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Abstract 

The University of Connecticut-Storrs (UCONN) athletes as part of a comprehensive 
strength and conditioning program are run through a battery of physical test to assess their 
readiness for sport participation. The present study addresses athletes from four varsity  
level programs (Division 1- Men & Women Basketball and Women’s Lacrosse and Soccer) 
who range in age from 17-24 years old. Prior to commencing team play these athletes 
undergo a sport specific pre-season training regimen. After pre-season conditioning 
programs, the aforementioned test battery is performed with the intent of developing 
quantitative metrics for assessing athletes readiness for immediate sport participation.  

Here our overarching goal is to identify a class of metrics that can enhance current in-house 
evaluative tools for assessing an injured athlete’s readiness for a return to sport activity. 
Additionally, it is our desire to develop robust statistical regression-based models that 
characterize sport readiness and isolates useful classification metrics that predicts the 
potential injury risk an athlete may face if certain quantitative performance levels are not 
met. This work is significant because it exploits the use of low-cost exercise equipment 
available to most college and university athletic programs for this purpose.   
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                                             1.  Introduction 

At UCONN a myriad of physical assessment data is taken on athletes to determine their 
readiness for sport participation at the beginning of a season,  monitor in season 
conditioning and recommend when an athlete should return to sport activity after an injury.  
The goal of the present inquiry is to identify an appropriate set of metrics- associated with 
extensor and flexor muscle group14 functions- that can improve our ability to both predict 
injury risk5 and substantiate an athlete’s return to sports recommendation.   

A commonly used ratio for such purposes is the limb symmetry index 9-11 that employs 
normalized percent differences to assess between limb function. However, this metric has 
met with limited success because both limbs are often observed to atrophy as a result of 
injuries. One finds that simply matching limb function does not necessarily lead to 
optimum outcomes. Additionally, many of the constructed limb symmetry indices are 
based on quantities that do not capture dynamic responsiveness or are not highly correlated 
with the specific muscle function required of a given sport. 
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Here we are proposing the use of novel engineering-based metrics to capture dynamical 
behavior and enhances our ability to predict injury risk. The significance of this work is 
the recognition that relatively low-cost Biodex13 exercise equipment available to most 
college and university athletic programs may be used to perform such evaluations.      

                                         

                                               2. Methods 

Varsity athletes from four major Division I sports programs at UCONN ( Women & Men 
Basketball, Women’s Lacrosse  and Soccer) were participants in this study. Their ages 
ranged from 17-24 years and prior to completing this test protocol  had all undergone a 
sport specific preseason conditioning  program. The body mass index (BMI) for this test 
population varied between 18-30.  Each subject was run through a specific battery of  
exercises on a Biodex2,15 machine (see Fig.1) that measured the core strength of extensors, 
flexors, abductors, and adductors large muscle groups.  Identical measurements were taken 
on both  preferred and non-preferred limbs.  

Flexors and extensors13 are a class of muscle groups found throughout the body that control 
joint movement which play a major role in accelerating large powerful muscles like the 
quads (knee extensors) vs hamstrings (knee flexors), or biceps (elbow flexors) vs triceps 
(elbow extensors). Specifically, flexor muscles work to decrease the angle between bones 
on two sides of a joint while extensors  increase the angles between limb members. An 
extensor movement is primarily a backward motion, with the notable exception of the knee 
joint. Abductor and adductor13 muscles reside within the hips and thighs and work in 
conjunction with each other to promote sideways leg movement. They either direct motion 
away (abductors) from the body’s midline or toward ( adductors) it. 

With the Biodex system respective core measurements are obtained with the subject in a 
sitting position.  Each  subject’s measurements are captured over time and provide a 
dynamic assessment of an individual muscle group strength and explosiveness 1,4 (power).  
Abbreviated Biodex subjects test data results are described in Table 1 and summarizes both 
individual physical features and extensor data captured on a participant’s preferred (P) 
limb. The non-preferred  limb’s injury status is also provided in Table 1 and was only used 
to assess injury frequencies. We anticipated that  Biodex3,15 generated data when combined 
with subject specific physical features could yield robust metrics that would enhance our 
ability to predict and classify injury risk. Furthermore, it was also an expressed desire of 
ours to devise scaling metrics that had a physic or engineering underpinning. 

 

                                 3. Dimensionless Regression Models  

Clearly, the test subjects involved in these studies are from an engineering perspective 
generating rotational torque12,13, rotational kinetic energy, and potential energy.  Hence our 
initial modeling objective focused on developing normalized expressions for these 
respective quantities. Our initial step involved dividing the experimental quantities for 
torques and associated energies by appropriate normalizing values to yield the 
scaled/dimensionless equations presented below: 

Scaled Torque Ratio:           Y=Torque/2(w hb ) 
2mb                                            Eqn. 1                                       
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Scaled Energy Ratio:            X=hb  w2 /2g                                                           Eqn. 2                  

 

Observe that both scale ratios are normalized using an appropriate combination of the 
athlete’s height (hb ), mass ( mb ) and generated angular speed (w). The final analytical step 
required constructing models based on these derived scaled equations. The present effort 
discusses results based only on extensor muscle measurements (60% extension). Other 
muscle groups will be addressed in subsequent follow-on studies. Scatterplots ( see Fig. 
2a) of selected scaled ratios hinted at a potential model structure and related parametric 
dependency. It was apparent from that review that a family of regular hyperbolas (see Eqn. 
3) were sufficient for data fitting. Such hyperbolas have asymptotes that are perpendicular 
to each other and align with the respective axes.  

                                   Y=  C/[X+B],  where  B=C-0.05                                   Eqn. 3 

Eqn. 4 a logarithmic transform of Eqn. 3 produces a consolidated view of the data as 
depicted in Figure 3. A close inspection of that data reveals there are a family of such 
curves that are parametrically linked through the variable, C or HCONN which spans from 
0.05 to 0.25. Figure 2b highlights this fundamental dependency. The largest deviations 
from this model occurs when the energy ratios are quite small and where negligible 
fluctuations in energy values can dramatically alter the torque ratio. 

                                    ln Y= -ln (1+ X1 ), where  X1 = (X-0.05)/C                   Eqn. 4 

It is remarkable that such a simple model captures the complex relationship between the 
energy and torque ratios. The model’s R-squared of 0.94  is an excellent goodness of fit 
value for a relationship with relatively few predictor variables.        

                                           

4. Classification Models 

The above modeling effort suggest that the follow variables: Y, X, C, and the BMI may be 
useful for classification purposes. We included the body mass index (BMI) along with this 
group since it is a familiar and commonly known metric that the athletic community often 
employs to assess overall fitness levels. The current classification approach involves using 
a subset of the three derived dimensionless variables to characterize injury data. This injury 
dataset consists of three types: un-injured individuals, single- injured individuals and dual-
injured participants whose injuries occurred over the course of a sport season. Several 
standard classification techniques are available within the MATLAB’s Statistic and 
Machine Learning Toolbox8 for such analyses and will be used to formulate both 
supervised and semi-supervised machine learning routines that will be employed for future 
classification screenings involving all muscle groups. In the present context our 
classification studies were limited to an examination of the extensor muscle groups. 

 

4.1 Dual Variable Classification Models (Graphical Approach) 

The results summarized in this section highlight classification criteria derived using the 
regression predictors identified in section 3. Our best model was a 2-parameter 
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classification scheme employing the C and BMI parameters as screening variables.  It was 
observed for individuals where  C>0.08 and BMI>24  a very high injury frequency was 
noted. For this 2-parameter model the classification performance metrics were 
accuracy=0.800, sensitivity=0.580, and specificity=0.844. Higher order models 
incorporating additional classification factors did not lead to any improvement in model 
efficacy. The confusion  matrix for this 2-parameter case is depicted in Table 2. For the 17-
24 age group a BMI > 24  was selected as a classification cut-off value because it represents 
the onset level for obesity for this age group population. If one removes the C parameter 
from the 2-parameter model significant degradation occurs. Obviously, one may conclude 
that the BMI  index  does not address critical dynamical factors associated with the rapid 
functioning of the extensor muscle groups; this singular variable along is not adequate for 
screening purposes. These results suggest that when the energy and torque production rates 
are insufficient at a given BMI level, the likelihood of injury will increase. Hence, one does 
not have the ability to control the movement at a joint or stabilize the weight bearing load 
it is experiencing under dynamics conditions.  

4.2 Single Variable Classification & Gender Identification ( Graphical Approach) 

The upper whisker (UW) obtained from a boxplot (Fig. 4) of respective sport group’s 
energy ratio (ER) was found to be an effective metric for limited classification purposes. 
This particular metric captured group differences that existed across various sport groups. 
The bar graphs of Figure 5 also revealed that ER values greater than 1.17 were rarely 
encountered with female athletes and suggest a major gender difference with regard to 
energy utilization. Employing this metric (ER=1.17) as a gender classifier yielded an 
accuracy of 91%. The related injury frequency data of Table 1 suggest a possible strong 
link between small ER values and high injury rates. Although larger ER values may 
generate less frequency injuries11 they may be of a more severe nature. All non-injured 
subjects had an Energy Ratio<0.70. For all subjects with an Energy Ratio > 1.0, single 
injuries occurred more frequently than multiple injuries (93%). The respective histograms 
of Figure 6 summarizing this pattern and estimated injury probability distributions are 
given by the following respective expressions: (Exponential, f(ER)= exp- ER ; (0) =2.78 
, (1)= 0.525 and (2)=1.18. 

 

                                      5. Logistic Model for Injury Prediction Risk 

A logistic model  was devised to provide the odd for predicting a sport related injury11 ( 
see Table 3). This binary logistic regression model was generated using the predictor 
variables (TR, ER,C and BMI) defined in section 3 to determine the probability of 
individuals residing in an injured or un-injured state. A stepwise routine ( MATLAB8’s 
‘stepwiseglm'), was used to isolate the final model structure and estimate the parameters  
of Equation 5. The outputs of this logistic regression model are binary responses variable 
1 or 0 where 0 represents the un-injured individuals and 1 denotes the injured subjects. 
Note that the odds of an injury rise quickly with an increase in the energy ratio (ER). The 
lowest value for the odds quantity is 2.33. The generated model highlights that there is a 
high occurrence of injuries amongst this group of athletes and suggest that lowering energy 
ratios may reduce injury risk.   
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Probability ( 𝑌𝑖= 1 or 0 | 𝑋 = 𝑥𝑖 )  =     
exp(  𝛽0  +   𝛽1 ∗ 𝑥𝑖)

1+  exp(  𝛽0  +   𝛽1 ∗ 𝑥𝑖  )
                            Eqn. 5      

where,  

Yi =1      is the injured group 
Yi = 0   is the un-injured group 

X = xi     is the energy ratio, ER defined by Eqn. 2. 

β0 =0.55 and  β1  = 3.05 are the estimated model parameters.  

                                            

6. Conclusions                         

                                         

A dimensionless scaling of the Biodex system variables identified three critical variable 
that characterizes the energy production of extensor muscle groups. A simple regression 
between the energy and torque ratios was adequate for describing the dynamical behavior 
of the four UCONN sports teams. 

The energy ratio when also coupled with the C or HCONN metric performed well as 
classifiers for isolating injury groups. There is a clear indication that high torque and energy 
ratios are associated with an increase in the odds of injury. Furthermore, it was interesting 
to note that very few female athletes had an ER value greater than 1.17.   

Several critical questions arose as an outgrow of the current study and are briefly 
summarized below: 

• Is the observed ER gender bound value 1.17 an inherent physiological limit?   
• Are higher ERs a requirement for more explosives sports that involve significant 

jumping- landing?  
• Is there a correlation between ‘ACL’ injury frequencies and low ER levels? 
• Can specialized training protocols improve an athlete’s ER value? 

This above set of questions will be used to frame and augment the next phase of this 
ongoing effort which will incorporate data from other muscle groups. Bootstrapping will 
also be used to enhance data efficacy by generating ensemble replicates of the original 
dataset that will allow for non-parametric estimations of the data’s distributional properties 
i.e. mean and standard deviation and aid in improving classification effectiveness.  

The authors would also like to acknowledge the UCONN Athletic Department’s support 
of this ongoing research collaboration.  
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  Figure 1. Biodex System 413 Set-up                             Figure 2a.  Data Scatterplot                                        

            

                                      

                                               

Figure 2b. Parametric Scatterplot                               Figure 3. Linear Torque vs  Energy                                                                                              
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                   Figure 4. Boxplot of Male Athletes                                    Figure 5. Bar Plot Whisker Groups                          

 

                                                    

                              Figure 6. Histogram of Injured Groups  
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Table 1.  Abbreviated Biodex13 Dataset for Extensor Muscle Group: Preferred Limb 

Subject Height 
(cms) 

Mass 
(kgs) 

Time 
(s) 

       
(degrees) 

Torque 
( N-m)          
 

P-
Injured 

N-
Injured 

P+N 
Total 

1 177.8 79.4 0.56 88 168 1 0 1 
2 176.5 69.3 0.53 57 150 0 1 1 
3 157.5 60.0 0.75 52 119 1 1 2 
4 177.8 80.2 0.85 50 142 0 1 1 
5 170.2 67.0 0.56  40 124 1 0 1 
6 172.7 84.4 0.82 60 136 1 0 1 
7 176.5 74.8 0.92 47 89 0 0 0 
8 162.6 55.8 0.57 59 77 1 0 1 
9 160.0 59.0 0.59 46 81 1 1 2 
10 163.8 67.6 0.75 57 88 0 1 1 

 

Table 2. Injury Confusion Matrix 2-Parameter Model 

 Actual 
Un-injured 

Actual 
 Injured 

Total 

Predicted  
Un-injured 

TP=7 FP=9 16 

Predicted 
Injured 

FN=5 TN=49 54 

Total 
 

12 58 70 

 

 

Table 3. Logistic Model Probability and Odd Predictions 

Energy Ratio (ER) Injury Probability Odds  
0.25 0.787 3.60 
0.50 0.888 7.93 
0.75 0.944 16.87 
1.00 0.973 36.04 
1.25  0.987 75.92 
1.50 0.994 165.67 
2.00 0.998 499.00 
2.50 1.000 >>1,000,000 
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