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Abstract
In this article, we overview a simultaneous inference method in Li (2020) to detect differentially

expressed genes based on Poisson generalized linear models for RNA sequencing factorial designs.
We use a real example for illustration.
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1. Introduction

In RNA sequencing data analysis, researchers often conduct large scale multiple hypothesis
testing for relative gene isoform expressions simultaneously. A major consideration is to
control the familywise error rate (FWER), otherwise the probability of claiming at least
one false positives can easily go up to 1, see Li (2020). We may call gene isoforms, genes
in the following for simplicity.

Chen et al (2014) apply LRT test statistics for relative gene expressions and adjust
p − value using popular multiple comparisons, such as Bonferroni method, Holm’s step-
down multiple hypothesis testing method, or Benjamini and Hochberg step-up multiple
hypothesis testing method. Li et al (2012) attempt to control the empirical false discovery
rate in detecting differentially expressed genes based on permutation datasets. Note that
under the complete null hypothesis, the false discovery rate equals the familywise error
rate; under the partial null hypothesis, the false discovery rate is bounded below by the
familywise error rate, see Dudoit et al (2003). For an overview of these methods, see Li
(2019). For RNA sequencing factorial designs, Li (2020) proposed simultaneous inference
method to detect differentially expressed genes based on gene wise Poisson generalized
linear models. In this article, we overview a simultaneous inference method in Li (2020).
We use a real example to illustrate the application.

2. Simultaneous Inference for Gene Expressions

Let Ylijk be the independent count from k − th replicate under i− th treatment group and
j − th block of gene l, i = 1, 2, j = 1, · · · , a, k = 1, · · · , nij and l = 1, · · · , g such that

log(E(Ylijk))− log(cijk) = γl + τli + βlj (2.1)
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where γl is the mean effect of gene l, l = 1, · · · , g; τli is the i − th treatment effect on
gene l with constraint τl1 + τl2 = 0 for each l; βlj is the j − th block effect on gene l with
constraint

∑
j βlj = 0 for each l; cijk is a scaler for normalization; for each triplet i, j and

k, we take the 0.75 − th quantile of Y ′lijks, l = 1, · · · , g as cijk, see Bullard et al (2010).
The total number of observations for each gene is given by N =

∑
i,j nij .

We estimate the parameters in (2.1) using maximum likelihood estimation method.
We apply the iterative weighted least squares method of Wedderburn (1974) for estimation.
Denote γ̂l, τ̂li, and β̂lj the maximum likelihood estimation of γl, τli, and βlj , i = 1, 2, j =
1, · · · , a for each l, l = 1, · · · , g.

For gene l, l = 1, · · · , g test the hypotheses that

H0l : τl1 − τl2 = 0 vs. H1l : τl1 − τl2 6= 0. (2.2)

To proceed, we define a sequence of pivotal quantities in association to τl1 − τl2 given
by

Tl(τl1, τl2) = σ̂−1l [(τ̂1 − τ̂2)− (τ1 − τ2)], (2.3)

l = 1, · · · , g. Let T (τ ) = [T1(τ11, τ12), · · · , Tg((τg1, τg2))]′. It follows the proof of Theo-
rem 2.1 of Li (2020) that the joint limiting distribution is given in the following Corollary.

Corollary 2.1. For independent observations Y1111, · · · , Yl2an2a , · · · , Yg111, · · · , Yg2an2a ,
assume that 1

N (X ′WlX) −→ Vl, a positive definite matrix, as N −→ ∞, for all l, l =
1, · · · , g. We have

T (τ )
D−→MVN(0g, Ig), as N −→∞ (2.4)

where Wl = diag{µl111, · · · , µl2an2a}, l = 1, · · · , g, 0g is g × 1 vector of 0′s and Ig is
g × g identity matrix.

Let X be the design matrix corresponding to the right hand side of (2.1). Consider
the overdispersion φl among observations of gene l, l = 1, · · · , g. We use the plug-in
estimation of φl in Auer and Doerger (2010) given by

φ̂l = (
∑
i,j,k

(Ylijk − exp{(γ̂l + τ̂li + β̂lj) + log(cijk)})2

exp{(γ̂l + τ̂li + β̂lj) + log(cijk)}
)/(N − (1 + a)). (2.5)

Under the complete null hypothesis ∩gl=1H0l , the test statistic in Li (2020) is given by

Tl = σ̂−1l (τ̂1 − τ̂2), (2.6)

for each l, l = 1, · · · , g where σ̂2l is given by the second diagonal element of φ̂l(X ′ŴlX)−1

quadruple, Ŵl = diag{µ̂l111, · · · , µ̂l2an2a} and µ̂lijk = exp{(γ̂l+τ̂li+β̂lj)+log(cijk)}, i =
1, 2, j = 1, · · · , a and k = 1, · · · , nij .

Let qα be the upper α/2 − th quantile of the multivariate normal distribution in (2.4).
We have that a two-sided level-α simultaneous test for H0l in (2.2) is given by rejecting
H0l if |Tl| > qα, l = 1, · · · , g.
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Analogously, when the magnitude of gene expressions is of interest, a (1 − α)100%
simultaneous confidence interval of τl1 − τl2 is given by

[(τ̂l1 − τ̂l2)− qασ̂l, (τ̂l1 − τ̂l2) + qασ̂l], (2.7)

l = 1, · · · , g.
Note that the number of genes in RNA sequencing datasets is often large. For instance,

the number of genes in section 3 is 12839; i.e., the dimension of the multivariate normal
random vector in (2.4) is 12839. Hence, it is challenging to approximate the quantiles qα.
In section 4 of Li (2020), the algorithm based on simulation is used to approximate qα,
alternatively.

3. Example

To study the effect of strains on gene expressions, Bottomly et al (2011) compared the
RNA sequencing gene expressions in C57BL/6J and DBA/2J mouse striatum, namely T1
and T2, respectively. Flow-cells FC1, FC2 and FC3 are administrated in the sequencing
devices in such a way that 3 replicates are assigned for the combination T1 and FC1,
4 for T1 and FC2, 3 for T1 and FC3, 4 for T2 and FC1, 3 for T2 and FC2, and 4
for T2 and FC3. The data is from ReCount RNA Sequencing Database “http://bowtie-
bio.sourceforge.net/recount/”. The observations are the number of copies of the gene se-
quences under each configuration above for 12839 genes. Note that it follows Bottomly et
al (2011) that we exclude genes, whose observations are all 0′s in at least one of T1 and
T2 groups.

Let the strains T1 and T2 be the treatment effects on gene expressions. Let the flow-
cell assignments FC1, FC2 and FC3 be the block effects on gene expressions. We fit
the observations to the Poisson model in (2.1) and test the hypotheses in (2.2) based on
the test statistics in (2.6). Using the result in Corollary 2.1, the quantile q0.05 = 4.61. We
have that 596 genes are differentially expressed with nominal significance level 0.05. The
95% simultaneous confidence intervals for the top 10 (ranked by the absolute value of Tl
in (2.6)) differentially expressed genes are listed in Table 1.

As a side note for the interpretation of the result, notice that the simulation study in
Li (2020) shows that the large-sample approximation method in section 2.1 can be anti-
conservative in overdispersed data. In the future study, we will develop robust simultaneous
inference method when overdispersion besets RNA sequencing gene expression analysis.
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Table 1: Simultaneous Confidence Intervals for the Top 10 Differentially Expressed Genes
- Nominal Confidence Level 1− α = 0.95.

Gene ID |Tl| Interval Estimation
ENSMUSG00000030532 26.193 (−1.231,−0.863)
ENSMUSG00000023236 24.289 (−1.148,−0.782)
ENSMUSG00000015484 23.125 (1.130, 1.693)
ENSMUSG00000037461 21.493 (0.382, 0.591)
ENSMUSG00000062822 18.600 (0.889, 1.475)
ENSMUSG00000028393 17.955 (−1.514,−0.895)
ENSMUSG00000024248 16.978 (1.665, 2.906)
ENSMUSG00000054579 16.812 (−1.865,−1.062)
ENSMUSG00000056592 16.704 (−0.998,−0.566)
ENSMUSG00000024206 16.589 (−0.858,−0.485)

The “Interval Estimation” denotes the 95% simultaneous confidence interval given in (2.7) based on normal
theory Corollary 2.1.
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