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Abstract

The increased diffusion of complex numerical solvers to emulate physical processes demands the

development of fast and accurate surrogate models. Gaussian Processes (GPs) are the most widely

adopted models in this context, as they proved to be sufficiently flexible to effectively mimic the be-

haviour of complex phenomena and they also provide a quantification of uncertainty of predictions.

However, the accuracy of the model depends on both the trend component and covariance structure.

In this work we conduct an extensive simulation study that investigates the performance of several

GP structures considering the deterministic, homoscedastic and heteroscedastic noise settings. As a

result, the findings of this work provide guidelines to practitioners dealing with both deterministic

and stochastic solvers.
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1. Introduction

Recently, the development of numerical solvers of complex physical phenomena is getting

increasingly more attention. The main advantage of using a computer code instead of col-

lecting data on the physical phenomenon is that it is usually cheaper, especially in those

cases in which gathering data is expensive. Furthermore, in some situations it can be im-

possible or impractical to collect the data needed for the purpose of the analysis. However,

due to the increased complexity, the computational cost of running those numerical solvers

is also rising. For this reason, there is a need to develop fast and accurate surrogate models

that can reliably predict the outcome of the complex numerical solver in a fraction of the

time.

Gaussian Processes (GPs) are the statistical learning algorithm mainly used for the gen-

eration of accurate surrogate models (Gramacy, 2020). Typically, GPs are trained on a set

of data which includes realizations of the complex computer code at different input con-

figurations. The selection of the input configurations for the development of the surrogate

model is generally guided by a Design of Experiments (DOE) strategy. In this context

we refer to the literature about “computer experiments” , in order to differentiate with the

classical DOE applications on physical experiments that have different characteristics and

requirements (Garud, Karimi, & Kraft, 2017).

GP models rely mainly on two assumptions: (i) the data generating mechanism pro-

duces samples coming from a multivariate Gaussian distribution, (ii) the samples are asso-

ciated by a covariance function k(·, ·). Based on this, GP algorithms are able to estimate

both the mean and variance for a new input vector, meaning that a quantification of the

uncertainty of prediction is always included with the point estimation. This, together with

the relatively high flexibility that ensures the emulation of complex phenomena, is the main

advantage of this methodology with respect to other algorithms coming from the machine

learning literature.
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In this article we conduct a simulation study to investigate the role of different covari-

ance functions and their impact on the accuracy of the analysis. Furthermore, we also study

whether the inclusion of a trend component in the GP model improves the final predictions.

In order to cope with the arising number of stochastic solvers, common in the social, biolog-

ical and management sciences, we also consider several noise settings, both homoscedastic

and heteroscedastic, and multiple test functions that are computer codes emulating physical

processes. The idea is to investigate several circumstances that are commonly encountered

by practitioners, and to provide guidelines that can be followed for the development of

accurate and reliable surrogate models.

2. Methodology

In this section we provide some technical details about the experimental designs and some

methodological insights on the GP models. Furthermore, we briefly present a ranking

methodology which has been selected for obtaining the final rank of the GP models, based

on the choice of kernel functions and trend component.

2.1 Experimental designs

In the context of computer experiments, the key aim of DOE is to generate the sample points

to fill the experimental domain (Garud et al., 2017). This translates in the generation of ex-

perimental designs that are space-filling, meaning that they tend to spread out design points

as much as possible. In this article we consider two of such designs: the Random Latin

Hypercube Design (LHD rand) (McKay, Beckman, & Conover, 1979; Stein, 1987), that is

one of the oldest and most adopted methodologies, and the Maximum Projection Design

(MAXPRO) (Joseph, Gul, & Ba, 2015) that is one recent advancement of the LHD rand,

having several improvements (Joseph, 2016).

In this paper, for both experimental designs we generated 52 runs, as this is the size

required by a Central Composite Design with the same number of dimensions considered

in this study. Furthermore, this is in line with the empirical relation N ∼ 10d (Loeppky,

Sacks, & Welch, 2009).

2.2 Gaussian Process models

Consider a space-filling design D with d features and with n runs, D = {x1, ...,xn}, where

x = (x1, ..., xd) is one of the n inputs and y = (y(x1), ..., y(xn))
T is a vector containing

the outputs of the computer code. The data generating mechanism is of the GP type if y(x)
is a realization of:

Y (x) = µ(x) + Z(x) (1)

where µ(x) is the trend component and Z(x) is multivariate normal with mean 0 and

covariance function k.

In this article, we consider two structures for the trend component µ(x):

• Constant, µ(x) = β0.

• Quadratic with interactions:

µ(x) = β0 +
d∑

i=1

βixi +
d∑

i=1

βiix
2

i +
∑∑

i<j

βijxixj (2)
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The relevant coefficients are selected via backward stepwise elimination with ob-

jective the minimization of the 5-fold Cross Validation (CV) error (RMSE). In the

remaining of the paper, we will refer to the “trend” case when this option is selected.

Moreover, Z(x) is in the form:

Z(x) ∼ N (0, σ2k(·, ·)) (3)

where σ2 is the process variance (Roustant, Ginsbourger, & Deville, 2012). Furthermore,

consider x and x′ two entries of the input vectors x and x′; the 1-dimensional kernel func-

tion associating x and x′ is assumed to depend solely upon the difference: h = |x − x′|.

This can be extended to the multi-dimensional case by taking K(x,x′) =
d∏

i=1

k(hi).

The kernel functions considered in this article are:

• Exponential: k(h) = exp(−h
θ
)

• Gaussian: k(h) = exp(− h2

2θ2
)

• Matérn 3/2: k(h) = (1 +
√
3h
θ

)exp(−
√
3h
θ

)

• Matérn 5/2: k(h) = (1 +
√
5h
θ

+ 5h2

3θ2
)exp(−

√
5h
θ

)

• Power-Exponential: k(h) = exp(−(h
θ
)q), with 0 < q ≤ 2

θ is a sensitivity parameter called “lengthscale” that defines the rate of decay of the cor-

relation among two data configurations (Gramacy, 2020; Rasmussen & Williams, 2006).

The easiest implementation supposes that uniform decay in correlation exists in every di-

rection, thus assumes θ to be a scalar. However, this assumption of radial symmetry rarely

holds, and a more general representation of the lengthscale parameter is as a vector (

θ = (θ1, ..., θd)), thus allowing the intensity of correlation to change independently on

each different dimension. In this work we consider this second formulation.

Another important parameter is the nugget t, that is added to the diagonal elements of

the covariance matrix and ensures stability of the computation, t = 10-8var(y).

2.3 Nonparametric ranking procedure

The procedure adopted for the generation of the final rank of the GP models is described in

(Arboretti, Bonnini, Corain, & Salmaso, 2014). This procedure uses the general principles

of permutation tests (Pesarin & Salmaso, 2010), and does not require stringent assumptions

on data distribution or size. Considering Qi and Qj with i 6= j two groups of data to be

compared (the different structures for the GP models), the first step consists in the exe-

cution of permutation tests in order to compare the RMSE achieved by each group on an

independent test set, as such obtaining Q(Q− 1) p-values that are the elements of a matrix

GQ×Q that has 1 in each cell of the diagonal vector.

The subsequent steps are:

1. Create the matrix S where Sij = 0 if Gij > α/2 and Sij = 1 if Gij ≤ α/2 , with

α = 0.05.

2. Generate the vector rD whose elements are rDj = 1 +
∑C

i=1
Sij , j = 1, ..., Q.

3. Generate the vector rU whose elements are rUi = 1 + {#(Q −
∑Q

j=1
Sij) > (Q −

∑Q
j=1

Si′j), i
′ = 1, ..., Q, i′ 6= i}, i = 1, ..., Q.
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4. Generate the vector r whose elements are ri = 1 + {#(rDi + rUi )/2 > (rDj +

rUj )/2, j = 1, ..., Q, i 6= j}, i = 1, ..., Q.

The group that achieves the overall smallest RMSE occupies the first position in the

final ranking. Draws are also possible, if two groups are not significantly different.

3. Simulation study

In this section we describe more in detail the simulation setting (Figure 1) in terms of the

test functions and noise structures considered.
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Figure 1: Framework of the simulation study.

3.1 Test functions

In order to test the performance of the different kernels and trend functions in disparate

settings, 7 different test functions have been selected, namely “Borehole” , “OTL circuit”,

“Piston”, “Piston Mod”, “Robot arm”, “Rosenbrock” and “Wing weight” . The functions

have been retrieved from (Surjanovic & Bingham, 2021), and have been restricted to 6

active dimensions. “Piston Mod” is a modified version of the “Piston” function, with in-

creased non-linearity effects. Furthermore, the dependent variables have been standardized

and independent variables have been normalized.

3.2 Noise settings

We investigate both the homoscedastic and heteroscedastic noises, with different intensi-

ties:

1. Homoscedastic noise: ǫ ∼ N (0, σ2

hom), with σhom in the range [0, 0.5σy] and σy
estimated from a large LHD design for each test function (Table 1).

2. Heteroscedastic noise: ǫ ∼ N (0, σ2

het), with σhet that increases linearly with the

response (Table 2).
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Table 1: Summary of the homoscedastic noise structures.
Noise Description

σhom = 0σy 0% noise

σhom = 0.05σy 5% noise

σhom = 0.125σy 12.5% noise

σhom = 0.2σy 20% noise

σhom = 0.5σy 50% noise

Table 2: Summary of the heteroscedastic noise structures.
Noise Description

σhet,min = 0.05σy, σhet,max = 0.5σy 5% noise at min y and 50% noise at max y (low5 high50)

σhet,min = 0.05σy, σhet,max = 1σy 5% noise at min y and 100% noise at max y (low5 high100)

σhet,min = 0.05σy, σhet,max = 5σy 5% noise at min y and 500% noise at max y (low5 high500)

3.3 Results and Discussion

In this section we show and discuss the results of the application of the nonparametric

ranking both for the homoscedastic (Figure 2) and heteroscedastic (Figure 3) noise settings,

considering each one of the test functions. Furthermore, for providing a better synthetic

visualization of the results, another application of the ranking procedure is performed, in

order to obtain a final rank of the GP models with respect to each specific noise setting

(Tables 3 and 4).

The results in Figures 2 and 3 provide two main indications: (i) the magnitude of noise

plays a crucial role in the determination of the ranks and (ii) the performance of different

kernels and trends depends on the specific test function considered. Interestingly, one of

the kernels that is most (negatively) influenced by the level of noise is the Gaussian, that is

very widely employed by practitioners (Gramacy, 2020). At the same time, the Exponential

kernel improves its performance in presence of larger levels of noise. However, due to the

large number of combinations, it is quite difficult to come to definitive conclusions only

by analyzing Figures 2 and 3, thus the ranks here discussed are ranked again, in order to

produce some general synthetic results that do not directly depend upon the specific test

function. These are provided in Tables 3 and 4 for the homoscedastic and heteroscedastic

noises respectively.

Table 3 shows that the Matérn 5/2 kernel is the best option for the deterministic func-

tions, together with its version including the trend component and the Gaussian kernel

including the trend component. This result justifies the adoption of the Matérn 5/2 ker-

nel as the default in many software packages, that usually refer to the case of absence of

noise (Roustant et al., 2012). As the impact of noise increases, the situation becomes less

clear, in the sense that the same rank position is assigned to many groups and no practical

difference exists if the trend component is included and/or a different kernel is chosen, a

part from the Exponential and Gaussian kernels, that tend to rank last. When the noise in-

creases over 20%, significant differences are detected and the Exponential kernel with the

trend component ranks as first. In general, for the homoscedastic case the inclusion of a

trend component appears to increase, albeit marginally, the performance of the algorithms

as when a trend component is added the rank is usually the same or better than the case with

only a constant trend. Two exceptions are the Matérn 5/2 and Power-Exponential kernels,

that perform worst if the trend is added.

Table 4 shows the final results for the heteroscedastic case. For all three noise structures

relevant differences exist depending on the kernel and/or the inclusion of a trend compo-

nent. In general, findings similar to the previous case are observed: the trend component
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does not play a major role, in fact for the Matérn 5/2 and Power-Exponential kernels it

reduces the accuracy of predictions. As in the previous case, the inclusion of the trend

seems to be justified only for the Exponential kernel. On the other hand, the choice of the

kernel appears to be more critical than in the previous case, as the Power-Exponential and

Exponential + trend kernels are by far the best performers. Interestingly, for both the ho-

moscedastic and heteroscedastic cases the Gaussian kernel is one of the worst performers.

All things considered, in the case of a stochastic solver the final guideline for practi-

tioners is to employ a Power-Exponential kernel with constant trend, as this option seems to

be preferable in the presence of noise. On the other hand, if deterministic computer codes

are took into account, the Matérn 5/2 kernel should be the preferred choice. No strong

evidences in favour of the inclusion of a complex trend component are found, except for

the Exponential kernel.

This work confirms the findings of previous studies (Chen, Loeppky, Sacks, Welch, et

al., 2016), expanding the scope of the analysis also to noisy situations (homoscedastic and

heteroscedastic).

4. Conclusions

In this paper we conducted a simulation study that tests the performance of different kernel

functions on the accuracy of a GP model. Furthermore, we also investigated the role of the

trend component, and we considered several noise settings, both homoscedastic and het-

eroscedastic. This implies that the results of the study are applicable for both deterministic

and stochastic computer solvers. Additionally, since 7 test functions with various degrees

of non-linearity are used, we believe that the simulation setting covers many practical situ-

ations encountered by practitioners.

The main findings can be summarised as follows: (i) there is no strong indication that

the inclusion of a trend component generally improves the predictions, (ii) the choice of an

appropriate kernel function is crucial, (iii) the Matérn 5/2 and Power-Exponential kernels

are the most promising in deterministic and noisy situations respectively, (iv) the Gaussian

kernel, that is one of the most widely employed, turns out to be one of the worst performers

in the simulation setting considered.

Table 3: Final rank of the GP structures for the homoscedastic noise cases. The ranks

are provided for each noise level, while the bars show the rowwise sum, thus giving an

indication of the overall performance of each model structure (the smaller the better).
Model 0% 5% 12.5% 20% 50%

GP exp 10 10 10 8 2 40

GP gauss 4 1 9 8 9 31

GP matern3 2 4 1 1 2 5 13

GP matern5 2 1 1 1 5 6 14

GP powexp 4 1 1 2 3 11

GP trend exp 9 1 1 1 1 13

GP trend gauss 1 1 1 8 10 21

GP trend matern3 2 4 1 1 2 4 12

GP trend matern5 2 1 1 1 7 6 16

GP trend powexp 4 1 1 5 6 17
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Figure 2: Homoscedastic noise: rank of the GP models for each test function.
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Figure 3: Heteroscedastic noise: rank of the GP models for each test function.
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Table 4: Final rank of the GP structures for the heteroscedastic noise cases. The ranks

are provided for each noise level, while the bars show the rowwise sum, thus giving an

indication of the overall performance of each model structure (the smaller the better).
Model low5 high50 low5 high100 low5 high500

GP exp 10 4 2 16

GP gauss 8 9 10 27

GP matern3 2 4 2 5 11

GP matern5 2 5 5 8 18

GP powexp 1 1 3 5

GP trend exp 2 2 1 5

GP trend gauss 9 9 9 27

GP trend matern3 2 3 5 3 11

GP trend matern5 2 7 8 7 22

GP trend powexp 5 5 5 15
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