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Abstract

The emergence of the novel coronavirus (COVID-19) has generated a need to quickly and
accurately assemble up-to-date information related to its spread. While it is possible to use deaths to
provide a reliable information feed, the latency of data derived from deaths is significant. Confirmed
cases derived from positive test results potentially provide a lower latency data feed. However, the
sampling of those tested varies with time and the reason for testing is often not recorded. Hospital
admissions typically occur around 1-2 weeks after infection and can be considered out of date in
relation to the time of initial infection. The extent to which these issues are problematic is likely to
vary over time and between countries.

We use a machine learning algorithm for natural language processing, trained in multiple lan-
guages, to identify symptomatic individuals derived from social media and, in particular Twitter, in
real-time. We then use an extended SEIRD epidemiological model to fuse combinations of low-
latency feeds, including the symptomatic counts from Twitter, with death data to estimate param-
eters of the model and nowcast the number of people in each compartment. The model is imple-
mented in the probabilistic programming language Stan and uses a bespoke numerical integrator.
We present results showing that using specific low-latency data feeds along with death data provides
more consistent and accurate forecasts of COVID-19 related deaths than using death data alone.

Key Words: Bayesian Inference, Epidemiological Modelling, COVID-19, Stan, MAE, NEES

1. Introduction

The novel coronavirus (COVID-19), has at the time of writing, resulted in over 4.55 mil-
lion deaths and 219 million confirmed cases worldwide as of 6th October 2021. By January
2020, new cases had been seen throughout Asia, and by the time the World Health Organ-
isation (WHO) declared a global pandemic in March 2020, COVID-19 had spread to over
100 countries. Therefore, it was imperative to establish reliable data feeds relating to the
pandemic so that researchers and analysts could model the ongoing spread of the disease
and inform decision-making by government and public health officials. These data sets
and models must be open-source to facilitate collaboration between researchers and allow
for published results to be replicated and scrutinised. A popular interactive dashboard that
collates total daily counts of confirmed cases and deaths for countries, and in some cases,
regions within countries exists here [1]. These variables are traditionally used to calculate
metrics such as the reproduction number (Rt), which is vital in understanding both the
number of people on average an infected person infects and the infection growth rate or
daily rate of new infections. The quality of the metrics calculated is heavily dependent on
the model and ingested data.

In the United Kingdom (UK), there has been a joint effort to produce estimates of the
(Rt) number, with some notable examples seen here [2]. Laboratory-confirmed COVID-19
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diagnoses are used in [3], UK’s National Health Service (NHS) Pathways data is used in
[4] and hospital admissions data is used in [5]. The statistical model developed by Moore,
Rosato and Maskell [6] contributed to these estimates by incorporating death, hospital ad-
mission and NHS 111 call data.

Terms such as “Infodemiology”, and “Infoveillance” described in [7] refer to the abil-
ity to process and analyse data that is created and stored digitally in real-time pertinent
to disease outbreaks. The availability of these datasets, particularly at the beginning of
an outbreak when very little is known, could provide a noisy but accurate representation
of disease dynamics. A popular method includes extracting data from social media and,
in particular, Twitter. Before the pandemic, tweets relating to influenza-like-illness symp-
toms were seen to substantially improve the models predicting capacity in [8] and boost
nowcasting accuracy by 13% in [9]. In relation to the COVID-19 pandemic, there have
been many research papers published that use social media to gain valuable information
relating to the pandemic from what people tweet in real-time. Public sentiment relating to
prevention strategies was analysed in [10] while [11] showed that emotion changed from
fear to anger during the first stages of the pandemic. Misinformation and conspiracy the-
ories have been shown to have propagated rapidly through the Twittersphere during the
pandemic [12]. Studies have used machine learning algorithms to automatically detect
tweets containing self-reported symptoms mentioned by users [13] with [14] finding that
the symptoms reported by Twitter users were similar to those used in a clinical setting. To
the best of our knowledge, researchers have yet to use these symptomatic tweets to calibrate
epidemiological models.

The contribution of this paper is twofold: firstly, we outline how to identify symp-
tomatic tweets that correspond to COVID-19 related symptoms in multiple languages.
The geolocation information associated with each tweet, when available, is extracted, and
counts per country or region are aggregated to produce estimates for the previous 24 hours.
Secondly, we present a comprehensive study of how these symptomatic tweets differ from
other open-source datasets when used to calibrate the extended SEIR model described in
section 3 for different geographic locations. When incorporating the surveillance data,
outlined in section 2, the Mean Absolute Error (MAE) and Normalised Estimation Error
Squared (NEES) values are calculated when making 7-day death forecasts.

An outline of the paper is as follows. In Section 2 we describe the open-source data
feeds included in the comparative study and provide the methodology for extracting the
symptomatic tweets in real-time. A description of the model is presented in Section 3, with
an outline of the computational experiments and results in Section 4. Concluding remarks
and directions for future work are described in Section 5.

2. Data

The surveillance data used for each geographical location are summarised in Table 1. Death
and positive case data for the US States and the rest of the world were downloaded from
the dashboard operated by the Johns Hopkins University Center for Systems Science and
Engineering (JHU CSSE) [1]. It should be noted that testing methods and criteria for
classifying deaths as COVID-19-related differ between geographic locations.

For NHS region-specific data, the number of deaths includes individuals with COVID-
19 as the cause of death on their death certificate or those who died within 60 days of a
positive test result. Patients admitted to hospital with COVID-19 symptoms and individ-
uals that input symptoms to the ZOE COVID Symptom Study app comprise the hospital
admissions and Zoe app datasets, respectively. Individuals that reported symptoms via the
NHS Pathways triage and online Dashboard comprise the 111 calls and 111 online assess-
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Table 1: Data Sources

Geographic Location Data Feed Start Date Reference

U.S States and the rest of the world Deaths 24th March 2020 [1]
Tests 1st March 2020 [1]

Twitter 13th April 2020 Section 2.1
U.K NHS Regions Deaths 24th March 2020 [16]

Hospital admissions 19th March 2020 [17]
Twitter 9th April 2020 Section 2.1
Zoe app 12th May 2020 [18]
111 calls 18th March 2020 [19]

111 online 18th March 2020 [19]

ments datasets, respectively. Note that the Zoe app, 111 calls and 111 online assessments
may include individuals who have COVID-19 symptoms but have not tested positive and
individuals who perceive they have symptoms and do not have COVID-19.

All code and datasets can be found on the CoDatMo GitHub repository [15]. The
authors set this up to facilitate the sharing of code, data and ideas when modelling COVID-
19.

2.1 Twitter

We created an interactive website1 that maps symptomatic tweets to geographical locations
with daily counts representing the total amount of symptomatic tweets from the previous
24 hours. Information on how to download the data as a JSON can be found on the website.

2.1.1 Pre-processing

The Twitter streaming API is filtered using keywords that align with COVID-19 symptoms
from the MedDRA database [20] in English, German, Italian, Portuguese and Spanish,
including terms for fever, cough and anosmia. We note that our analysis indicated that
explicit COVID-19 terms (e.g. ‘coronavirus’) rarely related to individuals with symptoms.
Such terms were therefore excluded. Official retweets or tweets beginning with #RT were
removed to avoid duplication of tweets within the dataset.

2.1.2 Symptom Classifier Breakdown

A multi-class support vector machine (SVM) [21] was trained with a set of annotated tweets
that were vectorised using a skip-gram model. The annotated tweets were labelled accord-
ing to the following classes:

1. Unrelated tweet,

2. User currently has symptoms,

3. User had symptoms in the past,

4. Someone else currently has symptoms,

5. Someone else had symptoms in the past.
1https://pgb.liv.ac.uk/∼johnheap/
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Table 2: Performance Measures

Language Number of Data Used Performance Measures
Training Testing F1 Accuracy Precision Recall

English 1105 195 0.85 0.85 0.85 0.85
German 412 260 0.89 0.89 0.90 0.89
Italian 254 260 0.97 0.96 0.97 0.96

Portuguese 3507 619 0.77 0.77 0.78 0.80
Spanish 1530 270 0.82 0.85 0.82 0.85

The sum of tweets in classes 2-5, which is the total number of tweets that mention symp-
toms, was calculated for each 24-hour period. Geo-tagged tweets were mapped to their
location, e.g. the corresponding city, town or village, via a series of tests using shapefiles
of different countries. Previous studies demonstrate that approximately 1.65% of tweets
are geo-tagged [22], where the exact position of the tweeter when the tweet was posted is
recorded using longitude and latitude measurements. For tweets that are not geo-tagged,
we look at the author’s profile to ascertain whether they provide an appropriate location.
We deemed the server offline if there were any 15 minute periods during the previous 24
hours that did not have any recorded tweets. After checking all 96 15 minute periods, the
count in each geographical area was multiplied by a correction factor: reported tweet count
= total tweet count * 96/(96 - downtime periods).

For each language, we labelled the corpus of tweets with native speakers, with the
associated class label and randomly up- and down-sampled under- and over-represented
classes such that the classifier was trained with a balanced dataset. A subset of data was
used to train the classifier before testing it on the remainder. The total number of labelled
tweets used for training and testing of the classifiers and the resulting performance metrics
can be seen in Table 2.

3. Model

We repurpose the statistical model developed by Moore, Rosato and Maskell [6] by tweak-
ing the observation model to be compatible with each group of surveillance data types that
we use to calibrate the model in the computational experiments. We calibrate the model
with a minimum of death data in all experiments, and the associated component of the
observation model is unchanged. We extend the observation model to assimilate the other
types of surveillance data that feature in Table 1, including Twitter and Zoe app data, by
adding an extra component for each additional data type. These extra components of the
observation model, the number of which can change between experiments, mirror the struc-
ture for symptom report data in the original model. More explicitly, we assume for these
extra components that a generic count on day t, xobs (t), has a negative binomial distribu-
tion,

xobs (t) ∼ NegativeBinomial (x (t) , ϕx) , (1)

parameterised by a mean x (t) and overdispersion parameter ϕx.

4. Computational Experiments

The time series we consider begins on 17th February 2020, with the start dates of the data
feeds outlined in Table 1. We consider the end of time in our analysis for the US States and
the rest of the world and NHS regions to be the 1st February 2021 and 7th January 2021,
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respectively. In all cases, we consider a forecast to include seven days. For US states and
the rest of the world, we include three predictions in the analysis; 9th July 2020 to 16th
July 2020, 17th October 2020 to 24th October 2020 and 25th January 2021 - 1st February
2021. The analysis for UK NHS regions includes six predictions; 11th November 2020
to 18th November 2020, 21st November 2020 - 28th November 2020, 1st December - 8th
December, 11th December - 18th December, 21st December - 28th December and 31st
December 2020 - 7th January 2021.

Similar to the experiments in [6], the analysis in this paper was run on the University
of Liverpool’s High-Performance Computer (HPC). Each node has two Intel(R) Xeon(R)
Gold 6138 CPU @ 2.00GHz processors, a total of 40 cores and 384 GB of memory. In
the following experiments, six independent Markov Chains draw 2000 samples each, with
the first 1000 discarded as burn-in. Run-time differs depending on the country and at what
point in the time series the prediction is made, but it typically takes 4.5 hours per Markov
Chain to complete.

We initially calibrate the model solely with death data and produce posterior predictive
distributions of deaths for the following geographic locations independently:

· US: 50 States,

· Rest of World: 2 European and 16 Latin American countries,

· UK: 7 NHS regions.

We consider the final 7-daily deaths in this forecast to be the baseline to compare forecasts
of deaths when incorporating low-latency data feeds. We use two metrics in our analysis
to determine the accuracy of the resulting forecasts. Firstly, we calculate the MAE, which
shows the average error over a set of predictions:

MAE =
1

N

N∑
i=1

(xi − yi), (2)

where N is the number of predictions, and xi and yi are the predicted and true number of
deaths on day i, respectively.

Secondly, we consider the uncertainties associated with the forecasts by assessing the
NEES, which is a popular method in the field of signal processing and tracking [23] and
recently applied to epidemiological forecasts in [6], to determine if the estimated variance
of forecasts from an algorithm differs from the true variance. If the variance is larger
than the true variance, then the algorithm is over-cautious, and if the estimated variance is
smaller than the true variance, it is over-confident. The NEES is defined by:

NEES =
1

N

N∑
i=1

(xi − yi)TCi−1
(xi − yi), (3)

where Ci−1 is the estimated variance at day i, as approximated using the variance of the
samples for that day. If xi is D dimensional, then Ci should be a D × D matrix, and the
NEES should be equal to D if the algorithm is consistent. Therefore, in assessing death
forecasts, an ideal NEES value is D ≈ 1.
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4.1 Results

The NEES values and MAE percentage differences between the baseline, of ingesting
solely deaths, and the incorporation of low-latency data feeds for US States and the rest
of the world and UK’s NHS regions can be seen in Tables 3 and 4, respectively. The results
in these tables are averaged over the prediction periods described in section 4.

When forecasting deaths using the data available from [1], we have shown that cali-
brating the model with tests and tweets gives comparable increases in performance for US
States, however for the rest of the world, tweets give a -17% improvement compared to just
-6% for tests. For US States and the rest of the world, there is an improvement of -5% and
-24%, respectively when tests and tweets are used to calibrate the model. An example of
this improvement can be seen in Figure 1 for the prediction period 25th January 2021 - 1st
February 2021. When comparing the mean sample, outlined in red, incorporating tests and
tweets follows the deaths trend with more accuracy.

When comparing the NEES values for NHS regions in Table 4 against the baseline, it is
evident that including a data feed improves the consistency of forecasts. The exception is
the Zoe App data, which on average, produces estimates that are over-confident. This can
be seen in Figure 2 for the prediction period 31st December 2020 - 7th January 2021. When
comparing the MAE % difference, the results are similar. Ingesting hospital admissions,
111 calls, and 111 online assessments data provides improvements of -22%, -17% and -
22%, respectively. However, there is a more significant difference in the MAE of 124%
when including the Zoe App data than the 2% from including the Tweet data. We perceive
this issue arises because, in the context of these feeds, the symptoms are self-diagnosed.
Consequently, the counts may well include relatively large numbers of people who do not
have COVID-19. We do not currently consider such ‘false alarms’ in the model described
in section 3 but hope to extend it to handle these in the future.
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Colombia deaths forecast: deaths, tests and Twitter data

Figure 1: Deaths forecast for Colombia using solely death data (top) and deaths, tests and
Twitter data (bottom). The orange ribbon is 1 standard deviation from the mean, the red
line is the mean sample and the start of the predictions is the vertical dashed blue line. The
black and green dots are the true deaths.
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London: Zoe App and Deaths, NEES = 6.202

Figure 2: Deaths forecast for London using death and 111 calls data (top) and death and
Zoe App data (bottom). The orange ribbon is 1 standard deviation from the mean, the red
line is the mean sample and the start of the predictions is the vertical dashed blue line. The
black and green dots are the true deaths.

5. Conclusions and Future Work

We have shown that calibrating the epidemiological model outlined in section 3 with cer-
tain low-latency data feeds provides more accurate and consistent nowcasts of daily deaths
when compared with using death data alone.

Incorporating tweets for UK regions does not provide the same level of improvement as
for other geographies. This reduced improvement could be down to many factors, including
the total daily counts for NHS regions being less plentiful than for the US States or the
rest of the world. We used the free Twitter streaming API for this research, which limits
the number of tweets available to download to 1%. However, it is possible to pay for a
Premium API that allows the user to download a higher percentage of tweets. A second
way to potentially increase the hit rate of geo-located tweets is to use natural language
processing techniques, such as those outlined in the review [24], to estimate the location of
the tweet user. Another direction for future work is to train a more sophisticated classifier
such as the Bidirectional Encoder Representations from Transformers (BERT) classifier
[25].

As for the symptom report data in the original model that Moore, Rosato and Maskell
introduce [6], we have assumed that all types of low-latency surveillance data are a weighted
sum of current and lagged instances of the time series of new infections. We want to con-
sider alternative structures for the observation model that link directly to the intermediate
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states of the transmission model in the future.
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Table 3: US States and the rest of the world: nowcasting mean absolute error per ge-
ographic location when using only death data and when using deaths and different low-
latency data feeds.

Geographic Location Deaths Tests Twitter Tests and Twitter
NEES MAE % Diff NEES MAE % Diff NEES MAE % Diff NEES

U.S States
Alaska 0.329 -36 0.334 -29 0.301 -92 0.302

Alabama 0.684 -29 1.874 -29 1.723 -2 1.000
Arkansas 0.275 3 0.317 -1 0.288 -1 0.313
Arizona 0.337 20 0.334 18 0.344 -20 0.244

California 0.611 6 0.709 9 0.802 5 1.206
Colorado 1.886 -25 0.401 -41 0.457 10 1.278

Connecticut 13.406 -8 1.922 -2 0.875 2 11.459
Delaware 3.020 -3 0.918 16 1.046 12 0.727
Florida 0.406 -24 0.179 13 0.353 -20 0.454
Georgia 0.550 9 0.325 41 0.891 -48 0.255
Hawaii 11.459 -12 28.114 -4 24.695 17 10.149
Iowa 19.176 5 7.720 4 1.476 -3 1.600
Idaho 0.914 0 0.809 2 1.791 7 0.986

Illinois 0.573 9 0.350 13 0.319 -116 1.091
Indiana 0.561 -17 0.652 -40 0.781 0 0.481
Kansas 1.021 1 1.037 -2 1.835 1 0.488

Kentucky 0.355 -4 0.374 10 0.548 -15 0.214
Louisiana 0.298 -7 0.305 -2 0.341 9 0.234

Massachusetts 0.351 3 0.342 -3 0.365 14 0.409
Maryland 0.485 -3 0.619 10 0.581 31 0.313

Maine 0.488 1 0.567 -28 0.796 -9 0.952
Michigan 0.592 -6 0.445 -7 0.453 4 0.850
Minnesota 0.683 9 1.019 11 1.200 51 0.747
Missouri 0.810 -7 1.165 -27 1.609 20 0.475

Mississippi 0.683 12 0.721 2 0.997 -15 0.320
Montana 5.034 4 2.244 -1 1.538 -5 5.189

North Carolina 0.908 -1 0.453 9 0.877 -19 0.570
North Dakota 0.513 -32 0.521 -18 0.544 -8 0.661

Nebraska 0.259 5 0.253 7 0.570 5 0.286
New Hampshire 0.252 -74 0.240 -148 0.430 -36 0.288

New Jersey 0.901 -7 0.788 -6 0.926 10 3.177
New Mexico 0.832 -28 0.738 -12 0.969 0 0.489

Nevada 2.129 -24 0.353 -12 0.425 -13 1.904
New York 0.496 31 0.146 3 0.135 -17 0.418

Ohio 0.263 63 0.675 54 0.468 3 0.337
Oklahoma 0.301 -5 0.369 0 0.621 8 0.256

Oregon 0.729 0 1.032 -2 1.692 -4 0.793
Pennsylvania 0.411 -7 0.385 0 0.426 10 0.402
Rhode Island 0.609 -9 0.546 -31 0.446 -2 1.699

South Carolina 2.072 -3 2.157 -4 5.601 -39 0.429
South Dakota 1.259 14 1.080 -2 1.089 2 5.050

Tennessee 0.794 15 1.191 14 1.687 -11 0.600
Texas 0.585 6 0.784 1 0.750 -71 0.706
Utah 0.499 -98 0.716 -127 1.196 13 0.632

Virginia 0.731 -10 0.396 6 0.864 9 0.676
Vermont 0.142 59 0.300 -1 0.163 40 0.043

Washington 0.608 -8 0.561 19 1.787 -1 0.782
Wisconsin 0.842 6 1.028 25 3.921 8 0.850

West Virginia 0.650 -6 0.547 2 1.042 7 0.291
Wyoming 1.939 5 0.951 -15 1.126 25 0.395

Average 1.696 -5 1.409 -6 1.483 -5 1.269
Rest of the World

Argentina 0.567 3 0.695 -17 0.904 -19 0.765
Bolivia 0.339 -85 0.207 -117 0.182 -118 0.195
Brazil 0.396 -4 0.405 11 0.578 4 0.493
Chile 0.371 15 0.439 14 0.506 10 0.425

Colombia 0.154 17 0.243 -46 0.164 -115 0.223
Costa Rica 0.423 6 0.583 18 3.060 2 0.786

Ecuador 0.156 -26 0.195 -99 0.234 -69 0.234
Guatemala 0.557 -19 0.670 -31 0.815 -31 0.713
Honduras 0.405 -8 0.381 -27 0.915 -41 0.541
Mexico 0.766 16 0.939 11 1.100 11 1.110

Nicaragua 0.091 -13 0.207 -24 1.340 -22 0.364
Panama 0.550 -20 0.421 -4 0.451 -7 0.368

Paraguay 0.535 28 0.877 -7 2.615 8 1.473
Peru 0.507 33 0.103 26 1.630 16 0.515

Uruguay 0.619 11 0.742 -13 0.899 -7 0.643
Venezuela 0.610 -14 0.713 -49 0.890 -91 0.603
Germany 0.379 5 0.613 15 2.131 14 1.570

Italy 0.360 17 0.557 29 3.149 34 1.991

Average 0.433 -6 0.500 -17 1.198 -24 0.723
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