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Abstract
A change-point model is essential in longitudinal data to infer an individual specific time to
an event that induces a change of trend. However, in general, change points are not known
for population-based data. We present an unknown change-point model that fits the linear
and non-linear mixed effects for pre- and post-change points. We address the left-censored
observations. Through stochastic approximation expectation maximization (SAEM) with
the Metropolis Hasting sampler, we fit a random change-point non-linear mixed effects
model. We apply our method on the longitudinal viral load (VL) data reported to the HIV
surveillance registry from New York City.
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1. Introduction

Longitudinal nonlinear data are seen in many application fields. A change point
that induces simultaneous trajectory changes and provides different trends for pre-
and post-change points. These change-points differ for different subjects and are
considered as random. In longitudinal data analysis, random change-point models
have been widely used in medical research (Dominicus et al. 2008). The linear
mixed effects models for pre- and post-random change points are a general way to
define a class of random change point models (Rudoy et al. 2010, Moss et al. 2016,
Buhule et al. 2020).

In a study of longitudinal data from HIV, an antiretroviral therapy (ART) is ex-
tremely effective and is the random change-point that separates two distinct trends
of the HIV viral load (VL). The VL data in HIV is a widespread indicator of the
evolution of HIV-infection (Perelson et al., 1996). Therefore, the effectiveness of an-
tiviral treatment in HIV patients is measured by the reduction of viral loads (Ding
and Wu 2000, 2001, 2002; Jacqmin-Gadda et al., 2000). As a biological process, we
can assume that before ART, a viral load might be increasing in the HIV patient;
and after ART, viral load may possibly be decreasing.

Typically, viral load shows a dramatic fluctuation after HIV infection before
reaching a set-point and will then increase with a steady rate until the development
of AIDS if there is no treatment (Mei et al., 2008). ART initiation, however, induces
substantial reductions in HIV RNA. The viral load typically has a lower limit of
quantification, and hence data include left-censored observations. The proportion
of left-censored observations may not be small but could be more than one-third of
the total observations. Hughes (1999) proposed a Monte-Carlo version of the expec-
tation maximization (EM) algorithm (Dempster et al., 1977), taking into account

∗City University of New York, Graduate School of Public Health, 55 W 125th St,New York, NY
10027

†City University of New York, Graduate School of Public Health, 55 W 125th St,New York, NY
10027

 
1320



the censored values as missing data. Jacqmin-Gadda et al. (2000) proposed a direct
maximization of the likelihood using an iterative process for linear mixed models as
well, including an autoregressive error model. Samson et al.(2006) used a truncated
Gaussian distribution to impute censored observations. We use the right-truncated
Gaussian distribution with the truncation limit as the linear function of the time.

The aim of this paper is to propose a random change-point model for left-
censored longitudinal data and fit the linear mixed effect for pre-change-point, and
a non-linear mixed effect model for post-change point through the stochastic ap-
proximation of the EM algorithm (SAEM) proposed by (Samson et al. 2006). We
apply the random change-point model to the HIV longitudinal data.

In Section 2, we present a model for the random change-point non-linear model,
Section 3 presents the SAEM algorithm and computation. In Section 4 we apply
this methodology to HIV surveillance data. The conclusion is in Section 5.

2. Model

2.1 Notation and Model

Let us consider longitudinal sample data from n subjects with an explanatory time
variable t and a response variable y. The ith subject has ni observations. The
jth observation for the ith subject at time tij has response value yij ; i = 1, · · · , n;
j = 1, · · · , ni. The response values are either recorded with true observed values
or left-censored threshold values (Thres). We denote observed or left-censored
responses as:

yij =

{
yij,obs ifyij > Thres, yij ∈ Iobs

yij,cen ifyij ≤ Thres, yij ∈ Icen.

The response vector is yi = (yi1,obs, yi2,obs, · · · , yini,cen)
′ for the the ith subject having

left-censored observations.
We assume the random change-point non-linear mixed effect function with a

linear trend before the change-point and a non-linear trend after change-point as
follows

yij = eα1i(tij − eτi)− + log10(e
β1ie−eβ2i (tij−eτi )+ + eβ3ie−eβ4i (tij−eτi )+), (1)

where c(.)− = min(c(.), 0); c(.)+ = max(c(.), 0). This function has six subject-level
parameters including a random change-point τi. The linear parameter α1i describes
the linear trend before the change-point. The nonlinear parameters, β1i and β3i
are baseline values, and β2i and β4i are two phase decay rates. We expontiate
each of these parameters as the function coefficients take positive values to meet a
biological property. The linear trend of the response describes the linear property
of the response before the change-point and the nonlinear trend of the response
describes the sudden decrease in responses after a change-point. The nonlinear
segment in the above function is a bi-exponential model. The bi-exponential model
for initial HIV was proposed by Ding and Wu (2001).

For simplicity, we write only f(φi, tij) or write as the sum of two pieces, the linear
function g(.) and the non-linear function h(.) segmented by the random change-point
τi

yij = f(φi, tij) = g((tij − τi)
−,α) + h((tij − τi)

+,β) (2)

where, α is the linear mixed effects parameter, and β is the non-linear mixed effects
parameter. We assume that mixed effects are a linear combination of fixed effects
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and random effects. That is

α1i = α1+a1i, β1i = β1+b1i, β2i = β2+b2i, β3i = β3+b3i, β4i = β4+b4i, τi = τ+τ1i,

with fixed-effect parameters µ = (α1, β1, β2, β3, β4, τ)
′ and subject-specific random

effect parameters Pi = (a1i, b1i, b2i, b3i, b4i, τ1i)
′.

A random change-point non-linear mixed effect model is

yij = g((tij − τi)
−,α) + h((tij − τi)

+,β) + eij , (3)
φi = µ+ Pi,

Pi ∼ ,N (0,Ω),

eij ∼ N (0, σ2),

τi ∼ N (0, σ2
τ ),

We consider φi where i = 1, · · · , n as missing data in modeling. The complete
population parameter set is θ = (µ,Ω, σ2, σ2

τ ). With censored and missing data the
complete likelihood is

f(y,φ;θ) =

n∏
i=1

∏
j∈Iobs

f(yij,obs;φi,θ) π(φi;θ)

n∏
i=1

∏
j∈Icen

f(yij,cen;φi,θ) π(φi;θ).(4)

We assume that responses have an independent normal distribution with mean
g((tij − τi)

−,α)+ h((tij − τi)
+,β), and constant variance σ2. The complete loglike-

lihood is then

log(f(y,φ;θ)) = −(

n∑
i=1

∑
j∈Iobs

ni)log(σ
2)− 1

2σ2

n∑
i=1

∑
j∈Iobs

(yij,obs − (g(.) + h(.)))2

−(

n∑
i=1

∑
j∈Icen

ni)log(σ
2)− 1

2σ2

n∑
i=1

∑
j∈Icen

(yij,cen − (g(.) + h(.)))2

−n

2
log|Ω| − 1

2

n∑
i=1

(φi − µ)′Ω−1(φi − µ) (5)

−n

2
log(σ2

τ )−
1

2σ2
τ

n∑
i=1

(τi − τ)2.

3. The estimation procedure

3.1 Starting values

The starting values of the random change-point are obtained Log 1-plus rule (Braun-
stein SL et al., 2016). Once we have the initial random change-point for each subject,
we separate pre- and post-change-point observations. With each pre-change-point
we fit a linear mixed effects model, and with each post-change-point we fit a non-
linear mixed effects model to approximate the initial parameters.

3.2 Estimating left-censored data

We use a truncated normal distribution to draw censored data. The censored data
are recorded with the quantifying limit value of the experiment. So, we use the same
censored limit as the upper truncation limit for all censored observation, j ∈ Icen.
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The lower limit of the censored data should be time dependent, and it is assumed
that the lower limit decreases with time.

We assume the lower limit of truncation has a decreasing trend with respect to
time tij . To facilitate, we find a simple linear regression coefficient for yij,cen,k−1 and
tij,k−1 at the kth iteration, (i, j) ∈ Icen, where yij,cen,k−1 is the estimated censored
observation yij,cen at the (k − 1)th iteration. With the assumption of a negative
regression coefficient we obtain a restricted regression coefficient βcen

k . We use this
coefficient to update the right limit of the restricted distribution as yij,cen,k−1 +
tijβ

cen
k .

3.3 The SAEM algorithm

The classical approach for an expectation maximization (EM) algorithm was in-
troduced by Dampster et al. (1977), which estimates the model parameters for an
incomplete data set. A brief note on an EM algorithm: an EM algorithm has an ex-
pectation step and a maximization step. Let L(y,φ;θ) be the loglikelihood function
of the complete data set. Define a function Q(θ|θ′) = E(L(y,φ;θ)|y;θ′). The EM
algorithm is the sequence of iterative estimation, at the kth iteration; the E step is
the evaluation of Qk(θ) = Q(θ|θk) and the M step updates θ̂k by maximizing Qk(θ).
This mixed effect problem considers individual random effects φi, i = 1, · · · , n as
missing data,and it makes our data an incomplete data set. The observed data and
missing data together make up a complete data set. We use the stochastic approx-
imation expectation maximization (SAEM) algorithm introduced by Delyon et al.
(1999), which converges, under general conditions for the exponential family. For
the exponential family the loglikelihood is

log(f(y,φ;θ)) = −Λ(θ)+ < S(y,φ),Φ(θ) >

where, Λ(.) and Φ(.) are functions of parameter θ, S(y,φ) minimal sufficient statis-
tics of the complete model, and < ., . > is the scalar product. In the SAEM
algorithm the E-step has two steps: simulation step (S-step) and Stochastic Ap-
proximation (SA) step, then the M-step for Maximization. In the simulation step
(S step) the missing data φi, i = 1, · · · , n are sampled from its conditional distribu-
tion φi|y;θ. The SA step uses the decreasing positive sequence of positive numbers
decreasing toward zero (γk)k≥0 for E[S(y,φ)|θ̂k] with

sk+1 = sk + γk(S(y,φ)− sm).

The sufficient statistics are S(1) =
∑n

i=1φi, S
(2) =

∑n
i=1φ

2
i and S(3) =

∑n
i=1

∑ni
j=1[yi−

f(φi, tij)]
2. In the M step the fixed effects are updated by maximizing the loglike-

lihood function which reduces to

µ̂k =
1

n
s
(1)
k

ω̂k =
1

n
(s

(2)
k − (s

(1)
k )2)

σ̂k =
1∑n

i=1 ni
s
(3)
k

3.4 Sampling and Computation

There is no closed-form analysis for this random change-point non-linear mixed
effect model. We use the Metropolis–Hastings algorithm, the Markov chain Monte
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Carlo (MCMC) method to obtain a sequence of random samples where there is no
analytic solution. In the S step, we estimate the subject specific random effect φi

and the left-censored data yij,cen. The Gibbs sampling to estimate these two sets
of vectors at the kth iteration is as follows:

1. Sample random effects using the Metropolis-Hastings (MH) algorithm with a
target distribution as a conditional distribution p(.|y; θ̂k−1)

2. Simulate the censored observation with a right-truncated normal distribution.

In the MH-algorithm, the proposal distribution is the multivariate normal distri-
bution N (µk−1, Ω̂k−1). Kuhn and Lavielle presented the details of the SAEM im-
plementation and proved that under a general hypothesis, the sequence (θ̂k)k≥0

obtained by this algorithm converges almost surely toward a (local) maximum of
the likelihood L(y; .).

We simulated the kth censored observation yij,cen from the right-truncated nor-
mal distribution N (f(φi,k, tij), σ

2
k). The upper limit of the truncation distribution

is as defined in Subsection 3.2.

4. Application

We apply the model to HIV data with left-censored observations. The data source
is HIV surveillance registry data from the New York City (NYC) Department of
Health and Mental Hygiene (DOHMH) for years 2006 to 2015, for patients with age
13 years or above. The electronic reporting to the NYC DOHMH of all HIV-related
laboratory tests conducted in NYC have data that includes positive diagnostic tests,
viral load (VL) data and time of visit. In this application, we have data from 500
subjects with average of 5.0 visits per subject which make about 2500 total obser-
vations. The data include left-censored observations. About 40% of the observation
are left-censored. The limit of quantification of VL are 200 cp/ml., 100 cp/ml or 50
cp/ml. For a computational purposes, the original time unit (days) is rescaled by
(5* 365).

Table 1 shows the estimated population parameters (θ) for the HIV registry
data. The population random change-point parameter τ, ART initiation time, is
estimated at -2.49 with a 95% confidence interval of (0.-5.89, 0.897), (e−2.49 = 0.082,

makes 151.3 days). The error σ̂2
τ = 2.99. The pre-ART viral load has a linear slope

parameter estimated at α̂ = −1.98. The estimated random error term σ̂2 = 0.536.
Figure 1 shows the convergence of the random change-point model for a typical
simulation.

5. Conclusion

This research works on longitudinal data with random change points having left-
censored data. It extends the non-linear mixed effect model to the random change
point non-linear mixed effect model, where change point discriminate between linear
and non-linear models for pre- and post-change-points. We fit a model within a
Stochastic approximation expectation maximization (SAEM) algorithm framework,
which uses the Metropolis-Hastings sampler. We have accommodated left-censored
observations to address the general possible censored observations in biomedical
field. The left-censored observations are sampled through a right-truncated normal

 
1324



Table 1: Parameters estimated for HIV surveillance data from New York City for 2006-2015

Estimation of fixed effects

Parameters α1 β1 β2 β3 β4 τ

Estimate -1.985 3.411 0.460 10.941 5.680 -2.497

Standard Error 1.004 0.129 0.380 0.145 0.082 0.191

95% CI (lower) -3.953 3.158 -0.284 10.658 5.520 -2.871

95% CI (upper) -0.017 3.665 1.204 11.224 5.840 -2.123

Estimation of the variance component

Parameters σ2
α1

σ2
β1

σ2
β2

σ2
β3

σ2
β4

σ2
τ

Estimate 0.027 0.127 0.324 1.304 0.103 2.998

Standard Error 3.660 0.090 0.539 0.234 0.048 0.371

distribution with a lower limit of restriction dependent upon the time variable. The
initial change-points are approximated through an exponential curve fitting.

We have applied this method to the HIV surveillance registry data from the New
York City (NYC) Department of Health and Mental Hygiene (DOHMH) for years
2006 to 2015, for patients with ages 13 years or above. The population random
change-point parameter τ is estimated at 151 days and random error σ2

τ = 2.99.
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Figure 1: Convergence plot of random change-point parameters (application to HIV, in
simulation)
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