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Abstract
A series of generalized versions of the Syrjala (1996) two-sample test of distributional equal-
ity are proposed. The new tests makes use of both rotations and toroidal shifts of the data.
Additionally, the tests exhibit stability across a variety of explored test statistics. While
computationally more complex, simulations establish the test which employs both rotations
and toroidal shifts as a more powerful and conservative choice over its predecessor. This
test is then applied to eye-tracking data that originates from the Utah State University
Posture Study.

Key Words: Continuous Bivariate Data; Two-Sample; Toroidal Shift; Permuta-
tion Test; Eye-Tracking Data

1. Introduction

Often the question arises as to whether or not two samples were drawn from the
same distribution. Well known two-sample tests of distributional equality for uni-
variate samples include the two-sample Kolmogorov-Smirnov test (Kolmogorov,
1933), the Cramér-von Mises test (Cramér, 1928; von Mises, 1928) generalized
to the two-sample case by Anderson (1962), and the two-sample version to the
Anderson-Darling statistic (Darling, 1957; Anderson and Darling, 1952, 1954). The
two-sample Kolmogorov-Smirnov, Cramér-von Mises, and Anderson-Darling tests
are classified as permutation tests (Berry et al., 2011). However, there also exists
another classification of two-sample tests, called rank tests, including the Mann-
Whitney U test (Mann and Whitney, 1947), and the Wald and Wolfowitz (1944)
runs test for measuring whether two binary values which occur in a sequence are
drawn independently from the same distribution.

Many of these univariate two-sample tests have also been generalized to the
bivariate setting and beyond. For example, Friedman and Rafsky (1979) general-
ized the two-sample Kolmogorov-Smirnov, and Wald-Wolfowitz runs tests to the
multivariate case by use of a minimal spanning tree on the pooled sample.

Additionally, tests involving the nearest neighbors algorithm have been devel-
oped for the multivariate two-sample setting (Schilling, 1986; Henze, 1988; Mondal
et al., 2015). Similar to nearest neighbor techniques, there exists a variety of pub-
lished methods which employ pairwise distances between observations. Within this
group, several publications have centered on a concept of “energy” which can be
measured on a data set (Zech and Aslan, 2003; Székely and Rizzo, 2004).

Additionally, Gretton et al. (2012) proposed a statistic called the maximum
mean discrepancy, which measures the largest difference in expectations over func-
tions in the unit ball of a reproducing kernel Hilbert space. The proposed tests
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presented in this paper (discussed further in Section 2) involves several modifica-
tions to the Syrjala (1996) test, which is a bivariate extension to the Cramer-von
Mises test. The new tests are referred to herein as the modified Syrjala tests, several
of which are shown to be more powerful and more appropriately conservative by
use of Monte-Carlo simulations than the original Syrjala test.

The rest of this paper will proceed as follows: Section 2 details the proposed
modifications to the Syrjala test. Section 3 discusses the structure and results of a
comparative simulation study. The test which employs both rotational and toroidal
shifts is then applied to eye-tracking data from the Utah State University (USU)
Posture Study (Symanzik et al., 2017, 2018; Coltrin et al., 2020) in Section 4.
Sections 5 and 6 contain conclusions and future work, respectively. Additional
simulation results are also provided in the appendix.

2. The Modified Syrjala Test

The Syrjala (1996) test checks for equality between normalized distributions from
bivariate two-sample data. Furthermore, “The random variable in this case is the
observed density at the sampling location, not the location itself.” (Syrjala, 1996).
Consequently, it requires the two samples both occur at an identical set of predefined
locations. The test also suffers from being overly conservative (Fuller et al., 2006).

While useful in its own right, researchers have attempted to apply the Syrjala
test to other scenarios by use of data aggregation steps (Chetverikov et al., 2018;
McAdam et al., 2012). However, the Syrjala test has been shown to depend on the
data aggregation steps such as binning (McKinney and Symanzik, 2019).

Four modifications are proposed for the Syrjala test: (1) removing the restriction
of identical sampling locations between the two samples, (2) exploring three different
weights for both the squared and absolute differences in the empirical cumulative
distribution functions (i.e., six total combinations of weights and differences), (3)
extending the rotational component of the original Syrjala test to higher than four
rotations (discussed in Section 2.1), and (4) implementing the use of toroidal shifts
of the data within the test (discussed in Section 2.2). A combination of both the
rotational and toroidal shift modifications is detailed in Section 2.3.

Let (X1,1, Y1,1), (X1,2, Y1,2), . . . , (X1,n1 , Y1,n1) and (X2,1, Y2,1), (X2,2, Y2,2), . . . ,
(X2,n2 , Y2,n2) be two independent random samples (where n1 and n2 are the
respective sample sizes) with unknown distribution functions F1(x, y) and F2(x, y)
and bivariate empirical cumulative distribution functions (ECDFs) Γ∗

1(x, y) and
Γ∗

2(x, y), respectively. Then the hypotheses under consideration are as follows:

H0 : F1(x, y) = F2(x, y) ∀(x, y)
Ha : F1(x, y) 6= F2(x, y) for some coordinate pair (x, y)

In contrast to the Syrjala test, Γ∗
1(x, y) and Γ∗

2(x, y) in this test evaluate at each
sampling location within their respective samples instead of at identical sampling
locations from the two samples. Also let, nT = n1 + n2 and Dg,k = Γ∗

1(xg,k, yg,k)−
Γ∗

2(xg,k, yg,k); g = 1, 2 and k be the observation index. From here, a series of six test
statistics are proposed as follows:

ξDWS =
n1

nT

n1∑
i=1

[D1,i]
2 +

n2

nT

n2∑
j=1

[D2,j ]
2 (1)
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ξUWS =

n1∑
i=1

[D1,i]
2 +

n2∑
j=1

[D2,j ]
2 (2)

ξRWS =
n2

nT

n1∑
i=1

[D1,i]
2 +

n1

nT

n2∑
j=1

[D2,j ]
2 (3)

ξDWA =
n1

nT

n1∑
i=1

|D1,i|+
n2

nT

n2∑
j=1

|D2,j | (4)

ξUWA =

n1∑
i=1

|D1,i|+
n2∑
j=1

|D2,j | (5)

ξRWA =
n2

nT

n1∑
i=1

|D1,i|+
n1

nT

n2∑
j=1

|D2,j | (6)

These statistics explore the use of squared (ξDWS , ξUWS , and ξRWS) vs. absolute
(ξDWA, ξUWA, and ξRWA) differences between the ECDFs along with three different
types of weightings, namely, double (ξDWS and ξDWA), unweighted (ξUWS and
ξUWA), and reversed (ξRWS and ξRWA) weightings. The abbreviations DW, UW,
and RW refer to the different types of weightings in the ξ statistics, i.e., double,
unweighted, and reverse weighted, respectfully. The S and A are abbreviations for
squared or absolute differences, respectively, computed between the ECDFs from
the two samples. Double weightings refers to the scaling ratio n1

nT
being multiplied

to the sum across the first sample index (i), and n2
nT

being multiplied to the sum
across the second sample index (j). These sums are considered “double” weighted
since any difference in the sample sizes, which would result in a differing number of
terms between the sums, would be exaggerated by the ratio of the sample size by
the pooled sample size. The unweighted weightings omit these scaling ratios, and
reversed weightings apply the scaling ratios to the opposite sums.

The six statistics are chosen to further explore the interactive and individual
effects of squared vs. absolute ECDF differences along with the weightings of the
respective differences. Similarities can be seen between Equations 1–6 (especially
Equation 2) and the univariate two-sample Cramer-von Mises test statistic (Cramér,
1928) from which the Syrjala test is also an extension of (Syrjala, 1996). However,
the assumption for identical sampling locations found within the Syrjala test has
been lifted.

2.1 Rotational Modification

Due to the nature of bivariate data, the origin of the bivariate ECDF is defined
as the data value which falls below and furthest to the left of all of the sampled
data. Consequently, the original Syrjala test was rotated four times in an attempt
to remove a dependency of the test on data which lies closer to this origin (Syrjala,
1996). However, the extent to which these four rotations corrected this issue has
not been explored. Therefore, we propose a more generalized statistic which rotates
the sampled data R times (instead of four times). Hence, the test statistic can be
written as

ΨR =
1

R

R∑
r=1

ξ∗r , (7)
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where ξ∗r is one of the six statistics defined by Equations 1–6 which redefines Γ∗
1

as Γ∗
1,r and Γ∗

2 as Γ∗
2,r for each of the rth rotations, and R is a discrete number of

rotations within 360◦. Hence, our modified test statistic (ΨR) is the average of the
respective statistic computed across the rotations of the data.

2.2 Toroidal Shift Modification

McAdam et al. (2012) noticed a reduced emphasis that the Syrjala test places
on observed differences located near the center of the bounding region. This is
confirmed by McKinney and Symanzik (2019). To overcome this, an additional
modification is employed which uses toroidal shifts.

The toroidal shift is a well established technique in the spatial statistics liter-
ature (Lotwick and Silverman, 1982; Diggle and Milne, 1983; Upton et al., 1985;
Berman, 1986; Dı́az et al., 2008; Dixon, 2014; Moreno-Fernández et al., 2020). This
modification also addresses the ECDF origin issue (see Section 2.1 for more details).
Hence, the toroidal shift modification is first considered here without the rotational
modification. In the next section, a combination of both the rotational and toroidal
modifications is presented.

A toroidal shift is accomplished by first treating the bounding rectangle of the
data as a torus. This is equivalent to forming a bounding rectangle around the data
and wrapping it such that the left and right edges join, and the top and bottom
edges join. This wrapping of the horizontal and vertical axes will form a donut-
shaped torus. Hence, the data on the left edge will now be considered as “close” to
the data on the right edge of the bounding rectangle. This affect is applied similarly
to data near the top or bottom edges of the bounding rectangle.

A common approach for achieving the shift is accomplished by randomly sam-
pling a ∆x ∼ Uniform(0,max(x)−min(x)) and ∆y ∼ Uniform(0,max(y)−min(y)),
and adding ∆x and ∆y to every data value’s x and y coordinate, respectively. If
the shift moves a data value outside of the bounding rectangle, then the data value
will be replaced on the opposite side of the bounding rectangle (Upton et al., 1985).

In order to ensure that every ECDF of the shifted data is equally likely, we apply
the toroidal shift as follows: A random data value is first selected as the origin of
the toroidal shift. All data values to the left of the selected data value are shifted
horizontally by adding a distance equal to the width of the bounding rectangle
(max(x) − min(x)) to their respective x coordinates. A similar shift is applied to
the data values below the selected data value except the height of the bounding
rectangle (max(y) −min(y)) is added to the y coordinates. While this results not
only in shifted data, but also in a shifted bounded rectangle, the subsequent ECDF
calculations do not depend on the relative position of the data. Figure 1 shows an
example of two subject’s data which undergo a random toroidal shift.

These new toroidal shifted data provide the basis for an additional modification
to the Syrjala test. After the data are transformed using the toroidal shift, the test
statistic of choice ξ∗t is computed, where ξ∗t is one of the six statistics defined by
Equations 1–6 which redefines Γ∗

1 as Γ∗
1,t and Γ∗

2 as Γ∗
2,t for each of the t toroidal

shifts. This calculation can be applied across all possible toroidal shifts, or a large
random subset if all possible shifts are computationally infeasible. This is similar
to the modification shown in Equation 7, except that the individual computations
are weighted according to the number of toroidal shifts RT , as seen in the following
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Figure 1: A visualization of two-sample data before (left) and after (right) a
toroidal shift transformation. The center plot shows a bounding rectangle around
combined samples along with the randomly selected data value which serves as the
origin of the toroidal shift. The data values unaffected by the toroidal shift are
indicated by hollow shapes, whereas those affected are indicated by filled-in shapes.

equation:

ΨT =
1

RT

RT∑
t=1

ξ∗t . (8)

2.3 Combining Modifications

In an effort to remove both the dependency of the Syrjala test on the ECDF’s
origin (see Section 2.1 for more details) while also alleviating the reduced emphasis
the Syrjala test places on the observed differences near the center of the bounding
rectangle (McAdam et al., 2012), an additional modification is considered which
combines both the rotational (see Section 2.1) and toroidal shift (see Section 2.2)
modifications.

Due to computational efficiency, the rotational modification is applied first
within the test. This also removes the need to recenter the data around the bivari-
ate median since differences in the bivariate ECDFs computed after the toroidal
shift will be the same regardless of relative position to the origin. Hence, for every
rotation of the combined data, the toroidal modification is applied separately. Con-
sequently, combining the modifications in Equations 7 and 8 gives us the following
equation:

ΨRT =
1

R ·RT

R∑
r=1

RT∑
t=1

ξ∗r,t,

where ξ∗r,t is one of the six statistics defined by Equations 1–6 which redefines Γ∗
1 as

Γ∗
1,r,t and Γ∗

2 as Γ∗
2,r,t for each of the r rotations and t toroidal shifts.

2.4 Permutation Test Computations

Let Ψ∗ be one of the previously discussed test statistics ΨR, ΨT , or ΨRT (see
Sections 2.1–2.3). As a permutation test, the test statistic Ψ∗

l ; l = 1, . . . , Nmax,

is recalculated Nmax = nT !
n1!n2! times where n1 and n2 are the respective sample

sizes, nT = n1 + n2, and Nmax is the total number of permutations of the sample
labeling subscripts. However, in practice, computing Ψ∗

l for all l = 1, . . . , Nmax is
computationally infeasible, and a sufficient N � Nmax are computed instead.

The p-value is calculated as the total proportion of test statistics Ψ∗
l which are

greater than or equal to the statistic Ψ∗ computed from the non-permuted data,
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i.e.,

p− value =

N∑
l=1

(
IΨ∗

l ≥Ψ∗

)
+ 1

N + 1
.

where IΨ∗
l ≥Ψ∗ is one if Ψ∗

l ≥ Ψ∗ and zero otherwise.
Figure 2 outlines the process in which both rotational and toroidal shift modi-

fications are integrated into the Modified Syrjala test. The psi statistics computed
on the original data and permuted data referred to in the figure are the ΨRT and
ΨRT

l discussed in Sections 2.3 and 2.4, respectively.

3. Simulations

The rotational modified Syrjala test has already been shown to be both more pow-
erful and more appropriately conservative as compared to the original Syrjala test
(McKinney and Symanzik, 2019). However, additional simulations are discussed
here which investigate both the power and false positive rate of not only the ro-
tational modification, but also the toroidal shift, and combined modifications (see
Sections 2.1–2.3).

3.1 Simulation Setup

To assess the tests when the null hypothesis is true, two realizations of independent,
uniformly distributed, or completely spatially random (CSR), data were simulated
on [0, 1] × [0, 1] square regions. To assess the tests when the null hypothesis is
false, four separate comparisons were made, each of which was compared to CSR.
The four departures from CSR (also simulated on the [0, 1] × [0, 1] square) were
constructed using the following intensity functions for the heterogeneous Poisson
process where the values a1, a2, a3, and a4 are height parameters.

fCenter(x, y) = a1 · exp
{
− 20 ·

[
(x− 0.5)2 + (y − 0.5)2

]}
fRepel(x, y) = a2 ·

(
1− exp

{
− 80 ·

[
(x− 0.5)4

+ (y − 0.5)4
]})

fCorner(x, y) = a3 · exp
{
− 5 ·

[
(x− 1)2 + (y − 1)2

]}
fRight(x, y) = a4 · exp

{
− 5 · (x− 1)2

}
Let µ be the average number of points within the unit square for the heteroge-

neous Poisson process. For reproducibility, Table 1 shows the values for the height
parameters that achieve a specified intensity µ for each departure from CSR. The
coefficients were chosen to ensure a sufficient departure from CSR. For each of the
five comparisons (CSR compared with CSR, Center, Repel, Corner, Right), CSR
realizations of 50, 100, 250, and 500 points was compared to the same four sample
sizes.

Additionally, in order to ensure reproducibility of the simulation results, the
simulation data is generated up front with predefined random number seeds.

Furthermore, to reduce the overall variability of the statistics on the simulated
data, the method of common random numbers (CRNs) is employed (Glasserman,
2013; Botev and Ridder, 2017). CRNs (also called correlated sampling, matched
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3. Number of permutations
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1. True psi statistic 
(calculated on original data)
2. Permuted psi statistics
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Algorithm C
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each rotation
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Average these 
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Figure 2: A flowchart which displays the process in which a combination of both the
rotational and toroidal shift modifications are integrated into the Modified Syrjala
test. The psi statistics computed on the original data and permuted data referred
to in the figure are the ΨRT and ΨRT

l discussed in Sections 2.3 and 2.4, respectively.
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Table 1: A table of the height parameter values (a1, a2, a3, and a4) which achieve
a desired average number of points within the unit square (µ) for each respective
intensity function.

µ a1 a2 a3 a4

50 319 79 319 126
100 639 158 639 253
250 1597 395 1597 632
500 3193 790 3193 1264

sampling, or matched pairs) are a variance reduction technique commonly employed
in Monte Carlo simulations (Glasserman, 2013; Botev and Ridder, 2017), and are
well established within the statistical simulation community (Kleijnen, 1975, 1976,
1979). In essence, when making comparisons between different configurations within
a Monte-Carlo simulation, CRNs ensure that any one realization of a random vari-
able is used in the same way across all of the configurations. Hence, the same
randomly generated numbers will be used across all of the configurations of the
simulation, which reduces the overall variation in the simulation statistics.

This work builds upon that of McKinney and Symanzik (2019) in the five ways:
(1) the varying sample sizes when comparing two samples now includes all possible
combinations of 50, 100, 250, and 500 for the first sample and 50, 100, 250, and 500
for the second sample (in McKinney and Symanzik (2019) only sample sizes of 500
in the first sample were compared to sample sizes of 50, 100, 250, and 500 for the
second sample), (2) the performance of the rotational extension of the Syrjala test
is observed at 4, 5, 6, 8, 10, 36, and 45 rotations within 360◦ (i.e., 4 90◦ rotations,
5 72◦ rotations, etc.), whereas McKinney and Symanzik (2019) only explored 4,
6, 8, 10, and 36 rotations within 360◦, (3) five additional statistics are explored
whereas McKinney and Symanzik (2019) only employed ξDWS , (4) the toroidal
shift and combined rotational and toroidal shift extensions are investigated, and (5)
a computationally feasible instance of the modified Syrjala tests (employing both
rotational and toroidal shifts) is applied to the USU Posture Study data in Section 4.

3.2 Simulation Results

Due to the necessity of identical sampling locations for the Syrjala test, binning of
data has been used in the literature (Chetverikov et al., 2018; McAdam et al., 2012).
Hence, two types of data binning techniques along with a spectrum of binning gran-
ularity are discussed in further detail in the next subsection. These are incorporated
into the simulation study of the Syrjala test in order to further study their respec-
tive effects on test results. This simulation is an extension of the research presented
by McKinney and Symanzik (2019).

3.2.1 Data Binning for Common Sampling Locations

Before applying the Syrjala test, two different types of binning were applied to the
data, namely regular and random binning. Regular binning consists of dividing
the sample region into a grid of equally sized rectangles. The density of all sample
points within each rectangle was reported at the center of the respective rectangles.
Random binning consists of randomly assigning binning points (using a simple se-
quential inhibition process) across the sample region, and assigning each sample
point to the closest random binning point (using Euclidean distance). Within each
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of these binning approaches, three levels of granularity were used. Regular binning
consisted of dividing the unit square into 5 × 5, 10 × 10, and 20 × 20 rectangu-
lar grids. Random binning involved randomly assigning 25, 100, and 400 random
binning points across the sample region.

3.2.2 Syrjala Test Simulation Results

Figure 3 displays a grid of line graphs which summarize the results of a simulation
comparing the effect of regular or random data binning (detailed in Section 3.2.1) on
the Syrjala test. The horizontal axis displays which type of binning, either regular
(Reg) or random (Ran), was applied to the simulation data. The granularity of the
binning is represented after the Reg (5×5, 10×10, or 20×20) or Ran (25, 100, or
400) horizontal axis tick labels, and are detailed in Section 3.2.1. The grid column
name indicates the CSR sample size (n1), and the grid row indicates the shape of
the second sample. The colors of the lines and symbols indicate the second sample
size (approximate n2).

Looking at all of the comparisons of CSR vs CSR (all of the line graphs in
the first row of Figure 3), we see that the Syrjala test rejected 67 out of 960 (ten
iterations times six binning techniques times four n1 sample size comparisons times
four n2 sample size comparisons) tests. In other words, the Syrjala test is rejecting
around 7% of the tests. Since we are testing at the 5% significance level, we should
expect to see roughly 5% of tests reject the null hypothesis when it is actually true.
Hence, the Syrjala test is exhibiting anti-conservative behavior.

This result seems to contradict the conservative behavior of the Syrjala test
exhibited in McKinney and Symanzik (2019). However, for the case when the null
hypothesis is true, a much larger number of small sample comparisons are being
made here (960 total tests) as compared to McKinney and Symanzik (2019) (240
total tests). The greater number of false positives here suggests that the perfor-
mance of the test may behave differently than what has been previously observed
in the literature (Fuller et al., 2006) when comparing two samples with relatively
small samples sizes.

The remaining rows of graphs show comparisons between realizations of a CSR
process with departures from CSR, i.e., when the null hypothesis is false. In the
second row, realizations of CSR (with sample sizes of 50, 100, 250, and 500 points)
were compared to realizations of a heterogeneous Poisson process called Center
(with 50, 100, 250, and 500 sample points, respectively). Overall, the Syrjala test
produced multiple non-significant test results depending on the binning technique
and sample size.

Particularly, CSR vs Center (second row of graphs) shows that in all cases
of random binning using only 25 points the Syrjala test fails to detect all of the
differences. This is also exhibited in regular binning with only a 5×5 grid. However,
the effect is overcome for regular binning as soon as both n1 and n2 are greater than
100. Nonetheless, this comparison (CSR vs Center) suggests a dependence of the
Syrjala test on the data aggregation step, i.e., the binning must be granular enough
to reflect the deviations from CSR.

This is further suggested in the third row of graphs where realizations of CSR
were compared with departures from CSR called Repel. These comparisons provide
an interesting case since the Syrjala test struggled to indicate every significant
difference across the different sample size comparisons. Again, a dependence on the
granularity of the binning is seen by the non-decreasing nature for all line graphs
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when both samples are greater than 50. Furthermore, the general jump in significant
test results becomes more stark as both sample sizes increase. For example, when
n1 = 500 and n2 = 50 the Syrjala test is only able to detect one and two more
significant test results as the binning granularity increases for random and regular
binning, respectively. However, when n1 = 500 and n2 = 500 the Syrjala test is
able to detect eight and seven more significant test results as the binning granularity
increases for random and regular binning, respectively.

Additionally, the Syrjala test is better able to detect differences as the sample
sizes increase. This can be seen in two ways. In general, there is a positive trend
in the number of significant test results across all values of n1 for a fixed value of
n2 and binning technique. Alternatively, there is a positive trend in the number
of significant test results across all values of n2 for a fixed value of n1 and binning
technique. Also notable are the cases in which either sample size is less than 100.
Here, the Syrjala test is only able to detect at most three out of ten cases across all
of the other sample’s sizes and binning techniques.

Overall, not only does row three in Figure 3 reinforce the observed dependence of
the Syrjala test on the binning technique (also observed by McKinney and Symanzik
(2019)), but it also confirms that the Syrjala test places less emphasis on differences
located near the center of the bounding region which was observed by McAdam
et al. (2012).

In the remaining two rows where realizations of CSR are compared with the
Corner and Right distributions, the Syrjala test was able to detect all significant dif-
ferences. This confirms the results established by McKinney and Symanzik (2019).

3.2.3 Modified Syrjala Tests Simulation Study

Each of the three modifications proposed to the Syrjala test, namely the rota-
tional, toroidal shift, and combination of rotational and toroidal shift modifications
(detailed in Section 2), has a parameter (or two in the case of the combined mod-
ifications) which is explored within this simulation study. When simulating the
modification which extends the number of rotations of the data, 4, 5, 6, 8, 10,
36, and 45 rotations (within one 360◦ rotation) are employed in this simulation as
compared to the 4, 6, 8, 10, and 36 rotations used in (McKinney and Symanzik,
2019). The additional rotations of 5 and 45 were included to further ensure stabil-
ity among the results. Since the modification which involves only toroidal shifts of
the data introduces considerable additional computational load, only subsets of the
combined two-sample data are randomly selected as origins to the toroidal shifts
(instead of constructing a toroidal shift for each data point). The proportions of
randomly selected data values explored in the simulation are 0.1, 0.2, 0.3, 0.5, 0.75,
and 0.90. Naturally, the modification which includes both rotational and toroidal
shifts is even more computationally intensive. While all of the previously employed
rotations are still included, only the proportions 0.1, 0.2, and 0.3 (of randomly se-
lected data values used as origins of the toroidal shifts) are explored. However,
stable results are exhibited and discussed for these proportions in Section 3.2.6.

3.2.4 Rotational Modification Simulation Results

Figure 4 shows the results of the simulation study for the rotational modification
when using the RWS statistic. The remaining five proposed versions of the statistic
ξ (see Section 2 for more details) are also explored. However, since Figures 4 and
12–16 show almost the same behavior aside from some chance variation, the latter

 
863



[..
.]

[..
.]

[..
.]

[..
.]

[..
.]

[..
.]

[..
.]

[..
.]

n 1
 =

 5
0

n 1
 =

 1
00

n 1
 =

 2
50

n 1
 =

 5
00

CSR Center Repel Corner Right

4
5

6
8

10
36

45
4

5
6

8
10

36
45

4
5

6
8

10
36

45
4

5
6

8
10

36
45

0510 0510 0510 0510 0510

N
um

be
r 

of
 R

ot
at

io
ns

 (
fo

r 
R

W
S

 R
ot

at
io

na
l M

od
ifi

ed
 S

yr
ja

la
 T

es
t)

Significant Tests
n 2

≈
50

10
0

25
0

50
0

F
ig

u
re

4
:

A
gr

id
of

li
n

e
gr

ap
h

s
sh

ow
in

g
th

e
re

su
lt

s
of

a
si

m
u

la
ti

on
co

m
p

ar
in

g
m

u
lt

ip
le

ro
ta

ti
o
n

s
o
f

th
e

m
o
d

ifi
ed

S
y
rj

a
la

te
st

u
si

n
g

re
ve

rs
e

w
ei

gh
ti

n
gs

of
th

e
sq

u
ar

ed
d

iff
er

en
ce

s
in

th
e

E
C

D
F

s
(R

W
S

).
T

h
e

gr
id

co
lu

m
n

n
am

e
in

d
ic

at
es

th
e

C
S

R
sa

m
p

le
si

ze
(n

1
),

a
n

d
th

e
g
ri

d
ro

w
in

d
ic

a
te

s
th

e
sh

ap
e

of
th

e
se

co
n

d
sa

m
p

le
.

T
h

e
co

lo
rs

of
th

e
li

n
es

an
d

sy
m

b
ol

s
in

d
ic

at
e

th
e

se
co

n
d

sa
m

p
le

si
ze

(a
p

p
ro

x
im

a
te
n

2
).

F
o
r

ex
a
m

p
le

,
th

e
b

o
tt

o
m

le
ft

gr
ap

h
sh

ow
s

th
e

n
u

m
b

er
of

si
gn

ifi
ca

n
t

te
st

re
su

lt
s

(o
u

t
of

te
n

te
st

s)
on

C
S

R
re

al
iz

at
io

n
s

of
50

p
o
in

ts
w

it
h

R
ig

h
t

re
a
li

za
ti

o
n

s
o
f

a
p

p
ro

x
im

a
te

ly
50

,
10

0,
25

0,
an

d
50

0
p

oi
n
ts

.

 
864



figures (Figures 12–16) for the DWS, UWS, DWA, UWA, and RWA simulations
(respectively) are provided in the Appendix. Recall from Section 2 that the ab-
breviations DW, UW, and RW refer to the different types of weightings in the ξ
statistics, i.e., double weighted, unweighted, and reversed weighted, respectfully.
The S and A are abbreviations for squared or absolute differences, respectively,
computed between the ECDFs from the two samples. Figures 4 and 12–16 each
display a grid of line graphs which depict the number of significant test results (p-
values < 0.05) out of ten tests for each combination of rotational parameter level
(horizontal axes), second sample size (n2, represented by the different colors and
shapes in the line graphs), distribution of the second sample (grid rows), and first
sample size (n1, shown in the grid columns).

In summary, while the squared statistics perform marginally better than the
absolute value statistics (this is shown more explicitly in Section 3.3), the choice in
proposed versions of the statistic ξ makes little difference in the overall performance
of the rotational modification test. Additionally, Figure 4 shows little indication
that an increase in the number of rotations within the test has any effect on the
number of significant test results regardless of the version of the statistic ξ. This
suggests that a lower number of rotations will achieve similar results while providing
computational efficiency. This effect is investigated further in Section 3.2.6 when
simulating the behavior of the test which involves a combination of the rotational
and toroidal shift modifications.

For the cases when the null hypothesis is true (both samples were generated from
the same CSR distribution), we can see that all of the rotational tests demonstrated
roughly the same false positive rate (as seen in the first row of graphs across all of
the figures). Overall, 67 out of 1120 tests resulted in false positives, the ratio of
which gives a false positive rate of approximately 0.0598. This is also shown and
discussed further in Section 3.3.

The cases when the null hypothesis is false are seen in the bottom four rows
of graphs. Here, none of the rotational tests in Figure 4 exhibit any difficulty in
correctly identifying all of the significant differences for both Corner and Right
departures from CSR (as seen in the bottom two rows of graphs). When compared
with Figure 3 it is clear that there are cases in which the Syrjala test and the
rotational modified Syrjala test still agree. Furthermore, the rotational tests do
well in correctly identifying significance for the Center distribution (as seen in the
second row of graphs) except for the case when the second sample is small (n2 ≈ 50).
In general, about two out of ten tests were labeled as non-significant in this case.

However, similar to the results shown in Section 3.2.2, the Repel case (as seen in
the third row of graphs) proves to be more difficult for the test to correctly identify
significant differences. This confirms that the rotational modification Syrjala test
also places less emphasis on differences located near the center of the bounding
region similar to the Syrjala test (McAdam et al., 2012). However, the rotational
modification Syrjala test overcomes some of these issues (see Section 3.2.2). In
general, as both of the sample sizes increase so do the number of significant results.
At the point when both sample sizes are greater than 250, the test can identify
almost all of the significant differences (see the n2 ≈ 250 and n2 ≈ 500 line graphs
for the n1 = 250 and n1 = 500 columns in the third row of graphs).

Additionally, more detailed comparisons of the power and false positive rate of
each of these tests as compared to the other tests employed in Section 3.2.5 and
3.2.6 are discussed in Section 3.3. In comparison, the far right column (n1 = 500)
of Figure 12 match the results found by McKinney and Symanzik (2019).
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3.2.5 Toroidal Shift Modification Simulation Results

Similar to the previous section, Figure 5 shows the results of the simulation study
for the rotational modification when using the RWS statistic. The remaining five
proposed versions of the statistic ξ (see Section 2 for more details) are also explored.
However, since Figures 5 and 17–21 show almost the same behavior aside from some
chance variation, the latter figures (Figures 17–21) for the DWS, UWS, DWA, UWA,
and RWA simulations (respectively) are provided in the Appendix. The layout of
these figures is identical to Figure 4 except that the horizontal axes display the
proportions of points used as origins for the toroidal shifts ranging from 0.1, 0.2,
0.3, 0.5, 0.75, and 0.9.

Similar to Section 3.2.4, while the squared statistics perform marginally better
than the absolute value statistics in Figure 5 (this is shown more explicitly in Sec-
tion 3.3), the choice in proposed versions of the statistic ξ makes little difference in
the overall performance of the toroidal shift modification test. Additionally, Fig-
ure 5 shows little indication that an increase in the proportion of randomly selected
points (used for origins of the toroidal shifts) within the test has any effect on the
number of significant test results regardless of the version of the statistic ξ. This
suggests that a lower number of toroidal shifts will achieve similar results while pro-
viding computationally efficiency. This effect is investigated further in Section 3.2.6
when simulating the test behavior of the test which involves a combination of the
rotational and toroidal shift modifications.

For the cases when the null hypothesis is true (both samples were generated
from the same CSR distribution), we can see that all of the toroidal shift tests
demonstrated roughly the same false positive rate (as seen in the first row of graphs).
Overall, 30 out of 960 tests resulted in false positives, the ratio of which gives a false
positive rate of approximately 0.0313. This is shown more explicitly and discussed
further in Section 3.3.

The cases when the null hypothesis is false are seen in the bottom four rows
of graphs. Here, none of the toroidal shift tests in Figure 5 exhibits any difficulty
in correctly identifying all of the significant differences for the Center or Corner
departures from CSR (as seen in the second and fourth rows of graphs, respectively).
Similarly, the toroidal shift tests do well in correctly identifying significance for the
Right distribution (as seen in the bottom row of graphs) except for a few cases
most of which occur when the second sample is small. In comparison, the rotational
modified Syrjala test correctly computed significance for all of the Right distribution
cases (as seen in the bottom row of graphs of Figure 4).

Similar to the rotational test results (in Section 3.2.4), the Repel case (as seen
in the third row of graphs) proves to be more difficult for the test to correctly
identify significant differences. However, there is a noticeable improvement of the
toroidal shift modification over the rotational modification. In general, as both
of the sample sizes increase so do the number of significant results. At the point
when both sample sizes are greater than 100, the test can identify almost all of the
significant differences (see the n2 ≈ 100, n2 ≈ 250 and n2 ≈ 500 line graphs for the
n1 = 100, n1 = 250 and n1 = 500 columns in the third row of graphs).

When compared with Figure 4, Figure 5 shows that while the toroidal shift test
increased the overall number of correct significant test results, the rotational test
does produce more significant test results in a few cases. Specifically, if we compare
the two tests one row at a time, it is clear that the toroidal shift is a better selection
for the Center distribution as it handles the case when both sample sizes are equal
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to 50 better than the rotational test. Similarly, the toroidal shift test performs better
in almost all cases of the Repel distribution. Both tests perform perfectly for the
Corner distribution in identifying every test as significant. However, the rotational
test outperforms the toroidal shift test for several small sample comparisons from
the Right distribution. This is shown more explicitly in Section 3.3, in addition to
more detailed comparisons of the power and false positive rate of each of toroidal
shift modification tests as compared to the other tests employed in Section 3.2.6.

3.2.6 Simulation Results for the Modified Syrjala Test which Combines both Rota-
tional and Toroidal Shift Modifications

While little difference is observed in the versions of the ξ statistics across both the
rotational (Figures 4 and 12–16) and toroidal shift (Figures 5 and 17–21) modi-
fications, squared differences in the statistics perform marginally better than the
absolute differences. Hence, while an argument could be made for the absolute
differences, the squared difference is only considered in the simulations of the test
involving both rotational and toroidal shift modifications. Furthermore, there is
little indication of superiority in the choice of weights within the ξ statistic. Con-
sequently, for the sake of counteracting a difference in sample size between the two
samples, ξRWS is used for combined modification simulations. See Section 2 for
more details about the different ξ statistics.

Hence, Figures 6–8 show the results of the simulation study for the combination
of both rotational and toroidal shift modifications using only the ξRWS statistic.
Similar to Figures 4, 5, and 12–21, each one of these figures also displays a grid of
line graphs which depict the number of significant test results (p-values < 0.05) out
of ten tests for each number of rotations (horizontal axes), second sample size (n2,
represented by the different colors and shapes in the line graphs), distribution of the
second sample (grid rows), and first sample size (n1, shown in the grid columns) for
a given proportion of randomly selected points used as origins of the toroidal shifts.
Figures 6–8 use the proportions of 0.1, 0.2, and 0.3, respectively. The remaining
proportions explored in the test involving only the toroidal shifts (0.5, 0.75, and
0.9) are not included here due to the computational load imposed by the large
proportions. However, stable results are shown across Figures 6–8 similar to those
seen in Section 3.2.5 suggesting that running these additional simulations may be
unnecessary.

Overall, Figures 6–8 show almost the same behavior aside from some chance
variation, and the overall number of significant tests are almost identical to the
toroidal shift test as seen in Section 3.2.5. This suggests that a smaller number of
rotations as well as a smaller proportion of randomly selected points used as the
origins of the toroidal shifts is sufficient for representative test results while also
providing relief to the computational load.

For the cases when the null hypothesis is true (both samples were generated
from the same CSR distribution), we can see that all of the combined rotational
and toroidal shift tests demonstrated roughly the same false positive rate (as seen
in the first row of graphs). However, the false positive rate expressed by this test
is closer to the significance level of 0.05 than either the rotational or toroidal shift
tests. This is shown more explicitly and discussed further in Section 3.3.

The cases when the null hypothesis is false are seen in the bottom four row of
graphs. Here, none of the combined rotational and toroidal shift tests in Figures 6–8
exhibit any difficulty in correctly identifying all of the significant differences for the
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Center or Corner departures from CSR (as seen in the second and fourth rows
of graphs, respectively). This behavior is identical to the toroidal shift test (see
Section 3.2.5). Similarly, the combined rotational and toroidal shift tests do well in
correctly identifying significance for the Right distribution (as seen in the bottom
row of graphs) except for a few cases when the second sample is small. This behavior
is also similar to the toroidal shift test (see Section 3.2.5), except that the combined
modification test is moderately better. However, the combined modification is still
not as good as the test which employs only rotations for a few cases from the Right
distribution. This may be due to the fact that the rotational test still emphasizes
differences closer to the edge of the sample distributions, which proves to be a
strength when faced with distributions similar to the Right case.

Similar to the toroidal shift test results (in Section 3.2.5), the Repel case (as seen
in the third row of graphs) proves to be more difficult for the combined modification
test to correctly identify significant differences. However, similar to the toroidal shift
test, there is a noticeable improvement of the combined modification test over the
rotational modification. In general, as both of the sample sizes increase so do the
number of significant results. At the point when both sample sizes are greater than
100, the test can identify almost all of the significant differences (see the n2 ≈ 100,
n2 ≈ 250 and n2 ≈ 500 line graphs for the n1 = 100, n1 = 250 and n1 = 500
columns in the third row of graphs).

3.3 Summary of Results

In this section, the power (see Figure 9) and false positive rate (see Figure 10)
are computed and graphed for the original Syrjala test across the different binning
techniques as well as the rotational, toroidal shift, and combined modified Syrjala
tests across the six different ξ statistics. The false positive rate is computed as the
ratio of significant tests out of all tests when the null hypothesis is true. The power
of a test is computed as the ratio of significant tests out of all tests when the null
hypothesis is false. In these figures, the use of the weightings DW, UW, and RW in
connection with the squared (Sqrd) versus absolute (AbsV) differences correspond
to the six statistics ξDWS , ξUWS , ξRWS , ξDWA, ξUWA, and ξRWA.

Specifically, the false positive rate is computed by dividing the number of signif-
icant test results by the total number of tests computed when both samples come
from the same CSR distribution (first row of graphs in Figures 3–8 and 12–21).
For example, the Syrjala test (see Figure 3) which employed 5× 5 regular binning
resulted in 12 out of 160 tests being false positives, i.e., a false positive rate of 0.075.
For the modified Syrjala tests, this computation was applied to the aggregation of
tests across all rotations or toroidal shifts values. For example, the rotational mod-
ified Syrjala test resulted in 67 out of 1120 tests being false positives, i.e., a false
positive rate of 0.05982.

For false positive rates in Figure 10, test results should be as close as possible to
0.05 (i.e., 5%, indicated by the horizontal line) when testing at the 5% significance
level. Test results which fall below 0.05 are indications of a conservative nature in
the test (i.e., a test which is less to reject the null when it is actually true). In
Figure 9, the higher the power of a test the more likely the test is to reject the null
when it is indeed false. Theoretically, the maximum power a test can achieve is one.

Overall, while Figures 9 and 10 show a considerable difference between the
toroidal shift and rotational modifications, little difference is seen across the dif-
ferent weightings (DW, UW, and RW) or squared (Sqrd) versus absolute (AbsV)
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Figure 9: A comparison of the power achieved by the tests discussed in Sections 3.
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differences in the ECDF values. Specifically, the power of the tests which employ
toroidal shift modifications is about 0.08 higher than the rotational modification
tests on average. However, the power of tests which involve squared differences
in the ECDF values is only about 0.003 higher than tests which use absolute dif-
ferences in ECDF values on average. Additionally, the relative stability in results
suggest less computationally intensive tests may be employed without a sacrifice in
performance.

While the horizontal axes in Figures 9 and 10 describes either the binning tech-
nique for the Syrjala tests or the modified Syrjala test statistic weighting, the legend
also describes which ECDF difference was used in addition to the modification em-
ployed for the modified Syrjala tests. For example, the combined rotational and
toroidal shift modification tests which used the test statistic ξRWS while exploring
all previously used rotations, and 0.1, 0.2, and 0.3 as the proportion of toroidal
shifts are labeled in the figure legends as Sqrd RotToro0.1 Mod, Sqrd RotToro0.2
Mod, and Sqrd RotToro0.3 Mod, respectively.

Figure 9 shows the superiority of the toroidal shift and combined modifica-
tions over the original Syrjala test and rotational modifications. While the toroidal
shift modification outperforms the rotational modification, the combination of both
modifications did not achieve a considerably higher power than the toroidal shift
modification alone. However, Figure 10 shows that the combined test provides a
false positive rate closer to the significance level of 0.05. Specifically, the average
false positive rate of the toroidal shift modification is 0.03, which is more con-
servative than the average 0.045 false positive rate of the combined modification.
Additionally, since the false positive rate is below the significance level this implies
that the test is more appropriately conservative as compared to the toroidal shift
modification alone. Due to the trade-off between power and false positive rates in
tests, this suggests that while the toroidal shift modification is more conservative
as compared to the combined modification it may not be as powerful in the face
of all possible departures from the null as the combined modifications test. Thus,
the combined rotational and toroidal shift modified Syrjala test appears to be the
superior choice.

4. Application

In this section, we apply the combined rotational and toroidal shift modified Syrjala
test to eye-tracking data taken from two pairs of participants from the USU Posture
Study (Symanzik et al., 2017, 2018; Coltrin et al., 2020). The test employs eight
rotations, 0.1 proportion of points for toroidal shifts, and the ξRWS statistic. Two
pairs of gaze scatterplots are displayed in Figure 11. While applying tests which
employed 99 permutations of the data and a significance level of 0.05, we obtain
significant results for the postures shown in (a) and (b) (p-value = 0.01), and non-
significant results for the postures shown in (c) and (d) (p-value = 0.22) in Figure 11.
The sample sizes for (a)–(d) are 84, 144, 32, and 32, respectively.

The significant test result for the comparison of gaze points in (a) and (b) (in
Figure 11) is confirmed by the visual difference in gaze point distributions for the
postures in (a) and (b). In (a), the subject assessed the postural stability of the actor
by focusing more on the actor’s right torso, and between the upper thighs, whereas
in (b) the subject focused on the upper right torso, and left hip / wrist. While
both subjects spent time on the right wrist, the differences between the overall gaze
point distributions was different enough to reject the null hypothesis and conclude

 
874



(a) (b)

(c) (d)

Figure 11: Comparison of the gaze scatterplots for two pairs of subjects. Images
(a) and (b) exhibit different viewing patterns for one of the postures, while images
(c) and (d) exhibit similar viewing patterns for a different posture.
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significant differences between the subject’s respective gaze point distributions for
this posture. Furthermore, while there are some minor differences between the
postures shown in (c) and (d), the non-significant test result leads to the conclusion
that there is not enough evidence to suggest that these two subjects have different
gaze point distributions for this posture.

5. Conclusion

The proposed generalized version of the Syrjala (1996) test overcomes many of the
Syrjala test’s limitations, including much of its dependency on the origin of the bi-
variate ECDF, and the necessity of identical sampling locations. Additionally, the
combined rotational and toroidal shift modified Syrjala test, while more computa-
tionally complex, has been shown to be a more powerful and more appropriately
conservative choice. It has also been shown to be useful in applications of two-
sample spatial data such as in an eye-tracking data analysis.

6. Future Work

Additional analyses are being conducted on the performance of the modified Syrjala
tests in comparison to several other alternative multivariate two-sample tests of
distributional equality as summarized in Section 1. A series of other simulations
are also being conducted which demonstrate the performance of the modified Syrjala
tests on generated data which is patterned more closely to that found in eye-tracking
analyses. Furthermore, an R package called distdiffR is currently being developed
to make the current research more easily reproducible, aid in the extension of the
methodology, and facilitate in the distribution of the underlying R code for further
applications.
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Appendix

Since Figures 4 and 12–16 show almost the same rotational modified test behavior
aside from some chance variation, the latter figures (Figures 12–16) for the DWS,
UWS, DWA, UWA, and RWA simulations (respectively) are provided in this ap-
pendix. Similarly, since Figures 17–21 show almost the same toroidal shift modified
test behavior aside from some chance variation as Figure 5, they are also provided
in this appendix. Definitions for the test statistic abbreviations in these plots can
be found in Section 2. Additionally, explanations of the figure graph features for
Figures 12–16 and 17–21 can be found in Sections 3.2.3 and 3.2.5, respectively.
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