − Uφ2 ≤ 0 ≤ φ2 − Lφ1) = 1− α.

For fixed L and U , we apply (1) to φ2 − Lφ1 and (2) to φ1 − Uφ2 and by setting L∗ = 0
and U∗ = 0, we obtain the (1− α)100% confidence interval for η = φi/φ2 as

L =
φ̂1φ̂2 −

√
(φ̂1φ̂2)2 − u2(2φ̂1 − l1)l1(2φ̂2 − u2)

u2(2φ̂2 − u2)
(3)

and

U =
φ̂1φ̂2 +

√
(φ̂1φ̂2)2 − u1(2φ̂1 − u1)l2(2φ̂2 − l2)

l2(2φ̂2 − l2)
, (4)

where φ̂1 and φ̂2 are the estimates of φ1 and φ2, respectively.
It is easily seen that to obtain a 100(1 − α)% MOVER based confidence interval for

η = φ1/φ2 using Equations (3) and (4), one needs two separate 100(1 − α)% confidence
intervals: (l1, u1) for φ1 and (l2, u2) for φ2. Saha, Miller and Wang (2015) investigated
the problem of confidence intervals for a single proportion for clustered binary data. Based
on their analysis, they recommended the Wilson score and the profile likelihood methods.
There are three other approaches available in literature to obtain the confidence intervals
(li, ui) for φi, which are included here as well. The formulae for these confidence intervals
are briefly discussed as follows.

2.1.1 The Wilson score interval

The natural estimator of φi (i = 1, 2) can easily be obtained as the overall sample propor-
tion φ̂i = /ni., where Yi. =

∑mi
j Yij and ni. =

∑mi
j nij . The variance of φ̂i is given by

Var(φ̂i) = φi(1− φi)ξi/ni., where ξi =
∑
nij [1 + (nij − 1)θi]/ni.. Using the central limit

theorem, it can be shown that n1/2i. (φ̂i−φi)/
√
φi(1− φi)ξ̂i converges in distribution to the

standard normal distribution as k →∞, where ξ̂i is obtained by replacing θi by its estimate
θ̂i. Then, the approximate 100(1−α)% Wilson confidence interval for φi is the root of the
quadratic equation

P (ni.(φ̂i − φi)2/[φi(1− φi)ξ̂i] ≤ z2α/2) = 1− α.
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After some straightforward algebra, it can be obtained as

WI : (li, ui) = φ̃i ±
zα/2
ñi.

√
ni.φ̂i(1− φ̂i)ξ̂i +

ξ̂2i z
2
α/2

4
,

where

φ̃i =
ni.φ̂i + 0.5ξ̂iz

2
α/2

ni. + ξ̂iz2α/2
=
Yi. + 0.5ξ̂iz

2
α/2

ni. + ξ̂iz2α/2
and ñi. = ni. + ξ̂iz

2
α/2.

It is worthwhile to note here that for non-clustered data when there is no cluster effect,
that is, θi = 0 (or ξi = 1) the same intervals are produced (see, for example, Newcombe,
1998). The estimate θ̂i can be obtained using the analysis of variance (ANOVA) method,
which is given by θ̂ai = (BMSi −WMSi)/[BMSi + (n∗i − 1)WMSi], where BMSi =
[
∑
j Y

2
ij/nij−(

∑
j Yij)

2/
∑
j nij ]/(k−1) andWMSi = [

∑
j Yij−

∑
Y 2
ij/nij ]/

∑
j(nij−

1) are the between mean-squared and within mean-squared errors, respectively, and n∗i =
[(
∑
j nij)

2 −
∑
j n

2
ij ]/[(k − 1)

∑
j nij ]. Therefore, one can obtain Wilson CIs for φi (i =

1, 2) using the above interval (li, ui) by substituting ANOVA estimate of θi in the equation
for ξ̂i above. We denote this interval as HB1.

2.1.2 The CI based on PL

A profile likelihood based confidence interval approach has been shown to provide accurate
results when computing confidence limits for a single proportion (Newcombe, 1998) or the
difference between two proportions (Pradhan et al., 2014) in the case of non-clustered
binary data. Let l(φ, ψ) be the log-likelihood function, where φ is the parameter of interest
and ψ is the nuisance parameter. Also, let lp(φ) = l(φ, ψ̂(φ)) be the profile likelihood for
φ, where ψ̂(φ) is obtained from the reduced model with respect to ψ keeping φ fixed. Then
the approximate 100(1 − α)% profile likelihood (PL) based confidence interval for φ is
given by

{φ : lp(φ) ≥ l(φ̂, ψ̂)−
1

2
χ2
1,α}, (5)

where φ̂ and ψ̂ are the estimates of φ and ψ in the full model and χ2
1,α is the 100(1 − α)

percentile of a chi-squared distribution with one degree of freedom. Due to a superior
model for clustered binary data, we consider the beta-binomial model in order to obtain
the PL based confidence interval for φ. Consequently, the log-likelihood function for the
beta-binomial model, apart from a constant, is given by

l(φ, ψ) =

m∑
i=1

[
yi−1∑
j=0

ln{(1− ψ)φ+ jψ}+
ni−yi−1∑

j=0

ln{(1− φ)(1− ψ) + jψ} −
ni−1∑
j=0

{(1− ψ) + jψ}

]
.

The maximum likelihood estimates φ̂ and ψ̂ of φ and ψ are obtained by solving the fol-
lowing estimating equations

∂l

∂φ
=

m∑
i=1

{
yi−1∑
r=0

1− ψ
(1− ψ)φi + rψ

−
ni−yi−1∑

r=0

1− ψ
(1− ψ)(1− φi) + rψ

} = 0

and

∂l

∂ψ
=

m∑
i=1

{
yi−1∑
r=1

−φi + r

(1− ψ)φi + rψ
+

ni−yi−1∑
r=0

−(1− φi) + r

(1− ψ)(1− φi) + rψ
−

ni−1∑
r=0

r − 1

(1− ψ) + rψ
} = 0

simultaneously. Finally, the interval limits can be obtained by finding the two roots of the
above equation (5), one in the interval (0, φ̂) and the other in the interval (φ̂, 1), using either
the bisection method or Brent’s method.
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2.1.3 Confidence Interval Based on Donner and Klar Approach

As we discussed earlier, the natural estimator of φi is φ̂i = Yi./ni., where Yi. =
∑mi
j=1 Yij

and ni. =
∑mi
j=1 nij . Donner and Klar (1993) also used the natural estimator φ̂i (i = 1, 2),

but they estimated the variance of φ̂i by incorporating the dependence of the responses
within each subject which is given by

v̂arDK(φ̂i) =
φ̂i(1− φ̂i)[1 + (

∑mi
j=1 n

2
ij/ni. − 1)ψ̂i]

ni.
,

where ψ̂i is the ANOVA estimate of ψi. It can then be shown that (φ̂i − φi)/
√

v̂arDK(φ̂i)
is asymptotically N(0, 1) as mi → ∞. Thus, an approximate 100(1 − α)% confidence
interval for φi is obtained as

LDK = φ̂i − z1−α/2
√

v̂arDK(φ̂i)

and
UDK = φ̂i + z1−α/2

√
v̂arDK(φ̂i).

2.1.4 Confidence Interval Based on Lee and Dubin Approach

Lee and Dubin (1994) proposed a weighted estimator of φi (i = 1, 2) by assigning equal
weights to the clusters regardless of the cluster sizes, which is given by φ̂ewi =

∑mi
j=1 φ̂ij/mi,

where φ̂ij = Yij/nij (j = 1, . . . ,mi; i = 1, 2) is the estimator of φij from the ith
subject. Then the variance estimate of φ̂ewi is obtained as v̂arDK(φ̂ewi ) =

∑mi
j=1(φ̂ij −

φ̂ewi )2/[mi(mi − 1)]. It follows that ((φ̂ewi − φi)/
√

v̂arLD(φ̂ewi ) is asymptotically N(0, 1)
as mi →∞. Thus, an approximate 100(1− α)% confidence interval for φi is obtained as

LLD = φ̂ewi − z1−α/2
√

v̂arLD(φ̂ew1 )

and
ULD = φ̂ewi + z1−α/2

√
v̂arLD(φ̂ew1 ).

2.1.5 Confidence Interval Based on Jun and Ahn Approach

Jun and Ahn (2000) used another weighted estimator of φi (i = 1, 2) by minimizing
the variance of the estimator of φi (i = 1, 2). This weighted estimator of φi (i = 1, 2)
may be interpreted as a generalized estimating equation estimator using the true exchange-
able correlation structure, and is given by φ̂wi =

∑mi
j=1wijφ̂ij , where φ̂ij = Yij/nij and

wij = [nij{1+ (nij − 1)ψ̂i}−1]/
∑mi
j=1[nij{1+ (nij − 1)ψ̂i}−1] (j = 1, . . . ,mi; i = 1, 2)

are the weights obtained by minimizing the variance of φ̂wi based on the true exchangeable
correlation structure. Note that ψ̂i (i = 1, 2) is the ANOVA estimator of the intraclass
correlation coefficients which can provide negative estimates when the true intraclass cor-
relation coefficients are close to 0 and the number of clusters is small. In such a case,
we truncate the ANOVA estimate of ψi at 0 since the true intraclass correlation coefficient
ψi should be nonnegative under the exchangeable condition. The variance estimate of φ̂wi
can be obtained as v̂arJA(φ̂wi ) = φ̂wi (1 − φ̂wi )/

∑mi
j=1[nij{1 + (nij − 1)ψ̂i}−1]. Then an

approximate 100(1− α)% confidence interval for φi is obtained as

LJA = φ̂wi − z1−α/2
√

v̂arJA(φ̂wi )

and
UJA = φ̂wi + z1−α/2

√
v̂arJA(φ̂wi ).
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3. Simulations

In this section, we investigate the performance of the small and moderate sample behavior
of the proposed methods in terms of observed coverage probability and average interval
length using the pre-assigned confidence level of 95%.

We considered the number of clusters k = 20, 30, 50 with mean cluster size, m =
10, 50, 100, and the response probability φ1 = 0.2 and η = 1, 2, 4. Based on historical
data in biomedical applications, the intraclass correlation coefficients for two groups were
set as: (0.1, 0.1) , (0.5, 0.5), (0.1, 0.25), (0.25, 0.5). We generated data Yij based on the
beta-binomial distribution and generated 10,000 data sets for each assessment.
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Figure 1: The coverage probability and the expected width of the 95% nominal confidence
interval for η = φ1/φ2 are shown based on all methods discussed in Section 2. Boxplots
were constructed using all combinations of parameters discussed in Section 3.

The observed coverage probability (CP) and the expected interval length (EL) for two-
sided confidence intervals (lj , uj) for η = φ1/φ2 were obtained by

CP =

∑10000
t=1 I(lt ≤ η ≤ ut)

10000
and EL =

∑10000
t=1 (ut − lt)

10000
,

where I = 1 if lt ≤ η ≤ ut, and I = 0, otherwise. The results are reported in Figure 1

from which we make the following observations:

• The CPs of HB2, HB3, and HB4 are nearly identical, while HB1 has reasonability
close to the nominal level.

• HB1 provides better coverage than the other three methods and maintains coverage
close to the nominal level.

• All four methods tend to have similar ELs; however, the HB3 tend to have smaller
ELs compared to the other methods.

4. Example of A Toxicological Study

We revisit the example of estimating the risk ratio η = φ1/φ2 to determine whether the
treatment affects the incidence of abnormalities in live foetuses. Some summary statistics
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for the data set are presented in Table 1. From Table 1, we see that the mean cluster sizes
are almost the same and the estimated probabilities for low and control dose groups are
also the same, that is, the estimated risk ratio is almost 1. The distributions of cluster-
level proportions for both treatment groups are shown in Figure 2 which indicates that the
distributions are highly skewed.

Table 1: Summary statistics for the data set in a toxicological study

Toxicological
Treatments # of subjects # of clusters mean cluster size success rate

Control, C 215 27 7.962 0.134

Low Dose, L 133 19 7.00 0.135
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Figure 2: The distributions of cluster-level proportions for both treatment groups in a tox-
icological study.

The 95% confidence intervals for the risk ratio η = φ1/φ2 obtained using the proposed
methods are given in Table 2. It is seen from Table 2 that all four confidence intervals
include zeros, showing that there are no statistical significance that the treatment affects
the incidence of abnormalities in the live foetuses. As expected due to positive correlation
within each litter, our proposed method HB1 shows the shorter width compared to the
methods discussed here.

5. Conclusion

This paper proposed four methods to construct the confidence intervals for the success
ratio η = φ1/φ2 for a correlated binary data based on the hybrid procedure using the two
separate CIs for a single proportion. The results of a simulation study suggest that the
proposed HB1 method generally perform well as its observed CPs are close to the nominal
coverage level. Although HB3 generally has shorter ELs in most of the data scenarios
considered here, it suffers seriously to maintain the expected coverage probability. We,
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Table 2: The 95% confidence intervals for φ1/φ2 obtained using the HB1, HB2, HB3 and
HB4 methods.

Comparison
Method Lower Limit Upper Limit Length
HB1 0.462 2.151 1.689
HB2 0.402 2.509 2.107
HB3 0.476 3.392 2.916
HB4 0.446 2.758 2.312

therefore, recommend the HB1 procedure for the risk ratio η = φ1/φ2 for a correlated
binary data from epidemiological cohort studies or similar fields.
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