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Abstract 
This paper proposes the Hyperbolic Conditional Autoregressive Range (HYCARR) model 
to analyze the long-memory or long-term dependencies of the price range of a financial 
asset. The Conditional Autoregressive Range (CARR) model explains the current 
conditional mean of a price ranges as a function of past conditional mean price range values 
and past prices range data. However, the Auto covariance Function (ACF) of the price 
range series exhibits statistically significance correlation up to far end, which indicates the 
presence of long-memory properties in the finance data. In this paper long-memory 
properties in the price range data are examined.  The standard CARR process accounts for 
short-memory properties in the conditional price range data. The long-memory behavior in 
the return-based models were well explained in the Integer GARCH (IGARCH), 
Fractionally IGARCH (FIGARCH) and Hyperbolic GARCH (HYGARCH) studies. This 
paper mainly focuses on discussing the gap knowledge exists in the long-memory 
properties in the range-based models. Further, the paper examines the non-negativity 
conditions of the HYCARR model for the conditional mean range term are derived. The 
Maximum Likelihood Estimation (MLE) technique is discussed to estimate the proposed 
model. The simulation study is carried out to estimate the finite sample performance of the 
proposed HYCARR model. The empirical study of the HYCARR model is illustrated by 
usingS&P500 index data. 
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1. Introduction 

 
Modelling the volatility is indispensable in better understanding the dynamics of financial 
markets. Financial volatility of asset prices has been discussed extensively in the financial 
and econometric literature over past few decades. Engle (1982) proposed the 
Autoregressive Conditional Heteroscedasticity (ARCH) model to address the complexities 
of time-varying volatility and volatility clustering in the financial time series. In the ARCH 
formulation, the conditional volatility is modeled as a function of past returns. Bollerslev 
(1986) proposed the Generalized Autoregressive Conditional Heteroscedasticity 
(GARCH), which remains one of the most popular volatility models up to date. The 
GARCH model is an extension of ARCH formulation, and it models the conditional 
volatility as a function of lagged squared returns, as well as past conditional variances. Due 
to the fact that ARCH and GARCH models are earned the popularity among researchers as 
a useful tool to explain the real world phenomena and successful method to forecast future 
volatilities, several versions of ARCH /GARCH family models were proposed such as 
Exponential GARCH (EGARCH) by Nelson (1991), Threshold ARCH (TARCH) and 
Threshold GARCH (TGARCH) by Zakoian (1994), GJR-GARCH by Glosten, 
Jagannathan and Runkle (1993), Quadratic GARCH (QGARCH) by Sentana (1995) Etc. 
Since ARCH/GARCH family models aforementioned focus on modeling price returns, 
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they can be identified as examples of return-based volatility models. Engle and Russel 
(1998) proposed the Autoregressive Conditional Duration or ACD to model the time series 
of durational data. 

The price range of an asset is an alternative measure of the financial volatility. Parkinson 
(1980) concluded that the range-based method is far superior to the standard methods based 
on returns. Several researchers (see. Beckers (1983), Kunitomo (1992), and Alizadeh, 
Brandt, and Diebold (2002)) pointed out that range-based volatility estimators are highly 
efficient when compared to the classical volatility proxies that are based on log absolute 
returns or squared returns.  This opened the floor for the range-based volatility models as 
a new class of volatility models that uses range as a measure of price volatility.   

Chou (2005) invented a range-based volatility model called the Conditional Autoregressive 
Range or the CARR model. The CARR model is primarily an ACD process. It is employed 
to explain the price volatility of an asset by considering range of the log prices for a given 
fixed time interval while the ACD process is used to model the time intervals between 
events with positive observations. The CARR model is similar to the standard volatility 
models such as the GARCH model. One distinct difference between the two models is that 
the GARCH model uses rate of return as its volatility measure while the CARR model uses 
range as its volatility measure. The CARR model proposed by Chou is a simple yet efficient 
tool for analyzing the volatility clustering property when compared to the GARCH models. 
For example, Chou (2005) showed that the effectiveness of volatility estimates produced 
by the CARR models is higher than the estimates of standard return-based models such as 
GARCH models. Due to the growing interest and development of the range-based financial 
time series, researchers became invested in analyzing the CARR family models namely, 
Exponential CARR, Weibull CARR, CARR-X (Chou 2005), Asymmetric CARR (Chou 
2006), Threshold ACARR (Ratnayake 2021) etc.  

In time series literature long-memory process or long-range dependent process is defined 
based on its autocovariance function. According to the Palma (2007), if the 
autocovariances of the stationary process are not absolutely summable then the process has 
long-memory. Another method to detect the existence of a long-memory is by checking 
whether the stationary time series process exhibits statistically significant dependence 
between far away observations. Therefore, the long-memory process is displaying a very 
slow decay to zero, or hyperbolic decay autocorrelation function.  Many financial time 
series such as price return, price range, and transaction duration series exhibit long-memory 
properties meaning that autocorrelations of volatilities remain non-zero for very large lags. 
However, the above-mentioned standard ARCH/GARCH models, CARR model, and ACD 
model have exponentially decaying coefficients and absolutely summable exponentially 
decaying autocorrelation function (see. Bollerslev, (1986), Engle and Russel (1998), and 
Chou (2005)) and hence these models are unable to capture the persistence that presents in 
the volatility series.  

Multitudes of time series models were proposed to analyze the long-memory properties in 
return-based model. The Integrated GARCH (IGARCH) by Engle and Bollerslev (1986), 
where the lag coefficients sum to unity. Similar to the ARIMA model, IGARCH process 
is a long-memory process with d=1, where d is the long-memory parameter. Clearly it is 
too restrictive to set d= 0 (standard GARCH) and d=1 (IGARCH). To overcome this 
shortcoming, fractionally integrated (0<d <1) return based models were proposed. The 
term ‘hyperbolic memory’ is therefore preferred to distinguish it from the ‘geometric 
memory’ cases such as GARCH and IGARCH. Following the idea of the fractional 
integrated autoregressive moving average (ARFIMA) model, Baillie, Bollerslev and 
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Mikkeslen (1996) extended the common GARCH model to the Fractional Integrated 
GARCH (FIGARCH) model. The FIGARCH model allows analyzing the slow hyperbolic 
decay present in squared error series using a fractional differencing parameter. Further, the 
FIGARCH model formulated conditional error variance as an infinite series of weighted 
past error variances. The paper also developed the QMLE for the FIGARCH parameters 
and empirically showed that proposed model works well with time series exhibiting long-
range dependencies. Conrad and Haag (2006) proposed the non-negativity conditions for 
the FIGARCH model. The significance of the imposing non-negativity constrains were 
illustrated using exchange rate data (Japanese yen versus U.S. dollar. Davidson (2004) 
proposed the Hyperbolic GARCH (HYGARCH) model that can be viewed as a two-
component GARCH specification with one component being GARCH and the other being 
FIGARCH. The HYGARCH shares with the GARCH model the desirable property of 
covariance stationarity. It also obeys the hyperbolically decaying impulse response 
coefficients as the FIGARCH. Davidson also derived the moment properties for the 
HYGARCH model. However, the FIGARCH process always has infinite variance, and the 
HYGARCH model has a more complicated form. Alternative model to HYGARCH model 
was proposed by Muyi Li, Wai Keung Li, and Guodong Li (2014) and named it as a new 
hyperbolic GARCH (HGARCH) model. The HGARCH model is parsimonious as the 
FIGARCH, and it addresses the issue of the infinite variance of the FIGARCH processes 
by allowing the existence of a finite variance as in HYGARCH model. The above processes 
discuss the long-range dependencies in a return-based setting. Several models were 
proposed to discuss the long-range dependencies present in the durational data. For an 
example, Karanasos (2003) proposed the long-memory ACD (LMACD) process and 
derived its moment properties.  However, to the best of our knowledge, there is no study 
that discussed a range-base long-memory model. This paper aims to fill this gap.   

In this study we propose the long-memory range based conditional heteroscedastic model 
to pick up the persistence in the price range data and name the model as Hyperbolic 
Conditional Autoregressive Range (HYCARR) model. This is a range base alternative of 
HYGARCH which we discussed in the previous section.   

The remainder of the paper organized as follows: Section 2 reviews the standard CARR 
prosses properties and expresses the conditional mean range term as an infinite series of 
past range like to ARCH (∞) in return-based setting. Section 3 introduces the Integrated 
CARR (ICARR) model and Fractionally ICARR (FICARR) model. In section 4, we 
propose Hyperbolic CARR (HYCARR) and HYCARR model of order (1, d,1) model is 
introduced. Non-negativity conditions for the proposed model are presented in section 5. 
Finite sample performance of the proposed HYCARR model is discussed in the simulation 
study in Section 6. Section 7 presents the empirical study based on S&P 500 data followed 
by concluding results in    section 8. 
 

2. The CARR Model 
 

Let us assume a daily time series and say that𝑡𝑡 denotes any trading day, then the maximum 
and minimum logarithmic price of an asset for a given trading day are denoted by 𝑃𝑃𝑡𝑡𝐻𝐻and 
𝑃𝑃𝑡𝑡𝐿𝐿 respectively. Then the price range of an asset is defined as: 𝑅𝑅𝑡𝑡 = 𝑃𝑃𝑡𝑡𝐻𝐻 − 𝑃𝑃𝑡𝑡𝐿𝐿.  

The Conditional Autoregressive Range (CARR) model of order p and q is expressed as: 

𝑅𝑅𝑡𝑡 = 𝜆𝜆𝑡𝑡𝜀𝜀𝑡𝑡, 
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𝐸𝐸(𝑅𝑅𝑡𝑡|ℱ𝑡𝑡−1) = 𝜆𝜆𝑡𝑡 = 𝛾𝛾 + ∑ 𝛼𝛼𝑖𝑖𝑅𝑅𝑡𝑡−𝑖𝑖
𝑝𝑝
𝑖𝑖=1 + � 𝛽𝛽𝑗𝑗𝜆𝜆𝑡𝑡−𝑗𝑗.

𝑞𝑞

𝑗𝑗=1
                  (1) 

Here, 𝜆𝜆𝑡𝑡is the conditional expectation of the price range 𝑅𝑅𝑡𝑡given ℱ𝑡𝑡−1 where ℱ𝑡𝑡−1is the 
information up to time 𝑡𝑡 − 1. Moreover, 𝜀𝜀𝑡𝑡 is the independent and identically distributed 
(i.i.d.) residual series which follows a probability density function 𝑓𝑓𝜀𝜀(. ) (i.e., 𝜀𝜀𝑡𝑡~𝑓𝑓𝜀𝜀(. )) 
with unit mean, such that 𝐸𝐸(𝜀𝜀𝑡𝑡) = 1. 

Let 𝐿𝐿 be the lag operator and it is defined as 𝐿𝐿𝑌𝑌𝑡𝑡 = 𝑌𝑌𝑡𝑡−1,  then the above equation (1) can 
be rewritten as follows: 

𝜆𝜆𝑡𝑡 = 𝛾𝛾 + �𝛼𝛼𝑖𝑖𝐿𝐿𝑖𝑖𝑅𝑅𝑡𝑡

𝑝𝑝

𝑖𝑖=1

+ �𝛽𝛽𝑗𝑗𝐿𝐿𝑗𝑗𝜆𝜆𝑡𝑡

𝑞𝑞

𝑗𝑗=1

, 

𝜆𝜆𝑡𝑡 = 𝛾𝛾 + 𝛼𝛼(𝐿𝐿)𝑅𝑅𝑡𝑡 + 𝛽𝛽(𝐿𝐿)𝜆𝜆𝑡𝑡, 

[1 − 𝛽𝛽(𝐿𝐿)]𝜆𝜆𝑡𝑡 = 𝛾𝛾 + 𝛼𝛼(𝐿𝐿)𝑅𝑅𝑡𝑡, 

             𝐵𝐵(𝐿𝐿)𝜆𝜆𝑡𝑡 = 𝛾𝛾 + 𝛼𝛼(𝐿𝐿)𝑅𝑅𝑡𝑡.                                  (2) 

Here, 𝐵𝐵(𝐿𝐿) = �1−� 𝛽𝛽𝑗𝑗𝐿𝐿𝑗𝑗
𝑞𝑞

𝑗𝑗=1
� = 1 − 𝛽𝛽1𝐿𝐿1 − 𝛽𝛽2𝐿𝐿2 − ⋯𝛽𝛽𝑞𝑞𝐿𝐿𝑞𝑞, and 𝛼𝛼(𝐿𝐿) =

� 𝛼𝛼𝑖𝑖𝐿𝐿𝑖𝑖
𝑝𝑝
𝑖𝑖=1 , are the lag polynomials. 

Let us introduce a stochastic difference component 𝜂𝜂𝑡𝑡, such that 𝜂𝜂𝑡𝑡 = 𝑅𝑅𝑡𝑡 − 𝜆𝜆𝑡𝑡, 
with𝐸𝐸(𝜂𝜂𝑡𝑡) = 0, and 𝑐𝑐𝑐𝑐𝑐𝑐(𝜂𝜂𝑡𝑡 ,𝜂𝜂𝑢𝑢) = 0, 𝑡𝑡 ≠ 𝑢𝑢.Alternatively, the price range series 𝑅𝑅𝑡𝑡 can 
be expressed as an Autoregressive Moving Average (ARMA) process. 

𝑅𝑅𝑡𝑡 = 𝛾𝛾 + �𝜃𝜃𝑖𝑖𝑅𝑅𝑡𝑡−𝑖𝑖

𝑠𝑠

𝑖𝑖=1

+ 𝜂𝜂𝑡𝑡 + �𝜙𝜙𝑗𝑗𝜂𝜂𝑡𝑡−𝑗𝑗

𝑞𝑞

𝑗𝑗=1

, 

Here, 𝑠𝑠 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝, 𝑞𝑞) and 𝜃𝜃𝑖𝑖 = �
𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖  ∶ 𝑖𝑖 ≤ min(𝑝𝑝, 𝑞𝑞)

𝛼𝛼𝑖𝑖  ∶ 𝑞𝑞 < 𝑖𝑖 ≤ 𝑝𝑝
𝛽𝛽𝑖𝑖   ∶ 𝑝𝑝 < 𝑖𝑖 ≤ 𝑞𝑞

and 𝜙𝜙𝑗𝑗 = (−𝛽𝛽𝑗𝑗) ∶  1 ≤ 𝑗𝑗 ≤

𝑞𝑞. Therefore, the CARR process of order p and q can be represented as ARMA process 
of order s and q.  

Let 𝛩𝛩(𝐿𝐿) and 𝛷𝛷(𝐿𝐿)be the lag polynomials such that 𝛩𝛩(𝐿𝐿) = 1 − 𝜃𝜃1𝐿𝐿1 − 𝜃𝜃2𝐿𝐿2 − ⋯−

𝜃𝜃𝑠𝑠𝐿𝐿𝑠𝑠, and 𝛷𝛷(𝐿𝐿) = 1 + 𝜙𝜙1𝐿𝐿1 + 𝜙𝜙2𝐿𝐿2 + ⋯+ 𝜙𝜙𝑞𝑞𝐿𝐿𝑞𝑞 = 1 −� 𝛽𝛽𝑗𝑗𝐿𝐿𝑗𝑗
𝑞𝑞

𝑗𝑗=1
= 𝐵𝐵(𝐿𝐿). The 

following derivation can then be used to set the stationarity, inversibility and non-
reducibility conditions for the CARR process.   

𝛩𝛩(𝐿𝐿)𝑅𝑅𝑡𝑡 = 𝛾𝛾 + 𝛷𝛷(𝐿𝐿)𝜂𝜂𝑡𝑡 . 

Replacing 𝜂𝜂𝑡𝑡 = 𝑅𝑅𝑡𝑡 − 𝜆𝜆𝑡𝑡, 

𝛩𝛩(𝐿𝐿)𝑅𝑅𝑡𝑡 = 𝛾𝛾 + 𝛷𝛷(𝐿𝐿)[𝑅𝑅𝑡𝑡 − 𝜆𝜆𝑡𝑡], 

  𝛷𝛷(𝐿𝐿)𝜆𝜆𝑡𝑡 = 𝛾𝛾 + [𝛷𝛷(𝐿𝐿) − 𝛩𝛩(𝐿𝐿)]𝑅𝑅𝑡𝑡, 

𝐵𝐵(𝐿𝐿)𝜆𝜆𝑡𝑡 = 𝛾𝛾 + [𝐵𝐵(𝐿𝐿) − 𝛩𝛩(𝐿𝐿)]𝑅𝑅𝑡𝑡 . 
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If the roots of the lag polynomial 𝛩𝛩(𝑧𝑧) = 1 − 𝜃𝜃1𝑧𝑧1 − 𝜃𝜃2𝑧𝑧2 − ⋯− 𝜃𝜃𝑠𝑠𝑧𝑧𝑠𝑠, lie outside the 
unit circle, then the CARR process is stationary. Also, if the roots of lag polynomial 
𝐵𝐵(𝑧𝑧) = 1 − 𝛽𝛽1𝑧𝑧1 − 𝛽𝛽2𝑧𝑧2 − ⋯− 𝛽𝛽𝑞𝑞𝑧𝑧𝑞𝑞, lie outside the unit circle and if   𝛩𝛩(𝑧𝑧) ≠
𝐵𝐵(𝑧𝑧)then the CARR process is invertible and non-reducible. If the CARR process 
satisfies the above conditions, then the conditional expectation of the price range (𝜆𝜆𝑡𝑡), 
can be represented as an infinite series of past realization of price range series such 
that: 

𝜆𝜆𝑡𝑡 =
𝛾𝛾

𝐵𝐵(1) + 𝛹𝛹(𝐿𝐿)𝑅𝑅𝑡𝑡 =
𝛾𝛾

𝐵𝐵(1) + �𝜓𝜓𝑖𝑖𝐶𝐶𝐶𝐶𝑅𝑅𝑡𝑡−𝑖𝑖

∞

𝑖𝑖=1

, 

with  

𝛹𝛹𝐶𝐶𝐶𝐶(𝐿𝐿) =
𝐵𝐵(𝐿𝐿) − 𝛩𝛩(𝐿𝐿)

𝐵𝐵(𝐿𝐿) = 1 −
𝛩𝛩(𝐿𝐿)
𝐵𝐵(𝐿𝐿) =

𝛼𝛼(𝐿𝐿)
𝐵𝐵(𝐿𝐿) = �𝜓𝜓𝑖𝑖𝐶𝐶𝐶𝐶𝐿𝐿𝑖𝑖

∞

𝑖𝑖=1

. 

The CARR model has an exponentially decaying Auto Covariance Function (ACF) for the 
price range data and therefore unable to capture the persistence in the conditional mean 
range of such time series. In this situation, the conditional mean is formulated by assigning 
higher weights to the most recent price range information and hence it is categorized as 
short-memory process. However, in practice it is possible to expect a time series of range 
data that exhibits a slow decaying ACF function. Then the regular CARR model does not 
fit for such a data set.  To overcome this shortcoming three long-memory range based 
conditional heteroscedastic models are proposed in this study namely Integrated CARR 
(ICARR) model, Fractionally Integrated CARR (FICARR) model and Hyperbolic CARR 
model (HYCARR). The ICARR and FICARR models are introduced in section 3, but this 
study heavily invested on the HYCARR process. 
  

3. The Integrated CARR (ICARR) model and The Fractionally ICARR 
(FICARR) model. 

 
The Integrated GARCH (IGARCH) model for price return series was formulated by Nelson 
(1990) and the important development of IGARCH is that the sum of the persistence 
parameters equals to 1. Following the IGARCH formulation for return series, the Integrated 
CARR (ICARR) model for price range series can be derived. The ICARR process of p and 
q can be formed by setting the lag coefficients,� 𝜓𝜓𝑖𝑖𝐶𝐶𝐶𝐶 = 1∞

𝑖𝑖=1 . Moreover, it can also be 
written in the form, 

𝛹𝛹𝐼𝐼(𝐿𝐿) = 1 − 𝛩𝛩(𝐿𝐿)
𝐵𝐵(𝐿𝐿)

(1 − 𝐿𝐿) = � 𝜓𝜓𝑖𝑖𝐼𝐼
∞
𝑖𝑖=1 𝐿𝐿𝑖𝑖,                                 (3) 

where, 𝛩𝛩(𝐿𝐿)define accordingly. The resulting ICARR (p, q) model is: 

𝜆𝜆𝑡𝑡 =
𝛾𝛾

𝐵𝐵(1) + �1 −
𝛩𝛩(𝐿𝐿)
𝐵𝐵(𝐿𝐿)

(1 − 𝐿𝐿)� 𝑅𝑅𝑡𝑡 =
𝛾𝛾

𝐵𝐵(1) + �𝜓𝜓𝑖𝑖𝐼𝐼
∞

𝑖𝑖=1

𝑅𝑅𝑡𝑡−𝑖𝑖. 

The FIGARCH model introduced by Baillie, Bollerslev, and Mikkelsen (1996) bought the 
concept of fractional differencing to the GARCH family models. Due to this addition, 
FIGARCH model distinguishes short-memory and long-memory in the return series data. 
The derivation for the Fractionally Integrated CARR (FICARR) model of orders, d, and q 
for range data, follows similar to its return-based counterpart FIGARCH (s, d, q) model.  
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The FICARR model replaces the simple difference in ICARR model given in (3) by using 
a fractional difference term𝑑𝑑,  

𝛹𝛹𝐹𝐹𝐼𝐼(𝐿𝐿) = 1 −
𝛩𝛩(𝐿𝐿)
𝐵𝐵(𝐿𝐿)

(1 − 𝐿𝐿)𝑑𝑑 , 

where, 𝑑𝑑 ∈ (0,1)such that, lim
𝑑𝑑→0

𝛹𝛹𝐹𝐹𝐼𝐼(𝐿𝐿) = 𝛹𝛹𝐶𝐶𝐶𝐶(𝐿𝐿) and lim
𝑑𝑑→1

𝛹𝛹𝐹𝐹𝐼𝐼(𝐿𝐿) = 𝛹𝛹𝐼𝐼(𝐿𝐿).  The 
parameter 𝑑𝑑 becomes the bridge between CARR and ICARR processes.  

By using the hypergeometric function 𝐻𝐻(. ), notations the fractional differencing operator 
(1 − 𝐿𝐿)𝑑𝑑 can be expressed as given bellow. 

(1 − 𝐿𝐿)𝑑𝑑 = 𝐻𝐻(−𝑑𝑑, 1; 1; 𝐿𝐿) = ∑ 𝜋𝜋𝑗𝑗𝐿𝐿𝑗𝑗 .∞
𝑗𝑗=0                                       (4) 

Here,  𝜋𝜋𝑗𝑗 = 𝛿𝛿𝑗𝑗𝜋𝜋𝑗𝑗−1 = ∏ 𝛿𝛿𝑖𝑖
𝑗𝑗
𝑖𝑖=1  with 𝛿𝛿𝑗𝑗 = 𝑗𝑗−1−𝑑𝑑

𝑗𝑗
 for 𝑗𝑗 = 1,2, … and 𝜋𝜋0 = 1, 𝛿𝛿1 =

−𝑑𝑑.Following the representation(4), the fractional difference operator (1 − 𝐿𝐿)𝑑𝑑  and it is 

as follows:(1 − 𝐿𝐿)𝑑𝑑 = � (−𝑑𝑑)𝑛𝑛𝐿𝐿𝑛𝑛

𝑛𝑛!

∞

𝑛𝑛=0
 , with   (−𝑑𝑑)𝑛𝑛 = ∏ (𝑗𝑗 − 1 − 𝑑𝑑)𝑛𝑛

𝑗𝑗=1 , and define 

(−𝑑𝑑)0 = 1. 

As a summary, we can state that both CARR and ICARR processes have a geometric 
convergence rate while the FICARR process has a hyperbolic convergence rate. Further, 
both ICARR and FICARR are long-memory processes in which the conditional mean range 
can be expressed as an infinite series of past range values.  
 

4. The Hyperbolic CARR (HYCARR) Model 
 

Let 𝑅𝑅𝑡𝑡 be the price range of an asset for a given time interval 𝑡𝑡 and 𝜆𝜆𝑡𝑡 is the conditional 
mean range of price given information set up to time 𝑡𝑡 − 1, such that 𝜆𝜆𝑡𝑡 = 𝐸𝐸(𝑅𝑅𝑡𝑡|ℱ𝑡𝑡−1), 
and the residual series 𝜀𝜀𝑡𝑡is independently and identically distributed (i.i.d.) which follows 
a probability density function 𝑓𝑓𝜀𝜀(. ) (i.e., 𝜀𝜀𝑡𝑡~𝑓𝑓𝜀𝜀(. ) ) with unit mean, such that 𝐸𝐸(𝜀𝜀𝑡𝑡) = 1. 
Then the HYGARCH model of order s, d, and q, 

𝑅𝑅𝑡𝑡 = 𝜆𝜆𝑡𝑡𝜀𝜀𝑡𝑡, 

𝜆𝜆𝑡𝑡 = 𝛾𝛾
𝐵𝐵(1) + �1 − 𝛩𝛩(𝐿𝐿)

𝐵𝐵(𝐿𝐿) �1 + 𝜂𝜂�(1 − 𝐿𝐿)𝑑𝑑 − 1���𝑅𝑅𝑡𝑡 = 𝛾𝛾
𝐵𝐵(1)

+ ∑ 𝜓𝜓𝑖𝑖𝐻𝐻𝐻𝐻𝐿𝐿𝑖𝑖𝑅𝑅𝑡𝑡∞
𝑖𝑖=1 .   (5)  

where, 𝑠𝑠 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝, 𝑞𝑞), 𝛩𝛩(𝐿𝐿) = 1 −� 𝜃𝜃𝑖𝑖𝐿𝐿𝑖𝑖
𝑠𝑠
𝑖𝑖=1 ,and 𝐵𝐵(𝐿𝐿) = 1 −� 𝛽𝛽𝑖𝑖𝐿𝐿𝑖𝑖

𝑞𝑞
𝑖𝑖=1 . Here, 𝑑𝑑 ≥ 0, 

and 𝜂𝜂 ⩾ 0. 

𝛹𝛹𝐻𝐻𝐻𝐻(𝐿𝐿) = �1−
𝛩𝛩(𝐿𝐿)
𝐵𝐵(𝐿𝐿) �1 + 𝜂𝜂�(1 − 𝐿𝐿)𝑑𝑑 − 1��� = �𝜓𝜓𝑖𝑖𝐻𝐻𝐻𝐻𝐿𝐿𝑖𝑖

∞

𝑖𝑖=1

. 

The HYCARR coefficients 𝛹𝛹𝐻𝐻𝐻𝐻(𝐿𝐿) can also be decomposed as: 

𝛹𝛹𝐻𝐻𝐻𝐻(𝐿𝐿) = (1 − 𝜂𝜂)𝛹𝛹𝐶𝐶𝐶𝐶(𝐿𝐿) + 𝜂𝜂𝛹𝛹𝐹𝐹𝐼𝐼(𝐿𝐿).                                            (6) 

Here, lim
𝜂𝜂→0

𝛹𝛹𝐻𝐻𝐻𝐻(𝐿𝐿) = 𝛹𝛹𝐶𝐶𝐶𝐶(𝐿𝐿) and lim
𝜂𝜂→1

𝛹𝛹𝐻𝐻𝐻𝐻(𝐿𝐿) = 𝛹𝛹𝐹𝐹𝐼𝐼(𝐿𝐿).This suggests that the HYCARR 

model is nested with the CARR component and the FICARR component depends on the 
parameter 𝜂𝜂. 
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Another way to look at the HYCARR coefficients (𝛹𝛹𝐻𝐻𝐻𝐻(𝐿𝐿)) is by changing the 
differencing parameter𝑑𝑑. In the case where 𝑑𝑑 = 1,that is𝛹𝛹𝐻𝐻𝐻𝐻(𝐿𝐿) = �1 − 𝛩𝛩(𝐿𝐿)

𝐵𝐵(𝐿𝐿)
(1 − 𝜂𝜂𝐿𝐿)�, 𝜂𝜂 

parameter determines whether the HYCARR model falls into CARR model (𝜂𝜂 < 1)or 
ICARR model (𝜂𝜂 = 1). 
 
4.1. The HYCARR (1, d,1) Model 
The HYCARR process of order s, d, and q is presented in the equation (5) and by setting 
s=1, and q=1, the HYCARR (1, d,1) can be derived. Here, 𝛩𝛩(𝐿𝐿) = 1 − 𝜃𝜃𝐿𝐿 and 𝐵𝐵(𝐿𝐿) =
1 − 𝛽𝛽𝐿𝐿. The coefficients of the proposed HYCARR (1, d,1) model can be expressed as 
given bellow: 

𝛹𝛹𝐻𝐻𝐻𝐻(𝐿𝐿) = �1 − 1−𝜃𝜃𝐿𝐿
1−𝛽𝛽𝐿𝐿

[1 + 𝜂𝜂((1 − 𝐿𝐿)1 − 1)]� = � 𝜓𝜓𝑖𝑖𝐻𝐻𝐻𝐻𝐿𝐿𝑖𝑖
∞
𝑖𝑖=1 .                  (7) 

Then the coefficients are, 

𝜓𝜓1𝐻𝐻𝐻𝐻 = 𝜃𝜃 + 𝜂𝜂𝑑𝑑 − 𝛽𝛽,                                                            (8) 

𝜓𝜓2𝐻𝐻𝐻𝐻 = 𝛽𝛽(𝜃𝜃 + 𝜂𝜂𝑑𝑑 − 𝛽𝛽) + 𝜂𝜂𝑑𝑑 �1−𝑑𝑑
2
− 𝜃𝜃�,                                        (9) 

𝜓𝜓3𝐻𝐻𝐻𝐻 = 𝛽𝛽 �𝛽𝛽(𝜃𝜃 + 𝜂𝜂𝑑𝑑 − 𝛽𝛽) + 𝜂𝜂𝑑𝑑 �1−𝑑𝑑
2
− 𝜃𝜃�� + 𝜂𝜂𝑑𝑑 �1−𝑑𝑑

2
� �2−𝑑𝑑

3
− 𝜃𝜃�,                     (10) 

⋮ 

𝜓𝜓𝑘𝑘𝐻𝐻𝐻𝐻 = 𝛽𝛽𝜓𝜓𝑘𝑘−1𝐻𝐻𝐻𝐻 − 𝜂𝜂 �𝑘𝑘−1−𝑑𝑑
𝑘𝑘

− 𝜃𝜃�𝜋𝜋𝑘𝑘−1 = 𝛽𝛽𝜓𝜓𝑘𝑘−1𝐻𝐻𝐻𝐻 − 𝜂𝜂𝜋𝜋𝑘𝑘 + 𝜂𝜂𝜃𝜃𝜋𝜋𝑘𝑘−1, ∀𝑘𝑘 ≥ 2,(11) 

or alternatively, 

𝜓𝜓𝑘𝑘𝐻𝐻𝐻𝐻 = 𝛽𝛽2𝜓𝜓𝑘𝑘−2𝐻𝐻𝐻𝐻 − 𝜂𝜂[𝛽𝛽(𝛿𝛿𝑘𝑘−1 − 𝜃𝜃) + (𝛿𝛿𝑘𝑘 − 𝜃𝜃)𝛿𝛿𝑘𝑘−1]𝜋𝜋𝑘𝑘−2, ∀𝑘𝑘 ≥ 3.(12) 

Here,  𝜋𝜋𝑘𝑘 = 𝛿𝛿𝑘𝑘𝜋𝜋𝑘𝑘−1 = ∏ 𝛿𝛿𝑖𝑖𝑘𝑘
𝑖𝑖=1  with 𝛿𝛿𝑘𝑘 = 𝑘𝑘−1−𝑑𝑑

𝑘𝑘
 for 𝑘𝑘 = 1,2, … and 𝜋𝜋0 = 1, 𝛿𝛿1 = −𝑑𝑑. 

Therefore, it can be showed that the coefficients of the HYCARR (1, d,1) model follows a 
recursive representation, and which is like the HYGARCH (1, d,1) formulation derived by 
Conrad (2010). 

The coefficients of the HYCARR (1, d, 1) model can also be used to establish the necessary 
and sufficient conditions for the non- negativity of the conditional mean range term in the 
HYCARR model.  
 
4.2. The Non-negativity conditions for the HYCARR (1, d, 1) model. 
Since, the HYCARR process models the non-negative range data it is important to 
guarantee that the conditional mean of the price range data to be non-negative. In this 
section we derive the constraints which are the necessary and sufficient conditions to 
ensure the non-negativity of the conditional mean range in HYCARR (1, d,1) process.  

The non-negativity conditions of the conditional variance term in the return based GARCH 
model was first discussed by Nelson and Cao (1992), Baillie, Bollerslev, and Mikkelsen 
(1996), Bollerslev and Mikkelsen (1996), Chung (1999) and Conrad and Haag (2006) for 
the FIGARCH model. Conrad (2010) derived the non-negativity conditions for the 
HYGARCH model. However, there is only a limited number of research work discussing 
the non-negativity of range-based models. For an example Chou (2005) discussed the non-
negativity of the conditional mean term in the CARR process, in another study Chou (2006) 
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presented it for the Asymmetric CARR(ACARR) process, Xie (2017) talked about the non-
negativity in Feedback ACARR (FACARR) model and Ratnayake and Samaranayake 
(2020) derived necessary and sufficient conditions for the Generalized FACARR process.  

Motivated by the initial work presented by Conrad (2010) for the HYGARCH model, we 
present the necessary and sufficient conditions to ensure the non-negativity of the 
conditional mean range term of the HYCARR process is presented. According to the 
equation (5), the conditional mean range (𝜆𝜆𝑡𝑡) of the HYCARR model is expressed as an 
infinite sum of weighted past realization of range values. If the HYCARR coefficients 
(𝜓𝜓𝑖𝑖𝐻𝐻𝐻𝐻) of the above infinite series are non-negative (𝜓𝜓𝑖𝑖𝐻𝐻𝐻𝐻 ≥ 0), then this ensures the non-
negativity conditional mean range term. To guarantee this inequality constraints need to be 
placed on the model parameters. 

First, we look into the case where 0 < 𝜂𝜂 < 1, a sufficient condition for having non-
negative HYCARR coefficients (𝜓𝜓𝑖𝑖𝐻𝐻𝐻𝐻 ≥ 0), is that all the weights of the CARR (𝜓𝜓𝑖𝑖𝐶𝐶𝐶𝐶) and 
the FICARR (𝜓𝜓𝑖𝑖𝐹𝐹𝐼𝐼) are non-negative.The non-negativity of the CARR can be guaranteed 
by following the condition proposed by Chou (2004) and the FICARR can be derived by 
mimicking the non-negativity conditions of FIGARCH by Conrad and Hagg (2006). This 
is a more restrictive sufficient condition. Moreover, it also ignores the scenario where𝜂𝜂 >
1, in which CARR coefficients (𝜓𝜓𝑖𝑖𝐶𝐶𝐶𝐶) on the equation (6) adding negative weights to the 
expression and make doubts about the previous sufficient condition. This is because adding 
a negative CARR weight (𝜓𝜓𝑖𝑖𝐶𝐶𝐶𝐶) to the infinite series given in (6) can still be ended up with 
the non-negative HYCARR coefficients (𝜓𝜓𝑖𝑖𝐻𝐻𝐻𝐻) depending on FICARR weights (𝜓𝜓𝑖𝑖𝐹𝐹𝐼𝐼). In 
the next section we focus on deriving the necessary and sufficient non-negativity 
conditions for the HYCARR (1, d, 1) coefficients (𝜓𝜓𝑖𝑖𝐻𝐻𝐻𝐻) regardless of the non-negativity 
of the 𝜓𝜓𝑖𝑖𝐶𝐶𝐶𝐶 and 𝜓𝜓𝑖𝑖𝐹𝐹𝐼𝐼 coefficients.  

Recall the HYCARR (1, d, 1) model coefficients (𝜓𝜓𝑖𝑖𝐻𝐻𝐻𝐻) can be derived recursively and it 
is presented in equations (8)-(12).  

Theorem 1. The conditional mean of HYCARR (1, d,1) is non-negative a.s. iff 

Case 1:0 < 𝛽𝛽 < 1 

Either 𝜓𝜓1𝐻𝐻𝐻𝐻 ≥ 0 and 𝜃𝜃 ≤ 𝛿𝛿2 or for 𝑘𝑘 > 2 with 𝛿𝛿𝑘𝑘−1 < 𝜃𝜃 ≤ 𝛿𝛿𝑘𝑘 it holds that 𝜓𝜓𝑘𝑘−1𝐻𝐻𝐻𝐻 ≥ 0. 

Case 2:−1 < 𝛽𝛽 < 0 

Either 𝜓𝜓1𝐻𝐻𝐻𝐻,𝜓𝜓2𝐻𝐻𝐻𝐻 ≥ 0 and |𝛽𝛽| ≤ 𝛿𝛿2 or for 𝑘𝑘 > 3 with 𝑓𝑓𝑘𝑘−2 < |𝛽𝛽| ≤ 𝑓𝑓𝑘𝑘−1 it holds that 
𝜓𝜓1𝐻𝐻𝐻𝐻, … ,𝜓𝜓2𝐻𝐻𝐻𝐻 ≥ 0. 

Here,𝜂𝜂  acts as a scaling parameter which does not influence the main argument of the 
theorem 1. The proof of the theorem 1 follows similar arguments as the proof of 
HYGARCH (1, d ,1) in Conrad (2010) and considered the case where parameter 𝜂𝜂 ∈
(−1,0) for the HYGARCH (1, d, 1) model. Full detail of the theorem 1 is presented in the 
full paper based on the HYCARR model. 

Based on the findings of Conrad (2010) for HYGARCH (1, d, 1) process and modifying 
these to the proposed HYCARR (1, d,1) process, we can say that if 𝛽𝛽 is positive (i.e., Case 
1) it suffices to check two conditions and three conditions if𝛽𝛽 is negative (i.e., Case 2) to 
ensure the non-negativity of conditional mean range 𝜆𝜆𝑡𝑡. 
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For an example let consider Case 1 of theorem 1, where 0 < 𝛽𝛽 < 1, and arbitrary pick 𝑘𝑘 =
3.This equivalent to𝜓𝜓1𝐻𝐻𝐻𝐻,𝜓𝜓2𝐻𝐻𝐻𝐻 ≥ 0, and 𝜃𝜃 < 𝛿𝛿3 andprovides the following results, 

𝛽𝛽 − 𝜂𝜂𝑑𝑑 ≤ 𝜃𝜃 ≤ 2−𝑑𝑑
3

 and 𝜂𝜂𝑑𝑑 �𝜃𝜃 − 1−𝑑𝑑
2
� ≤ 𝛽𝛽(𝜃𝜃 − 𝛽𝛽 + 𝜂𝜂𝑑𝑑).                   (13) 

These inequality constraints are coinciding with the modified version of sufficient 
conditions for the HYGARCH (1, d, 1) derived by Conrad (2010). However, these 
sufficient conditions exclude wide range of necessary and sufficient conditions given by 
Theorem 1.  
 
5. Parameter Estimation, In-Sample Performance, and Out of Sample Forecasting 

 
In this section, parameter estimation and forecasting methods for proposed HYCARR 
model are presented. For the illustrative purposes, the Exponential HYCARR 
(EHYCARR) models is introduced and model parameters for the EHYCARR is discussed. 
 
5.1. Parameter Estimation of Exponential HYCARR (EHYCARR) Model 
In this subsection, the EHYCARR model is introduced. Then conditional log likelihood 
function is derived, and finally Maximum Likelihood Estimation (MLE) method is 
employed to estimate the model parameters. 
In the case where residual series 𝜀𝜀𝑡𝑡 , is independently and identically distributed as an 
exponential distribution with unit mean such that,  𝜀𝜀𝑡𝑡~𝑖𝑖. 𝑖𝑖. 𝑑𝑑. exp(1) with 𝐸𝐸(𝜀𝜀𝑡𝑡) = 1, then 
the resulting HYCARR (s, d, q) model is named as Exponential HYCARR (EHYCARR) 
process with order s, d, and q and written as EHYCARR (s, d, q).  
The conditional probability density function of 𝑅𝑅𝑡𝑡|ℱ𝑡𝑡−1~exp (𝜆𝜆𝑡𝑡(𝛀𝛀))and it can be 
expressed as: 

𝑓𝑓(𝑅𝑅𝑡𝑡|ℱ𝑡𝑡−1) = 1
𝜆𝜆𝑡𝑡(𝛀𝛀) 𝑒𝑒𝑚𝑚𝑝𝑝 �−

𝑅𝑅𝑡𝑡
𝜆𝜆𝑡𝑡(𝛀𝛀)�. 

Here, 𝜆𝜆𝑡𝑡(𝛀𝛀) = 𝛾𝛾
𝐵𝐵(1)

+∑ 𝜓𝜓𝑖𝑖𝐻𝐻𝐻𝐻𝐿𝐿𝑖𝑖𝑅𝑅𝑡𝑡∞
𝑖𝑖=1  and 𝛀𝛀 = (𝜷𝜷,𝜽𝜽, 𝛾𝛾, 𝜂𝜂,𝑑𝑑)′ ⊂ ℝ𝑞𝑞+𝑠𝑠+3 is the parameter 

vector, such that 𝜷𝜷 = �𝛽𝛽1, … ,𝛽𝛽𝑞𝑞�
′ ∈ ℝ𝑞𝑞 and 𝜽𝜽 = (𝜃𝜃1, … ,𝜃𝜃𝑠𝑠)′ ∈ ℝ𝑠𝑠.  

Then the conditional log likelihood function of EHYCARR (s, d, q) is derived as follows: 
𝐿𝐿𝐿𝐿𝐿𝐿(𝛀𝛀|ℱ𝑡𝑡−1) = −∑ �𝑙𝑙𝑙𝑙𝜆𝜆𝑡𝑡(𝛀𝛀) + 𝑅𝑅𝑡𝑡

𝜆𝜆𝑡𝑡(𝛀𝛀)�∀𝑡𝑡 .                                  (14) 

Note that the EHYCARR process, 𝜓𝜓𝑖𝑖𝐻𝐻𝐻𝐻 is a function of 𝛀𝛀and 𝜆𝜆𝑡𝑡(𝛀𝛀) is an infinite series of 
weighted average of past range values (𝑅𝑅𝑡𝑡). In practice some pre sample values must be 
assigned to initiate the recursion for the conditional mean function. Here, the pre sample 
values of 𝑅𝑅𝑡𝑡 for 𝑡𝑡 ≤ 0,by the unconditional mean range 𝜇𝜇1 (Similar argument was made 
by Davidson (2004) for FIGARCH process). Then the resulting conditional mean function 
and conditional log likelihood function are 𝜆𝜆𝑡𝑡� (𝛀𝛀)and𝐿𝐿𝐿𝐿𝐿𝐿� (𝛀𝛀|ℱ𝑡𝑡−1) respectively. Final 
approach here is to maximize the log likelihood function conditional on these pre sample 
values using MLE technique and resulting vector �𝛀𝛀�� can be defined as: 

𝛀𝛀� = arg𝑚𝑚𝑚𝑚𝑚𝑚 𝐿𝐿𝐿𝐿𝐿𝐿� (𝛀𝛀|ℱ𝑡𝑡−1).                                          (15) 
 
5.2.  In-Sample Performance  
After estimating the HYCARR model parameters �𝛀𝛀��, then the price range values can be 
predicted as 𝑅𝑅�𝑡𝑡 ≈ 𝜆𝜆𝑡𝑡�𝛀𝛀��. Next, in-sample performance of the proposed long-memory 
HYCARR model is measured, and it is compared with short-memory CARR model by 
using the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE) values.    
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𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸 = �∑ (𝑅𝑅𝑡𝑡−𝑅𝑅�𝑡𝑡)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 and 𝑅𝑅𝑀𝑀𝑀𝑀𝐸𝐸 = ∑ |𝑅𝑅𝑡𝑡−𝑅𝑅�𝑡𝑡|𝑁𝑁

𝑖𝑖=1
𝑁𝑁

.                                (16) 

Here, tR is the price range at time t,  tR  be the predicted price range at time t and in-sample 
size is denoted by 𝑁𝑁. 
 
5.3. Out-of-Sample Forecasting 
Under out of sampling forecast, we use the rolling window approach to forecast out-of-
sample value. In the rolling window approach, first we divided the entire sample period 
(sample size =T) into two periods namely in-sample period (in-sample size=N<T) and out-
of-sample period (out-of-sample size =T-N). The first one-step-ahead out-of-sample 
forecasting is carried out using the all the N in-sample data. The method is given bellow:  

Let define, 𝑅𝑅1:𝑁𝑁(1)be the one step ahead forecast (based on in-sample data i.e., 
1stobservation to Nth observation)of 𝑅𝑅𝑁𝑁+1where𝑅𝑅𝑁𝑁+1 = 𝜆𝜆𝑁𝑁+1𝜀𝜀𝑁𝑁+1 and 𝐸𝐸(𝑅𝑅𝑁𝑁+1|ℱ𝑁𝑁) =
𝜆𝜆𝑁𝑁+1. Therefore, one step ahead forecast value ( )1: 1NR can be estimated by using the 

𝜆𝜆𝑁𝑁+1�𝛀𝛀�� : 

𝜆𝜆𝑁𝑁+1�𝛀𝛀�� = �
𝛾𝛾�∗ + ∑ 𝜓𝜓�𝑖𝑖𝐻𝐻𝐻𝐻𝑅𝑅𝑁𝑁+1−𝑖𝑖𝑘𝑘

𝑖𝑖=1                                ∶ 𝑘𝑘 ≤ 𝑁𝑁
𝛾𝛾�∗ + ∑ 𝜓𝜓�𝑖𝑖𝐻𝐻𝐻𝐻𝑅𝑅𝑁𝑁+1−𝑖𝑖𝑁𝑁

𝑖𝑖=1 + �̂�𝜇 ∑ 𝜓𝜓�𝑖𝑖𝐻𝐻𝐻𝐻𝑘𝑘
𝑖𝑖=𝑁𝑁+1 ∶ 𝑘𝑘 > 𝑁𝑁

.                        (17) 

Here �̂�𝜇 = ∑ 𝜆𝜆𝑡𝑡𝑁𝑁
𝑡𝑡=1
𝑁𝑁

, and k is the number of previous lags that we use to calculate the weighted 
sum of range series. After calculating the forecasted value for the (N+1)th observation (i.e., 
𝑓𝑓𝑁𝑁+1 = 𝑅𝑅1:𝑁𝑁(1)), the sample window is moved to (2: N+1) to forecast (N+2)th observation 
(i.e., 2Nf + ). Next, we considered the window of (2: N+1) as the new in-sample data and 
recalculated the model parameters based on this new data. After the estimation, the 
estimated parameters were applied to the one step ahead forecasting method in equation 
(20) to calculate ( )2: 1 1NR +  which the forecasted value is for 2Nf + . This process is repeated 
until all the future values are estimated in the out-of-sample data. Moreover, to check the 
forecasting accuracy of the proposed HYCARR model with CARR models DM test was 
used (See. Diebold & Marino, 1995). 
 

6. Simulation Study 
 

In this section, we conduct a simulation study to examine the finite sample performance of 
the Maximum Likelihood Estimation (MLE) method discussed in the previous section. In 
this simulation study two time series lengths 𝑙𝑙 = 2000, and 𝑙𝑙 = 4000 are considered and 
each time series are 𝑅𝑅 = 500times replicated. As discussed in Conrad (2010), to avoid the 
initial value issue first 6000 observations are discarded.  Therefore, for each time series 
𝑙𝑙 + 6000 observations are generated. For the demonstration purpose, the EHYCARR 
process is considered to generate the data. 

First, we generate range data by using EHYCARR (1, d,1) process as follows: 

𝑅𝑅𝑡𝑡 = 𝜆𝜆𝑡𝑡𝜀𝜀𝑡𝑡, and 𝜆𝜆𝑡𝑡 = 𝛾𝛾∗ + ∑ 𝜓𝜓𝑖𝑖𝐻𝐻𝐻𝐻𝑅𝑅𝑡𝑡−𝑖𝑖𝑘𝑘
𝑖𝑖=1 . 

In this simulation study,𝜀𝜀𝑡𝑡 is i.i.d. random error term which follows an exponential 
distribution with unit mean and the resulting model is EHYCARR process.  
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In the EHYCARR process conditional mean range 𝜆𝜆𝑡𝑡, is modeled as a weighted sum of 
infinite series of past range values but in practice this is an impossible to reach. Therefore, 
reasonable number of past lags are considered to model the 𝜆𝜆𝑡𝑡term. This number of 
(truncation) lags is denoted by 𝑘𝑘 in this study 𝑘𝑘 is set to 1000. Weighted coefficients 
𝜓𝜓𝑖𝑖𝐻𝐻𝐻𝐻are calculated recursively as mentioned in the equations (12) and (13) (or alternatively 
(14)). As mentioned in the earlier section when 𝑡𝑡 ≤ 0, replace 𝑅𝑅𝑡𝑡 by the unconditional 
mean range value 𝜇𝜇1 and after generating 𝑙𝑙 + 6000 observations first 6000 values are 
dropped to avoid the pre sample complications. The conditional log likelihood function 
(17) is maximized by using ‘nloptr’ package in R software to estimate the model 
parameters. The accuracy of the estimates is evaluated using the Mean Absolute Error 
Deviation (MAED) which is formulated as𝑅𝑅𝑀𝑀𝐸𝐸𝑀𝑀(Ω) = ∑ �Ω−Ω�𝑖𝑖�

𝑀𝑀
𝑀𝑀
𝑖𝑖=1 , where Ω is the 

parameter of interest and Ω�𝑖𝑖 is the estimated parameter value at ith iteration.  The simulation 
result for EHYCARR (1, d,1) is presented in Table 1. 

According to the simulation results given in table 1, MLE procedure estimate the model 
parameters with quite accurate. In the case where 𝜂𝜂 close to 1, estimated values have lower 
MADE when compared to the mid-range values of  𝜂𝜂. For higher time series length 
parameters are estimated with higher accuracy.   
 

 
Table 1: Means of MLE estimates and MADE (within parentheses) for EHYCARR 

model with order (1, d,1) 
 

 𝜸𝜸 𝜽𝜽 𝜷𝜷 𝒅𝒅 𝜼𝜼 

True 
parameter 

0.01 0.20 0.45 0.50 0.95 

𝑙𝑙 = 2000 0.0138 
(0.0055) 

0.1642 
(0.0799) 

0.4885 
(0.1249) 

0.5900 
(0.1257) 

0.9318 
(0.0375) 

𝑙𝑙 = 4000 0.0118 
(0.0033) 

01759 
(0.0580) 

0.4592 
(0.0903) 

0.5405 
(0.0783) 

0.9400 
(0.0275) 

True 
Parameter  

0.01 0.40 0.30 0.10 0.15 

𝑙𝑙 = 2000 0.0101 
(0.0067) 

0.3513 
(0.1407) 

0.2810 
(0.1460) 

0.1224 
(0.1412) 

0.2095 
(0.1883) 

𝑙𝑙 = 4000 0.0100 
(0.0006) 

0.3670 
(0.1218) 

0.2924 
(0.1211) 

0.1330 
(0.1436) 

0.2223 
(0.1861) 

True 
Parameter  

0.01 0.30 0.40 0.80 0.35 

𝑙𝑙 = 2000 0.0098 
(0.0006) 

0.2574 
(0.0931) 

0.4546 
(0.1898) 

0.8308 
(0.1608) 

0.4373 
(0.2337) 

𝑙𝑙 = 4000 0.0099 
(0.0005) 

0.2607 
(0.0936) 

0.4622 
(0.1819) 

0.8264 
(0.1516) 

0.4413 
(0.2240) 

True 
Parameter  

0.10 0.20 0.30 0.60 0.75 

𝑙𝑙 = 2000 0.1074 
(0.0173) 

0.1662 
(0.1124) 

0.3726 
(0.1953) 

0.7081 
(0.1802) 

0.7820 
(0.0594) 

𝑙𝑙 = 4000 0.1049 
(0.0128) 

0.1704 
(0.1106) 

0.3443 
(0.1734) 

0.6751 
(0.1287) 

0.7707 
(0.0434) 
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7. Empirical Study 

 
In this section we illustrate the usefulness of the proposed HYCARR model in real world 
scenario through an empirical application based on the S&P 500 stock index. First the S&P 
500 sample data is divided in to two sample periods namely in-sample and out-of-sample 
periods and then in-sample data is used to estimate the model parameters and predictions 
for the HYCARR process. The RMSE and the MAE values are calculated, and we compare 
the in-sample performance of long-memory HYCARR with short-memory CARR models. 
Finally, the out-of-sample data is used to gauge the forecast performance of the HYCARR 
model and then compare it with the CARR process. 
  
7.1. Data Set 
As mentioned above, the S&P 500 stock indices are used to gauge the performance of the 
proposed HYCARR model and compare it with the CARR models. The sample periods for 
the S&P 500 data spanned from January 01, 2002, to December 31, 2019. Daily values for 
the opening price, closing price, high price, low price, and adjusted price are reported over 
the span of the study period. The data set was obtained from the Yahoo Finance 
(https://finance.yahoo.com/) by using the ‘quantmod’ package in R software. The data set 
is divided in to two sub samples: the first sub sample which is also known as in-sample 
period and this sample is used to estimate the model parameter and in-sample predictions. 
In-sample periods for S&P 500 spanning from January 01, 2002, to December 29, 2017. 
The second sub sample, which was also called as out-of-sample period, and this sample is 
used for out-of-sample forecasting. Out-of-sample periods for S&P 500, elapsed from 
January 1, 2018, to December 31, 2019. Table 2 presents the summary statistics of the S&P 
500 range data which is calculated as given in section 2.  
 

Table 2: Summary statistics for S&P 500 data 
 

Statistics 01/01/2002-
12/31/2019 

01/01/2002-
12/29/2017 

01/01/2018-
12/31/2019 

Number of Days 4531 4028 503 

Minimum 0.1456 0.1456 0.1699 

Mean 1.2484 1.2770 1.0193 

Median 0.9804 1.0046 0.7928 

Maximum 10.9041 10.9041 5.0352 

Standard Deviation 0.9931 1.0167 0.7408 

Skewness 3.3472 3.3689 2.1125 

Q (1) 2151*** 1919.3*** 204.43*** 

Q (5) 9912.4*** 9012.9*** 669.47*** 

Q (22) 32270*** 30222*** 1092.2*** 

Q (252) 90970*** 87955*** 3037.3*** 
Note: *** indicates 1% significance level. 
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Summary statistics for the S&P 500 stock index for full sample period, in-sample period, 
and out-of-sample period are presented in the Table 2. The Ljung-Box test for serial 
correlation in the range data is carried out for lags 1, 5, 22, and 252. The lag selection is 
done based on the insight from the financial literature where these lag orders represent a 
single trading day, week, month and year respectively. According to the Ljung-Box test 
results for all lags, show that all period of sample data exhibited highly significant 
correlations. This concludes the high persistence on the S&P 500 stock data. Positive 
skewness and non-negativity in range data suggests positively skewed nonnegative support 
pdf, such as an exponential distribution, must be used to model the S&P 500 price range 
data.  
 

 
Figure 1: Daily price range for S&P 500 data from 01/01/2002 to 12/31/2019. 
 
According to the figure1, height of the spike, represents the daily price range volatility. For 
a given trading day having a taller spike implies higher volatility when it compares to a 
day with a shorter spike. One noticeable feature that presents in the figure 1 is the volatility 
clusters, which means that periods with taller (shorter) spikes are clustered together. For 
an example the price volatility picked up quickly, reached its maximum, and kept it high 
during the economic recession that was taken place on 2007-2009.After the economic 
bubble ended volatility dropped down.  
 
7.2 In-sample Estimating 
In this section we compare the performance of the proposed HYCARR process and CARR 
process and discuss pros and cons about each model. To illustrative purposes we use the 
exponential version of both models that means Exponential HYCARR (EHYCARR), and 
Exponential CARR (ECARR) models are used. The autocorrelation function of the in-
sample data (Figure 2) indicates the serial correlation in the price range data. The slow 
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decaying autocorrelation pattern suggests that the long-memory (long range dependence) 
in the range data.  

 
Figure 2: Autocorrelation Function (ACF) up to lags 300 for the S&P 500 daily price 
range data from 01/01/2002 - 12/31/2017. 
 
Next, the EHYCARR (1, d, 1) and model ECARR (1,1) model are fitted to the in-sample 
data and model parameters are estimated. In this study 𝐾𝐾 = 1000 lagsare accounted to 
calculate the weights (𝜓𝜓𝑖𝑖𝐻𝐻𝐻𝐻) which will be then used to calculate the conditional mean range 
term of the EHYCARR (1, d,1) process. Furthermore, residual series is going through 
series of tests such as Kolmogorov Simonov (KS) test to check whether the residuals are 
followed an exponential distribution and diagnostic test such as the Ljung-Box test, for 
residuals to check whether residuals are independent and identically distributed. Finally, 
we calculate the LLF (Log Likelihood Function), and AIC (Akaike Information Criteria), 
for each model and compare the results. The model with smaller AIC, value and larger LLF 
value are considered to be significantly better model than the other. Parameter estimation 
results for the S&P 500 price range data for the ECARR and EHYCARR are summarized 
in the Table 3. 
According to the parameter estimation results, lim 𝜂𝜂 → 1 implies that the HYCARR 
process is behaves like EFICARR process. Moreover, LLF value for the EHYCARR 
process is slightly higher than that of the ECARR and AIC value of the EHYCARR model 
is slightly lower than that of the ECARR, suggest that EHYCARR fits better to the data. 
According to the Ljung-Box test for ECARR and EHYCARR residual series suggest that, 
both series are independently and identically distributed. However, the Kolmogorov 
Simonov test results indicates that the residuals are not exponentially distributed (test 
statistics for EHYCARR is closer to 0 than the ECARR) and this will be addressed in the 
full paper.  
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Table 3: Estimation and diagnostic test results of the ECARR (1,1) and EHYCARR (1, d, 

1) for S&P 500 data. 
 

Table 3A: Parameter Estimation Results 
 ECARR (1,1) EHYCARR (1, d,1) 

constant 0.0220 0.0303 
𝛼𝛼 0.1980  
𝛽𝛽 0.7840 0.3200 
𝜃𝜃  -0.0425 
𝜂𝜂  0.9919 
𝑑𝑑  0.5494 

LLF -4502.8585 -4499.8657 
AIC 9011.7171 9009.7314 

Table 3B: Diagnostic Test Results (P Value) 
 ECARR (1,1) EHYCARR (1, d,1) 

KS 0.3250 (<0.0001) 0.3232 (<0.0001) 
Q (1) 0.9507 (0.3295) 0.0023 (0.9619) 
Q (5) 10.9950 (0.0515) 1.0967 (0.9544) 

Q (22) 27.2430 (0.2021) 16.4150 (0.7947) 
 

According to the figure 3, except for few random spikes ACF values for HYCARR residual 
series lie inside the 95% confidence limits indicating that there is no significant serial 
correlation present in the residual series.  
 

 
Figure 3: Autocorrelation Function (ACF) up to lags 300 for the residual series of the 
HYCARR (1, d, 1) process.  
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Table 4: In-Sample Comparison between ECARR (1, 1), and EHYCARR (1, d,1) for 
S&P 500 data. 

 
Table 4A:  Model Performance Comparison During Full Sample Period 

Statistic ECARR (1,1) EHYCARR (1, d, 1) 

RMSE 0.6340 0.6340 

MAE 0.4177 0.4168 

Table 4B: Model Performance Comparison During Economic Recession Period 

Statistic ECARR (1,1) EHYCARR (1, d, 1) 

RMSE 1.2367 1.2432 

MAE 0.8509 0.8496 

 
Since the RMSE and MAE values for EHYCARR are lower than that of the ECARR, 
therefore we can say that EHYCARR process fits better that the ECARR process to the 
S&P 500 in-sample data.  We also check the performance of the proposed model during 
the recession period and based on the MAE value proposed EHYCARR model has more 
accuracy than the ECARR process. However, ECARR model has the lower RMSE value 
during the recission period (2007-2009). 
 

 
Figure 4:  In-sample prediction (green) of the EHYCARR (1, d, 1) model for the S&P 
500 price range data (red). 
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Figure 5: Prediction of the EHYCARR (1,d,1) model (green), and ECARR (1,1) model 
(blue) during the 2007-2009 recession period. 
 
7.3 Out-of-Sample Forecasting     
In this subsection, we focus on out-of-sample performance of proposed EHYCARR (1, d, 
1) model and it compares with ECARR (1,1) model. Out of sample period span from 
January 1, 2018, to December 31, 2019.  The out-of-sample performance is evaluated via 
using RMSE and MSE values and Table 5, summarizes the comparison results between 
two models. Finally, the Diebold- Marino (DM) test results for the forecast errors are 
presented. 

According to the out-of-sample performance summarized in table 5, the long-memory 
EHYCARR (1, d, 1) model has lowest MAE and RMSE values when compared to the 
short-memory ECARR (1,1) model. This result suggests that the proposed EHYCARR (1, 
d, 1) does a better job than the ECARR (1,1) in forecasting S&P 500 price range data.    

According to the DM test result (p-value = 0.0634), it can be concluded with 90% 
confidence that the one-step-ahead forecasting accuracy of the EHYCARR (1, d,1) model 
is higher than that of the ECARR (1,1) model. 
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Figure 6: The one step ahead out of sample forecast of EHYCARR (1, d, 1) (green) for 
S&P 500 price range data (red). 
 
Table 5: Out-of-Sample Comparison between ECARR (1, 1), and EHYCARR (1, d,1) for 

S&P 500 data. 
 

Statistic ECARR (1,1) EHYCARR (1, d, 1) 
RMSE 0.5684 0.5637 
MAE 0.3873 0.3805 

 
8. Conclusions 

 
In this study we propose a long-memory conditional heteroscedastic range-based time 
series model to analyze the long run serial correlation that exhibits in the range series. The 
proposed model is named as Hyperbolic Conditional Autoregressive Range (HYCARR) 
and derived its moment properties. Further, the paper discussed sufficient conditions that 
ensure the non-negativity of the conditional mean range term. The MLE technique is used 
for parameter. The simulation study results indicated that the proposed method estimated 
parameters quite accurately. Finally. the empirical study is carried out by using the 
exponential versions of the HYCARR (1, d,1) and CARR (1,1) model by applying to the 
S&P 500 data. Kolmogorov Simonov test results suggest that residual series are not 
exponentially distributed instead are positively skewed positive support distributions. 
Hence, a lognormal distribution must be considered to model the error term. Based on the 
in-sample results proposed EHYCARR process performs slightly better than the ECARR. 
According to the MAE and RMSE results for the one-step ahead out-of-sample period, the 
proposed EHYCARR forecasts appear better than its competitor.  Further, Diebold Marino 
(DM) test for forecast accuracy also agreed with the above conclusion with 90% 
confidence.  
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