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Abstract
The Covid-19-pandemic has increased the need for timely and granular data that allow the assess-

ment of the state of the economy in real time. As these time series often contain weekly or even
daily observations, they present a challenge to traditional seasonal adjustment methods. We show
how the calendar and seasonal effects of such economic indicators can be estimated reliably us-
ing the DSA approach for daily time series and an ARIMA-based adjustment strategy for weekly
data. Drawing on a set of time series namely electricity consumption, traffic, and Google Trends
data used in many countries to assess the economic development during the pandemic, we discuss
obstacles, difficulties, and best-practices.
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1. Motivation

During the last decade, the number of seasonal adjustment methods for higher frequency
time series has seen a considerable increase (see Ladiray et al, 2018; Webel, 2020). This
goes hand in hand with new data sources becoming available both from official data providers
and private companies. This development has gained a lot of traction during the Covid-19-
pandemic, as policy makers and economists craved more timely and granular information
on the state of the economy.

These time series often present methodological challenges that differ substantially from
those encountered in lower frequency data. In this paper, we will therefore analyse an
exemplary set of series that is typical for the kind of data relied upon by economists and
business cycle analysts during the Covid-19-pandemic. Here, we will focus on the features
and idiosyncracies of these time series relevant in the context of seasonal adjustment.

To this end, Section 2 presents the seasonal adjustment methods employed. Section 3
analyses and adjusts the daily truck toll mileage and electricity consumption and a weekly
Google Trends series while section 4 derives the characteristic features of higher frequency
time series from a seasonal adjustment perspective. Section 5 summarises.

2. Seasonal adjustment methods

Let {Yt} denote a series of length T with τ observations per year on average. The basic
time series decomposition is then given by

Yt = Tt + St + Ct + It (1)

which includes the trend-cycle (Tt), seasonal (St), calendar (Ct) and irregular component
(It). It can easily be adapted to capture a multiplicative relationship between the compo-
nents by log-transformation of the original time series.1 For multiple periodic effects with
cycle lengths τ1, τ2, ..., the basic time series model can be generalised to

Yt = Tt +
∑
i

S
(τi)
t + Ct + It (2)

∗Deutsche Bundesbank, Central Office, Directorate General Statistics, Wilhelm-Epstein-Strasse 14, 60431
Frankfurt am Main, Germany
1For a thorough discussion of further decomposition models, see U.S. Census Bureau (2016).
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Remark. In Equation 2 the periodic effects are subsumed as seasonal effects to allow a
parsimonious notation. Here, effects related to calendar constellation are not considered
to be periodic effects, even though the calendar constellation recurs with a cycle length of
400 years in the Gregorian calendar. Yet, this recurrence is not exploited in the modelling
of the time series and usually effects arising from these calendar constellations will not
recur in similar intensity every 400 years.

As we will see, for some series, the seasonal and calendar effects are interdependent. If
all interactions are relevant, Equation 2 needs to be augmented so that

Yt = Tt +
∑
i

Sτit + Ct +
∑
i

∑
j>i

S
(τi)
t ∗ S(τj)

t +
∑
i

Sτit ∗ Ct + It. (3)

In line with the methods used for official seasonal adjustment - namely X-13 and TramoSeats
- the adjustment of the higher frequency time series presented here combines a seasonal
adjustment routine with a RegARIMA based pre-adjustment. The latter includes the esti-
mation and elimination of calendar effects and is given by

φp(B)φP (B
τ )(1−B)d(1−Bτ )D

(
Yt −

r∑
i=1

βiXit

)
= θq(B)θQ(B

τ )εt (4)

where φ(B) and θ(B) are AR and MA polynomials of order p and q, number of differences
d, and capitals indicating seasonal terms while B is the backshift operator, i.e. B(yt) =
yt−1. βi captures the impact of the i-th regressorXit on the time series Yt and εt is the error
term. The ARIMA part of Equation 4 can be abbreviated by (p d q)(P DQ)τ . Extensions
of this model to multiple seasonalities are known and available (e.g. Svetunkov, 2017), but
at the time of writing, these are rarely used in seasonal and calendar adjustment.

2.1 Seasonal adjustment of daily time series

The iterative DSA procedure described by Ollech (2018) combines the aforementioned
RegARIMA model with STL (Cleveland et al., 1990).2

STL decomposes a time series into Tt, St and It using a series of Loess regressions and
moving averages. Loess regressions are local weighted regressions (Cleveland and Devlin,
1988), where the locality is defined by the number of neighbouring observations included,
given by γτ . As STL only extracts one periodic pattern at a time, DSA combines multiple
runs of STL with RegARIMA:

• Step I: Adjust intra-weekly seasonality with STL.

• Step II: Calendar- and outlier adjustment with RegARIMA.

• Step III: Adjust intra-monthly seasonality with STL.

• Step IV: Adjust intra-annual seasonality with STL.

2.2 Seasonal adjustment of weekly time series

On average a year contains a non-integer number of weeks, namely 52.18. Ladiray et al.
(2018) describe how in these cases ARFIMA processes can be exploited that adapt the
seasonal differencing part of Equation 4 to incorporate fractionally integrated processes.
2DSA can integrate other seasonal adjustment methods as well. Ollech et al. (2021) discuss how to flexibilise
X-11 to handle higher frequency time series.
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Figure 1: German index of truck toll mileage.

The authors develop a fractional variant of the well-known airline model, i.e. the seasonal
ARIMA model of order (0, 1, 1)(0, 1, 1)τ . For a fractional seasonal period of τ = bτc+α,
with α ∈ [0, 1], the fractional differencing operator ∇̃τ can be approximated by a first order
Taylor series expansion so that

∇̃τYt ≈ Yt − (1− α)BbτcYt − αBbτc+1Yt (5)

The fractional airline model can be used for linearisation of a time series analogously to
Tramo.3 We combine this pre-processing with a SEATS-type time series decomposition of
the fractional airline model to seasonally adjust weekly time series with τ = 52.18.

3. Exemplary analysis of higher frequency data

We will present a small set of higher frequency time series that have been of high im-
portance for business-cycle analysis during the Covid-19-pandemic. We will discuss key
features of this series and show how these might be accounted for when conducting calen-
dar and seasonal adjustment.

3.1 Truck toll mileage index

The Federal Office for Freight Transport in Germany is responsible for a distance-based toll
on trucks, which has been implemented in January, 2005. The truck toll mileage index has
been developed together with the Federal Statistical Office and is based on the raw mileage
3The fractional airline model based estimation and decomposition are included in the R Package {rjdhf} avail-
able on github: https://github.com/palatej/rjdhighfreq. As of version 0.0.4, the Tramo-type
estimation of the model does not allow forecasting of the time series. For weekly time series, we therefore
use seasonal ARIMA models for pre-processing of the time series with τ = 52.
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and free of structural breaks resulting from changes in the vehicles that have to pay the toll.
The data are available as a monthly and a daily index (Deutsche Bundesbank, 2020). The
daily time series analysed here is available from January 1, 2005 up to April 3, 2021, and
thus contains many observations.

As can be seen from Figure 1 the series is characterised by multiple periodic effects,
namely a strong week-day pattern, with a trough at Sundays and an annual pattern. These
effects are interdependent: the cross-seasonality presents itself as a week-day pattern that
changes throughout the year. In part this is due to governing laws and regulations: with only
a few exceptions trucks are not free to drive on motorways on Sundays and public holidays.
During July and August, this is extended to Saturdays as well. We further observe different
patterns around Christmas related to different changes in the consumption behaviour.

Remark. Other series contain unusual periodic effects. Ollech (2018) finds a monthly
recurring pattern in the German currency in circulation.

The series is further marked by a weakly positively sloping trend that is halted tem-
porarily in early 2020, as a consequence of the Covid-19-Pandemic. After the Covid-slow-
down we can observe breaks in periodic effects, in particular the weekday pattern. At
least temporarily, the difference in the truck mileage on workday and weekday is less pro-
nounced. The annual seasonal pattern is non-isochronous, i.e. the number of observations
per cycle is not the same for all cycles as years contain either 365 or 366 observations.

Remark. Non-isochronicity can impact a time series in a number of ways. Especially
with a continuously evolving seasonal pattern, we may observe that the seasonal pattern in
longer cycles is just a stretched-out version of the pattern in shorter cycles. In series with
a more variable pattern, the seasonal impact of additional observations in a given cycle,
such as February 29 in a leap year, may be barely related to adjacent observations.

For higher frequency time series, it is often possible to observe the impact of holidays
more directly, and thus identify series-specific calendar effects. Figure 2 shows the truck
toll mileage index on All Saints’ Day as well as the three days leading up to and the three
days after the holiday. All Saints’ is a public holiday in 5 out of 16 German federal states. In
these states, all being located either in the south or west of the country, trucks are prohibited
from driving on motorways. Therefore, the impact of All Saints’ Day is cross-seasonal: the
magnitude of the decrease depends on the weekday.4 As driving trucks is already restricted
on Sundays, there is no additional impact of All Saints’ Day on the truck toll mileage
index if it falls on a Sunday. In contrast, there is a considerable reduction if it falls on any
weekday.

If All Saints’ Day falls on a Tuesday (Thursday) the neighbouring Monday (Friday),
i.e. any bridge days, also appear to have a reduced number of trucks on motorways. In
contrast to lower frequency time series, these bridge day effects can be seen and modelled
more directly.

The Covid-19-pandemic hitting Germany in March, 2020 has a two-fold impact on the
time series. First, it abruptly leads to a decreasing number of kilometers driven by trucks.
Second, it impacts the observed weekday pattern, due to changes in the restrictions and the
consumption pattern.

To obtain a calendar and seasonally adjusted series, DSA has been used with γ7 :=
7 and γ365 := 11 using an additive decomposition. For the seasonal adjustment of the
monthly index, we found a multiplicative decomposition to be more appropriate. Yet, due
4Reformation day, which is the day before All Saints’ Day is a public holiday in all of the federal states in East
Germany. In 2017, Reformation day was a national public holiday. From 2018, Reformation day is a public
holiday in the federal states in northern Germany.
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Figure 2: German index of truck toll mileage.

to the higher volatility of the daily index - which is typical for higher frequency time
series - the seasonal factors from a multiplicative model would inflate a substantial number
of unusual observations. The series does not contain day-of-the-month effects, accordingly,
step III of the DSA procedure is omitted. The choice of a very short filter to estimate the
day-of-the-week effect, i.e. γ7 := 7, is a means to allow the day-of-the-week-effect to
change during the year and thereby to capture this particular cross-seasonal effect. As
discussed above, this is important, because we already know that the weekday pattern is
different in different parts of the year, due to restrictions. An important tool to gauge an
appropriate parameter for γτ are SI-ratios (Cleveland and Terpenning, 1982).

To estimate the impact of moving holiday effects and the interaction between weekdays
and fixed holidays, a RegARIMA model is used. As described by Ollech (2018) this model
combines a non-seasonal ARIMA model with trigonometric terms that capture determinis-
tic seasonality. For the truck toll mileage index, 30 cosine and sine terms are used. Ollech
(2018) correctly states that multiples of 12 capture intra-monthly pattern, yet here, the high
number of trigonometric terms used reflects the complexity of the seasonal pattern and does
not indicate a day-of-the-month effect.

Remark. To obtain the unadjusted monthly truck toll mileage index, the daily raw truck
toll mileage is summed up for each month and transformed to an index. If likewise a
temporal aggregation is performed on the seasonally adjusted truck toll mileage index via
summation, the resulting time series will contain a length-of-the-month effect - i.e. months
with more days will have a higher value - and thus be seasonal. Using the average monthly
index instead is a simple remedy, but it reduces the comparability of the directly adjusted
monthly and daily time series.

The calendar and seasonally adjusted truck toll mileage index is especially volatile
around holidays (see Figure 3). This Heteroskedasticity is due to estimation uncertainty
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Table 1: Estimated moving holidays and cross-seasonal effects for the German truck toll mileage
index. Based on time series only adjusted for intra-weekly seasonal effects. A RegARIMA(2,1,1)
model with 2x30 trigonometric terms has been estimated.

Estimate S.E. Estimate S.E.
Carnival Monday −8.6 1.6 NH1 (Mon) −92.3 2.3
Mardi Gras −5.0 1.6 NH1 (Tue) −105.9 2.4
Holy Thursday −20.0 1.6 NH1 (Wed, to 2015) −90.2 3.1
Good Friday −99.6 1.9 NH1 (Wed, from 2015) −118.7 2.7
Holy Saturday −17.3 1.9 NH1 (Thu) −106.4 2.1
Easter Sunday −11.1 2.0 NH1 (Fri) −74.5 1.9
Easter Monday −116.8 1.9 NH1 (Sat) −21.2 2.1
Easter Mon. (t+1) −20.4 1.6 Xmas Period (Mon) −31.7 1.8
Ascension (t–1) −13.6 1.6 Xmas Period (Tue) −42.6 1.8
Ascension (to 2015) −108.9 2.3 Xmas Period (Wed) −42.0 1.8
Ascension (from 2016) −122.1 2.5 Xmas Period (Thu) −41.7 1.8
Ascension (t+1) −17.4 1.7 Xmas Period (Fri) −29.0 1.8
Corpus Chr. (t–1, to 2015) −7.3 2.0 3d before Xmas (Sun) 120.1 18.9
Corpus Christi (to 2015) −73.5 2.3 Xmas Eve (Sat) 11.4 4.4
Corpus Christi (from 2016) −77.6 2.3 Xmas Eve (Sun) 42.1 5.2
Corpus Chr. (t+1) −7.3 1.6 Xmas Day (Sat) 22.0 5.9
Pentecost (t-1) 4.2 1.3 Xmas Day (Sun) 59.2 4.3
Pentecost (to 2015) −107.2 1.9 Boxing Day (Sat) 18.7 3.2
Pentecost (from 2016) −119.3 2.3 Boxing Day (Sun) 33.2 5.9
Pentecost (t+1) −13.4 1.6 10d post Dec 26 (Sat) 31.8 2.0
German Unity (bridge) −2.4 2.9 10d post Dec 26 (Sun) 14.8 1.9
Labour Day (bridge) −17.7 2.6
All Hallows (bridge) −20.6 2.4

1 NH includes the following holidays: Epiphany, Labour Day, Assumption Day, Day of German Unity,
Reformation Day and All Saints’ Day. The weights of the regional holidays are given by: Epiphany 0.2,
Assumption Day 0.1, Reformation Day from 2018 on 0.2 and All Saints’ Day 0.6.
Note: Ascension and Labour Day 2008 both fell on May, 1. Because the effect is not additive, the
effect has been assigned to Labour day only, i.e. the regressor for Ascension is 0 on that day.

and the fact that truck drivers are restricted by laws with regards to the number of hours that
they are allowed to drive per week and per day. The latter determines the optimal logistics
and thus the interaction between holidays, consumer demands and kilometers driven by
trucks on a given day resulting in the observed local volatility increases.

Table 1 shows the estimated impact of moving holidays and cross-seasonal effects. All
moving holidays that are public holidays on a national or federal state level are included
in the regression. This extends to surrounding days, as usually a transition phase can be
observed, so that both the day before and after a given public holiday show a decrease.
The only exception is the Sunday just before Pentecost Monday, which is slightly positive
compared to a typical Sunday in spring. Additionally, we include the main event days of
the carnival season for which a significant impact can be detected.

The impact of fixed holidays is usually captured by STL in the last step of DSA. Yet,
as discussed above, the interdependency between that impact and the weekday cannot be
captured by STL. Here, we model it using interaction dummies in the RegARIMA model.
The impact of each weekday is combined across all national and federal state level holi-
days to increase the parsimony of the estimated model. Days that are public holidays only
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Figure 3: German index of truck toll mileage.

regionally are weighted accordingly (for details on the weights see Table 1 and Deutsche
Bundesbank, 2020).

The changes in the weekday pattern after the start of the Covid-19-pandemic in Ger-
many discussed above recur weekly and may thus be considered to be part of the S(7)-
component. A different view is that as it is only temporary and a result of the irregular
nature of the crisis it should be captured in the irregular component and thus be visible in
the calendar and seasonally adjusted series.5 For the period from March 23 to August 30,
i.e. from the beginning of the lockdown until after the summer holidays, we chose the latter
approach. To seasonally adjust this period, forecasted calendar and seasonal factors were
used, which are obtained by restricting the estimation span from time series beginning to
March 22, 2020. For the period after August 30, we again use all available data in a con-
trolled current adjustment scheme. This means that the seasonal and calendar components
are re-estimated monthly, but we control weekly, whether a re-estimation is necessary.

3.2 Electricity consumption

The German electricity consumption is compiled by the German Federal Network Agency
using data from the network providers and published from January, 2015. For the most
recent observations, the series is subject to unreliable data delivery as some network
providers do not provide data immediately.

Remark. More broadly, unreliable data delivery addresses the issue that often the data
providers do have no legal or contractual obligation to provide the data or restrictions

5At the time of writing the ESS Guidelines on Seasonal Adjustment does not discuss this matter and therefore
does not stipulate any action (Eurostat, 2015).
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Figure 4: German electricity consumption in TWh.

regarding the data quality or dates at which the data need to be provided. Further, if the
data are just a by-product, it may be difficult to analyse the quality of the data.

In the case of the electricity consumption, this leads to temporarily missing values
that might require an interpolation - either before or as part of the seasonal and calendar
adjustment.

Remark. Some higher frequency time series do have structural missing values, e.g. time
series that only contain observations on working days. If this is the case, the data may
be non-equidistant, i.e. the distance in time between observations is not the same for all
observations. In other words, the distance between a Monday and a Tuesday is less than
between a Friday and a Monday.

As can be seen from Figure 4, the electricity consumption is characterised by a weekday
pattern and - especially if we disregard Christmas and fixed holidays - an almost sinusoidal
annual seasonality. The latter can be termed autocorrelational seasonality, as the seasonal
impact of each day-of-the-year strongly correlates with the seasonal influences observed
on the neighbouring days. Such dependence structure is usually not exploited fully in the
seasonal adjustment of lower frequency time series. Yet, for higher frequency time series
it may improve the estimation of the seasonal effects given the high volatility of the time
series and the corresponding estimation uncertainty.

The uncertainty problem is aggravated as the daily electricity consumption is a rel-
atively short series.6 Table 2 shows the estimated moving holiday and cross-seasonal
6For very short series, it may not be advisable to estimate all seasonal and periodic components. An estimation
of the day-of-the-year effect requires at least two years, but for a reliable and sensible estimation usually three
or more years of observations are needed. The day-of-the-week effect may often be estimated using less than
two years of data.
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effects for this time series. The cross-seasonal effects included are again interactions be-
tween weekday and fixed holidays. Due to the length of the series, not all possible calendar
interactions can be observed and overall, only very few observations per constellation are
available.

At times higher frequency time series show rather unusual calendar effects. In the
case of the electricity consumption, we have to include Daylight Saving Time, which has
an obvious - albeit small - effect on the time series.

Table 2: Estimated moving holidays and cross-seasonal effects for the German electricity
consumption, in percent. Based on time series only adjusted for intra-weekly seasonal effects. A
RegARIMA(5,1,1) model with 2x24 trigonometric terms has been estimated.

Estimate S.E. Estimate S.E.
Carnival Monday −1.7 0.6 Labour Day (bridge) −5.2 1.5
Holy Thursday −2.1 0.7 German Unity (bridge) −7.4 1.1
Good Friday −22.5 0.9 All Hallows (bridge) −4.9 1.1
Holy Saturday −7.1 0.9 Reformation Day (bridge) −7.4 1.5
Easter Sunday −6.9 0.9 National Holidays (Mo-Fr) −19.7 0.5
Easter Monday −25.6 0.9 National Holidays (Sat) −5.7 0.9
Easter Mon. (t+1) −2.8 0.7 3d before Xmas (Sat) 2.1 1.2
Ascension (t–1) −2.1 0.7 Xmas Eve (Sat) 4.9 1.9
Ascension −24.2 0.9 Dec 26 (Sat) 4.0 1.2
Ascension (t+1) −10.3 0.7 10d post Dec 26 (Sat) 5.0 0.9
Corpus Christi (t–1) −1.3 0.7 3d before Xmas (Sun) 7.3 1.4
Corpus Christi −15.4 0.9 Xmas Eve (Sun) 9.7 1.7
Corpus Chr. (t+1) −6.2 0.7 Xmas Day (Sun) 11.8 1.9
Pentecost (t–1) 2.0 0.6 10d post Dec 26 (Sun) 6.6 0.9
Pentecost −24.6 0.7 Xmas Period (Mo-Fr) −4.6 0.7
Pentecost (t+1) −2.9 0.7 Daylight Saving Time Spring −2.9 0.6

Daylight Saving Time Autumn 5.1 0.6

To obtain the seasonally adjusted series shown in Figure 5, DSA has been used with
γ7 := 11 and γ365 := 13 employing a multiplicative decomposition. The short filter for
the day-of-the-week is again tailored towards allowing the weekday effect to vary across
the year, as we observe that the difference between working days and weekends tends to
increase during the warmer season.

The start of the Covid-19-pandemic in Germany again evokes a temporarily declining
trend and some slight and gradual changes in the weekday pattern, reflecting the reduction
in output in the production sector and possibly changes in the share of people working re-
motely. For the seasonal adjustment of lower frequency time series, the pandemic is treated
using series of level shifts [LS], additive outliers [AO] or less frequently temporary change
outliers [TC] (Eurostat, 2020). The downturn observed for the electricity consumption is
gradual enough so that one or multiple level shifts are not necessary to model the crisis
based on daily data. In general, we more frequently observe non-traditional outlier pat-
tern in higher frequency time series than for monthly or quarterly series. This is illustrated
well by the finding that the decay rate of 0.7 for TCs, the default for monthly series, will
often not be suitable for daily or weekly series.

In the beginning of the pandemic, it may be a good policy not to re-estimate the seasonal
and calendar factors immediately, to avoid over-estimation. In the summer, we established
a controlled current adjustment scheme discussed above, i.e. a monthly re-estimation while
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Figure 5: German electricity consumption in TWh.

only changing parameters if necessary and controlling weekly whether the forecasted fac-
tors are still suitable or in need of re-estimation.

3.3 Google Trends: Unemployment

Weekly Google Trends data have to be downloaded in chunks of five years. Each of this
chunks is a random sample of all search queries and therefore subject to noticeable revi-
sions.7 The chunks are chain-linked together and a value of 100 is added to avoid values
too close to 0.

The definition of the week does not adhere to the ISO 8601 standard, instead it is
defined to start on Sunday and end on Saturday. This is of relevance for regressor construc-
tion. For example, Easter Sunday and Easter Monday fall in the same week, their effect
cannot be disentangled. In turn, we only need one joint regressor for Easter Sunday and
Easter Monday.

For lower frequency time series, Christmas and New Year are seasonal effects as they
fall in the same period each year. Depending on the modelling strategy, especially if the
data are modified so that every year has 365 observations, this holds for daily data too.
For weekly time series, as a consequence of their non-isochronicity and date conventions,
Christmas’ Day can fall in the 51st or 52nd week-of-the-year, while New Year’s Day falls
in week 52, 53 or 1 (ISO 8601 standard) or week 0 or 1 (US-convention).

The results from the calendar estimation are included in Table 3. As discussed, the con-
struction of the data implies that some holidays always fall in the same week. Their impact
is therefore indistinguishable. The inclusion of appropriate regressors for the Christmas
and New Year’s period can be challenging. Christmas Day always falls in the same week
7The average mean revisions are 7.14 points from week to week in the original series and 6.90 points in the
calendar and seasonally adjusted data.
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Figure 6: Google Trends, search term: Arbeitslosigkeit [unemployment].

as either Christmas Eve or New Year’s Eve. If both Christmas Eve and New Year’s Eve are
included as regressors, then, particularly for short series, separating the impact of Christmas
Day from the other two days may be intricate resulting in an instable estimation.

Table 3: Estimated ARMA coefficients and moving holidays effects (in percent) for Google
Trends, search term: Arbeitslosigkeit [unemployment]. An RegARIMA(0,1,1)(0,1,1) model is
estimated.

Estimate S.E. Estimate S.E.
MA −0.87 0.02 SMA −0.80 0.03

Good Friday −6.5 1.1 Christmas Eve −10.0 1.1
Easter −4.8 1.1 New Year’s Eve −8.9 1.4

The week is defined to start on Sunday and end on Saturday. Thus, Easter covers both Sunday and Monday.

As can be seen from Figure 6 the series is very volatile, especially at the beginning
of the series. It may be difficult to assess the seasonality of the time series visually, but
seasonality tests8 and the coefficients of the ARIMA model indicate seasonality. To obtain
seasonal factors we rely on the default settings of the fractional airline decomposition.

As the original data are revised considerably every week, the revision policy of this
weekly series differs from the daily series discussed above. For the Google Trends series
we follow a partial concurrent adjustment scheme, i.e. the calendar and seasonal compo-
8We use the seasonality tests recommended by Ollech and Webel (2020) for monthly time series which are im-
plemented in the {seastests} package in R. Setting the frequency of the time series to 52 ignores the fractional
nature of the seasonality of the series. Yet, in practice this works well as an approximation. Both the QS- and
the Friedman-test reject the null hypothesis of no seasonality at the 0.1-% level of significance. This holds
true as well if we only include the last 5 years of observations.
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Figure 7: Seasonal and calendar adjustment of Google Trends series, search term: Arbeitslosigkeit
[unemployment].

nents are re-estimated every week, but the model settings are fixed and only re-identified
annually. The appendix includes a discussion of graphical tools that can be used for weekly
time series if a controlled current adjustment scheme is used.

4. Key notions for the adjustment of higher frequency data

The examples discussed in the previous sections highlight features and idiosyncracies of
higher frequency time series relevant to calendar and seasonal adjustment. Table 4 organ-
ises these characteristics into a taxonomy of relevant features.

The basic characteristics cover the most obvious features that concern the whole set of
observations and are relevant for very many time series available. That higher frequency
time series contain many observations especially in comparison to lower frequency time
series is in itself trivial. Yet, it increases the computational burden and may render some
methods inapplicable. Non-isochronicity and non-equidistance will usually either have to
be addressed by adapting the methods used or by transforming the data, e.g. by interpola-
tion or time-warping.

The periodic and calendar effects comprises of concepts that extend the definition of
seasonality and calendar effects in lower frequency time series. As becomes clear from
the examples of daily data, higher frequency time series may contain multiple noticeable
periodic effects that may be interdependent and autocorrelational. For calendar effects, we
may consider including constellations that are not recommended to be adjusted for in lower
frequency time series, such as bridge days. This may be sensible as the higher number of
observations allow us to observe and estimate the effect more directly.

Remark. For weekly series, the impact of bridge days may even be inseparable from the
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moving holidays, if they always fall in the same week.

Higher frequency time series are generally more volatile than traditional business-cycle
indicators. This is mostly a result of the fact that irregular influences tend to partially offset
each other over a longer time span. Additionally, many of the higher frequency time series
used are merely a by-product and not compiled for economic analysis or official statistics
and accordingly do not adhere to the same data standards. Accordingly, the methods ap-
plied to higher frequency time series usually need be robust against outliers and irregular
observations.

5. Summary

The contribution of this paper is two-fold. First, we exemplarily analyse a small set of
higher frequency time series. We discussed how these data differ from lower frequency
time series and how this is relevant for seasonal adjustment in general and in light of the
Covid-19-pandemic. Second, we developed a taxonomy of the central features of seasonal
higher frequency time series.

Further research may evaluate different procedures that allow the seasonal adjustment
of higher frequency time series with respect to their ability to handle all of these features.
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Figure 8: Example of SI ratio for Google Trends series.

A. Appendix

For a controlled current adjustment the results from the pre-adjustment are investigated and
most importantly, the previously forecasted seasonal components (ŜF ) are compared to the
new seasonal factors (ŜN ) obtained after re-estimation. As a frame for the comparison the
raw seasonal factors (Ŝraw), i.e. the combined seasonal-irregular component, are included
in the analysis. The comparison is either based on tables or graphics, namely the SI ratio.
The idea is to gauge whether ŜN better captures the systematic development of Ŝraw com-
pared to ŜF . If this is the case to a relevant extent, the previous components are discarded
and the re-estimated results are used.

For integer-type periodic behaviour the construction of the SI ratios are straight for-
ward. Each subplot shows the ŜN , Ŝraw and ŜF for a given period, e.g. a subplot for
each month of the year. For series with a non-integer number of observations per year the
configuration is more intricate. For weekly series, the estimated seasonal component of a
given observations depends both on observations (multiples of) 52 weeks ago as well as 53
weeks ago and likewise on future observations. Therefore Ŝraw should include all weeks
that contribute to the estimation of the seasonal component. For the most recent observa-
tions, this is approximately the sequence of weeks with a step size of 52 and the respective
previous week. Exemplarily, this is shown in Figure 8. The exact representation for any pe-
riod of the seasonal component, the relevant raw seasonal factors are given by the sequence
(..., Ŝrawt+d2τe, Ŝ

raw
t+b2τc, Ŝ

raw
t+dτe, Ŝ

raw
t+bτc, Ŝ

raw
t , Ŝrawt−bτc, Ŝ

raw
t−dτe, Ŝ

raw
t+b2τc, Ŝ

raw
t+d2τe, ...).
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Table 4: Key notions for the adjustment of higher frequency data

Notion Explanation

Basic characteristics

Many observations Daily data contain relatively many observations which can be a
challenge for algorithms and users.

Short series For many series only a few years or less are available.
Temporal aggregation Restrictions regarding temporal aggregation of adjusted series de-

pending on data type.
Non-isochronicity Number of observations per periodic cycle is not necessarily the

same for all cycles, e.g. varying number of weeks per year.
Non-equidistance Some daily time series do not have observations for all days, e.g.

banking-daily, then the distance between observations varies.

Periodic and calendar effects

Multiple periodic effects Commonly, daily time series contain day-of-the-week and day-
of-the-year effects.

Unusual periodic effects Other periodic effects, such as a week-of-the-month.
Breaks in periodic effects Periodic effects may change rapidly, e.g. as a consequence of

fundamental changes in the data generating process.
Cross-seasonality Different periodic and calendar effects can be interdependent.
Autocorrelational seasonality The seasonal impact of adjacent observations may be highly

dependent.
Series-specific calendar effects Calendar effects can be observed more directly, thus, regressor

construction can more easily be tailored to the series.
Unusual calendar effects Other calendar effects, such as daylight saving time.
Bridge days The effect of bridge days can have a traceable effect on the series.

Outliers and missing values

Missing values Due to data availability, some series contain - at least temporarily
- missing values, especially at the end of the series.

Unreliable data delivery Data producers do not necessarily have an obligation to deliver
data or provide additional information.

Higher volatility The volatility of the time series usually decreases with a higher
temporal aggregation.

Heteroskedasticity The volatility may change over time, e.g. during crisis.
Non-traditional outlier pattern Observed outlier pattern can be different from lower frequency

series, e.g. slower convergence in a temporary change outlier.
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