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Abstract 

Local Health Profession Opportunity Grants (HPOG) programs, funded by the Office of 
Family Assistance, Administration for Children and Families (ACF) of the U.S. 
Department of Health and Human Services, provide education, training, and support 
services to help transition low-income adults into healthcare occupations. ACF’s Office of 
Planning, Research, and Evaluation oversaw an evaluation to assess the success of these 
HPOG programs and to provide program-specific estimates of impact. Direct estimation of 
the local average treatment effect (LATE) consists of simply comparing the means of 
outcomes for the local treatment and control groups to estimate local impacts. 
Unfortunately, most programs serve too few students to support estimation of local 
impacts. To overcome those issues, we developed a complementary set of Bayesian 
estimates of local impacts based on mixed effect models with random effects defined at the 
program level, and random slopes for the treatment indicator. Before preparing Bayesian 
estimates of local program effects for the second round of grants (HPOG 2.0), we 
demonstrated the techniques on the previous round (HPOG 1.0) evaluation data. In addition 
to allowing methods revisions without fear of accusations of p-hacking, demonstrating the 
techniques on HPOG 1.0 first allowed us to use the posterior distributions for components 
of variance as priors for components of variance for HPOG 2.0. As expected from general 
methodological considerations, Bayesian estimates of impact exhibited less variability than 
direct estimates did. Bayesian credible intervals were shorter, often by a factor of about 2 
to 4, than the confidence intervals at the same coverage level. At the same time, a 
frequentist empirical Bayes (EB) analysis of the same mixed models produced confidence 
intervals that were half as long as Bayesian intervals, still, which highlights the importance 
of properly accounting for the uncertainty in the variance component estimation that EB 
methods cannot fully incorporate. 
 
Key Words: observational studies, impact heterogeneity, generalized linear mixed 
models, Bayesian estimation, Hamiltonian Monte Carlo. 
 

1. Health Profession Opportunity Grants Evaluation Project 

Following on a first round of Health Profession Opportunity Grants (HPOG) Program 
awards in 2010 (“HPOG 1.0”), the Office of Family Assistance (OFA) of the 
Administration for Children and Families (ACF), within the U.S. Department of Health 
and Human Services, awarded a second round of 32 five-year grants (“HPOG 2.0”) in 
2015. Local HPOG programs provide education, training, and support services (including 
financial and other assistance) to Temporary Assistance for Needy Families (TANF) 
recipients and other low-income adults for occupations in the healthcare field that pay well 
and are expected to either experience labor shortages or be in high demand. ACF’s Office 
of Program Research and Evaluation (OPRE) awarded a contract to Abt Associates to 
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evaluate the performance of the grantees. Of the 32 grants, five were awarded to American 
Indian tribes or affiliated tribal organizations. The other 27 grantees designed and 
implemented 38 distinct local programs that are the focus of this paper. Klerman, Judkins, 
and Locke (2019) laid out a plan for the evaluation of these 38 programs on a pooled basis. 
Subsequent to the publication of that plan, OPRE requested research on how to assess the 
impacts each of the 38 local programs separately. This paper shares results on that 
methodology. The results of both the pooled and local impact estimates are forthcoming 
(Klerman et al, forthcoming). Both the pooled and local evaluations aim to estimate the 
impact of access to the local HPOG 2.0 program rather than the impact of acceptance of 
the offer. This choice is mostly driven by the desire of the evaluators to remain within the 
design-based inference framework. Evaluating the impact of active engagement with an 
intervention invariably involves much stronger assumptions than are required to estimate 
the impact of the offer of access to the intervention. In addition to this motivation, a cogent 
argument can be made that this estimate is most relevant to policy analysts since no one 
can be forced to engage in a voluntary intervention like HPOG. For an intervention to be 
successful, it must make itself attractive to potential beneficiaries. 

The impact analysis uses the data from a Short-term Follow-up Survey about 15 months 
after randomization and administrative data from the National Directory of New Hires and 
the National Student Clearinghouse through two and half years after randomization. The 
analyses in this report were pre-specified in the Analysis Plan for Short-term Impact Report 
(STIR) (Judkins, et al. 2020) and registered with the Open Science Framework and the 
Registry of Efficacy and Effectiveness Studies. 

One of the Impact Evaluation’s research questions is estimating the impact of each of the 
programs implemented by HPOG 2.0 grantees. The primary motivation for this activity is 
to be able to provide feedback to the grantees, and to inform the future cohorts of program 
participants and administrators. This research question thus has a prospective evaluation 
agenda. Unfortunately, most programs serve too few students to support rigorous local 
evaluations. Unbiased estimates of local effects can be produced with very small sample 
sizes, but the predictive value of these estimates for future cohorts may be low. Bayesian 
methods offer a possible approach to this challenge.  

Before preparing Bayesian estimates of local program effects for HPOG 2.0, we first 
applied the techniques on the HPOG 1.0 data. In addition to allowing methods revisions 
without fear of accusations of p-hacking, demonstrating the techniques on HPOG 1.0 first 
allowed us to use the posterior distributions for components of variance as priors for 
components of variance for HPOG 2.0. While one of the selling points of Bayesian 
approach is incorporation of the existing information as prior distributions, our perception 
is that this is done surprisingly seldom in practice. Our project is a happy exception: the 
outcomes are defined and measured in exactly the same way between HPOG 1.0 and 
HPOG 2.0, and the information learned in HPOG 1.0 can be used directly in HPOG 2.0. 
Passing the historic information on impact heterogeneity allowed for sharper inferences 
about the local program effects of HPOG 2.0 programs. 

2. Methodology 

Our approach generally follows that of Meager (2019), who addressed a similar issue of 
understanding the heterogeneity in microcredit program effects. The supplementary 
estimates are obtained with assistance of a statistical model, namely a mixed logistic 
regression model with key HPOG 1.0 outcomes as dependent variables; treatment indicator 
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and predictors as proposed in HPOG 2.0 analysis plan; and program-specific intercepts and 
treatment effects. 

2.1 Choice of estimators 

We used three different methods to estimate local treatment effects and associated error 
bands:  

1. A frequentist maximum likelihood estimation of the model parameters followed 
up by empirical Bayes estimation of program-specific intercepts and treatment 
effects; and  

2. A full Bayesian model which estimates everything at once, and simulates values 
of the model parameters and program-specific intercepts and treatment effects 
from their joint posterior distribution.  

3. A frequentist design-based approach, called direct estimates, i.e., the program-
specific differences in mean outcome between the treatment and the control groups 
that does not rely on any statistical models.  

There are three aspects of Bayesian modeling that make Bayesian approach appealing for 
this application. 

First, in comparison to the direct estimates, both the empirical Bayes method (#1) and the 
full Bayes method (#2) produce more accurate estimates of local program effects for 
prospective cohorts. They do this through a combination of “borrowing strength” across 
programs and “shrinking.” The jargon “borrowing strength” means assuming that 
structural relationships between baseline covariates and outcomes are universal. These 
relations do not have to be causal; the model does not require causality, and simply exploits 
associations between variables. Based on this assumption, the method can predict an 
average outcome for each program based on the profile of participants at baseline. 
Modeling that only uses person-level covariates only captures idiosyncratic variability due 
to local student demographics measured at baseline. There are many other possible sources 
of idiosyncratic variability such as program design, program implementation, and the skills 
of local staff. These aspects of implementation are hard to encode with quantitative 
variables. With large enough sample sizes, the direct design-based estimates (#3) fully 
capture idiosyncratic variability but are also very noisy because of the low sample sizes. 
By exploiting similarities in outcomes between similar units through the statistical model, 
both methods #1 and #2 shrink the direct estimates of method #3 to projections based on 
the assumption of universal structural relationships. The improvement in accuracy of 
methods #1 and #2 relative to method #3 depends on the strength of the structural 
relationships, local sample sizes, and the importance of idiosyncratic effects. 

Second, given adequate computing power, estimation of error bands on local effects is 
much simpler with the (mostly computational) full Bayesian approach than with the 
(mostly analytical) empirical Bayesian approach. Although the theory has been worked out 
to construct fairly well-behaved error bands on local effects with the empirical Bayesian 
approach (Lahiri 2003), this theory has not been built into any of the standard statistical 
analysis systems. As a result, most practitioners who use the empirical Bayesian approach 
assume that the variance components are known without error. This runs the danger of 
underestimating variability of the estimates, which we will see in our results. In contrast, 
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full Bayesian methods create a series of simulated values, or draws, from the statistical 
model that can be transformed to any statistic of interest. (Distributions of statistics 
produced that way are referred to as posterior distributions in Bayesian inference. The 
name indicates that these are distributions of statistics after we have observed the data; 
Bayesian inference also requires formulation of prior distributions reflecting our 
knowledge of the parameter values before we observe the data, e.g. from earlier studies.) 
Such draws are made for the model parameters, such as fixed effect coefficients and 
random effect variances; for the random effects that only participate in the model 
indirectly; and even for a hypothetical distribution of the treatment effect for a new, yet 
unobserved, program. Availability of such draws means two things. First, uncertainty in 
parameter estimates can be quantified as the variance across the draws. Second, 
complicated sample statistics such as small area estimates of treatment effects at the 
program level can be computed draw-by-draw, and their posterior distributions can thus be 
observed directly.   

Until recently, the computing power to implement a full Bayesian approach was hard to 
acquire. However, recent software developments along with hardware improvement have 
made it feasible. We have used Hamiltonian Monte Carlo Markov chain methods (Neal 
2011) implemented in statistical modeling package Stan with R interface RStan (Carpenter 
et al 2017). It provides extremely fast simulation of model parameters but requires a special 
set up of the computing platforms (access to the C compiler). While this was implementable 
with the survey data on the Abt computing platform, it could not be implemented on the 
ACF computing platform, where we used the previous generation of computational 
methods, Metropolis-Hastings algorithms implemented in Stata 16 (StataCorp 2019). Note 
that earlier versions of Stata did not support all of the necessary functionality. 

Third, the use of Bayesian framework allows the researcher to utilize information on 
possible values of model parameters available prior to the study, to be used in estimation 
of the model parameters. This is done in the form of specifying the prior distributions for 
the model parameters. In modeling HPOG 1.0 data, we used priors that were only 
motivated by the plausible range of parameters (e.g., odds ratios rarely exceeding 1 for the 
binary outcomes, and changes in earnings rarely exceeding $1,000 per quarter.) In the 
subsequent work with HPOG 2.0 data, we used the summaries of the posterior distributions 
from the HPOG 1.0 Bayesian analysis as the priors for the HPOG 2.0 analysis for the 
critical parameters of treatment heterogeneity, as explained below. 

2.2 Generalized linear mixed models: summary 

Description of the statistical model presented here follows our initial proposal in the 
Analysis Plan for the HPOG 2.0 National Evaluation Short-Term Impact Report (Judkins, 
Klerman and Locke 2020). The predictors to be used were pre-selected and registered in 
advance. The principal model is a generalized linear mixed model: 

𝜃𝑖𝑗 = 𝑥𝑖𝑗
𝑇 𝛽 + 𝛾𝑇𝑖𝑗 𝑢𝑖 +  𝜏𝑖𝑇𝑖𝑗 

𝑦𝑖𝑗 ∼  {
𝑁(𝜃𝑖𝑗, 𝜎0

2):                               𝑦𝑖𝑗  is a continuous outcome

Bernoulli( 1/{1 + exp[−𝜃𝑖𝑗]}): 𝑦𝑖𝑗  is a binary outcome
 

(
𝑢𝑖

𝜏𝑖
) ∼ 𝑁 (0, 𝐺) 

Notation is as follows: 
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• 𝜃𝑖𝑗 is a linear predictor of the outcome 
• 𝑥𝑖𝑗 are (individual) control variables / predictors (including the intercept) 
• 𝛽 is the vector of regression coefficients for the control variables 
• 𝛾 is the overall treatment effect 
• 𝑇𝑖𝑗 is the person-level treatment indicator 
• 𝑢𝑖 is the program level effect unexplained by the control variables (i.e., by how 

much the program participants in the control arm fare better or worse than those in 
the control arm in other programs) 

• 𝜏𝑖 is the program level treatment effect; the sum 𝑢𝑖 +  𝜏𝑖 describes by how much 
the program participants in the treatment arm fare better or worse than those in the 
treatment arm other programs 

• 𝑦𝑖𝑗 is the outcome; the distribution of this outcome is that of an exponential family 

The random effects 𝑢𝑖  (random intercept) and 𝜏𝑖  (random treatment effect slope) are 
assumed to follow a joint bivariate distribution with mean zero and variance-covariance 
matrix 𝐺 , so that 𝑔11  is the variance of the random intercepts, 𝑔22  is the variance of 
random slopes, and 𝑔12  is the covariance between the two. With arbitrary values of 
𝑔11, 𝑔12 and 𝑔22, there is a danger that the resulting 𝐺 matrix composed of these values is 
not positive definite. Different packages adopt different parameterization strategies, 
including Cholesky decomposition that leads to uninterpretable coefficients; 
transformations of parameters such as taking logs of variances and hyperbolic arctan 
transformations of correlations; or decomposition of the matrix as the product of a diagonal 
matrix of variances vis-à-vis a proper correlation matrix.  

If the outcome is continuous, the model is the linear mixed model with random slopes for 
treatment (the outcome is normal with conditional mean 𝑥𝑖𝑗

𝑇 𝛽 + 𝑢𝑖 +  𝜏𝑖𝑇𝑖𝑗 ≡ 𝜃𝑖𝑗  and 
residual variance 𝜎0

2 ; self-reported income was log-transformed to bring it closer to 
normality); and if the outcome is binary, the model is the logistic mixed model with log 
odds ratio given by 𝑥𝑖𝑗

𝑇 𝛽 +  𝑢𝑖 +  𝜏𝑖𝑇𝑖𝑗 ≡ 𝜃𝑖𝑗.  While there is no theoretical reason to 
disfavor the use of either person-level or program-level predictors as 𝑥𝑖𝑗, we only used 
person-level covariates in this application. The most important parameters, in the 
evaluation context, are the overall treatment effect 𝛾 and its heterogeneity 𝑔22. If the latter 
heterogeneity is zero, the treatment effect estimate 𝛾  should be expected to have 
tremendous external validity, in the sense that all current programs produced nearly 
identical estimates, and it is likely that future sites implementing this program can 
reasonably be expected to exhibit performance very similar to the common estimate 𝛾. 
With nonzero heterogeneity of treatment effects 𝑔22, one needs to adjust expectations on 
the program performance to account for that variability. We implicitly assume that the set 
of local programs developed by both HPOG 1.0 and HPOG 2.0 grantees are both random 
samples of the universe of programs that might be implemented in the future.  While this 
is obviously a strong assumption, the consequence of making this assumption is wider, i.e. 
more conservative, confidence intervals for gamma, something that is likely to be 
beneficial for the drawing of public policy conclusions from the report.  The key reference 
for this methodology and application of the model is Meager (2019). 

2.3 Computation 

Maximum likelihood estimation of this model proceeds by writing out the full likelihood 
of the sample, where the likelihood contributions of individual observations involve 
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numeric integration of the random effects (e.g. by Gaussian quadrature) or approximating 
the curvature at the mode of this distribution (PQL method). It is available in standard 
statistical software, such as SAS PROC MIXED/PROC GLIMMIX; Stata official mixed and 
meglm commands as well as the user contributed gllamm package (Rabe-Hesketh et al 
2005); R library(lme4) (Bates et al 2015) and library(nlme) (Pinheiro et al 2020). 

Bayesian estimation proceeds by formulating prior distributions of model parameters, and 
updating them with the available data using Bayes theorem. In the latter step, Markov chain 
Monte Carlo (MCMC) samples are taken from the posterior distribution that combines 
prior distributions and the data. Among a number of available packages, the most modern 
one that achieves the highest speed is Stan (Carpenter et al 2017). Just as the previous 
generations of MCMC algorithms used ideas from computational physics, such as Gibbs 
sampling that has roots in statistical physics, Stan utilizes ideas of Hamiltonian dynamics 
(Neal 2011) to create highly effective draws from posterior distributions. A very high 
computational speed is achieved by first converting the model code into interim C code, 
and then compiling that code into high performance executable binaries. With the Short-
term Follow-up Survey data, we used the R interface to Stan provided by RStan package 
(Stan Development Team 2020). With NDNH data, setting up RStan proved impossible 
due to security restrictions (namely not being able to invoke the C code compilers), so 
estimation was performed in Stata using the previous conceptual generation of MCMC 
samplers (Gibbs samplers and Metropolis-Hastings algorithm). 

The prior distributions can be based on earlier estimates if those are available. This is what 
was done for HPOG 2.0, namely (approximations to) the HPOG 1.0 posteriors were used 
to formulate the priors (and thus get sharper results). For HPOG 1.0, such information was 
not available, and we instead used priors based on the known ranges of values. The 
quarterly earnings are expected to be in the range of thousands of dollars for the HPOG 
population, with rare exceedances into low tens of thousands, so the coefficients are 
expected to be in the range of hundreds and thousands. The log odd ratios for the binary 
outcomes can be expected to be in the range of at most –5 to 5, so the coefficients and 
variance components are expected to be on the scale of about 1.  

Since estimation was conducted on two different platforms, we had to use different prior 
formulations for the self-reported survey outcomes and for the NDNH earnings. 

In the binary outcome models for the survey self-reported data estimated using RStan, prior 
distributions for the regression coefficients were Laplace (double exponential distribution) 
with the center parameter at zero, and scale parameter of 0.25 for binary outcomes and log-
transformed income outcome. The use of Laplace priors leads to Bayesian analogue of the 
least absolute shrinkage and selection operator, lasso, a popular model selection and 
regularization tool, and reflect our expectation that most regression parameters are close to 
zero. The scale parameters were chosen to correspond to the expected ranges of the 
coefficient estimates.  

Prior distributions of variance components were half-Cauchy with scale of 1. Such priors 
allow variance components to take both values close to zero, and large values, reflecting 
our lack of specific expectations about those variances. The scale of that distribution, 
however, is chosen to be commensurate with the overall scale of predicted values of the 
linear index 𝜃𝑖𝑗. As our posterior plots show, the data strongly overwhelm this prior. The 
prior for correlation between the random intercept and random treatment slope was the 
Lewandowski-Kurowikca-Joe (LKJ) prior with shape parameter of 1, which is equivalent 
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to uniform [–1,1]. The full covariance matrix G is obtained by multiplying through the 
vector of variance components and the correlation matrix. 

For the NDNH earnings that were available on a different platform, we had to rely on the 
implementation of Metropolis-Hastings algorithms in Stata, which is the previous 
generation of MCMC algorithms. In that environment, the choice of the prior distributions 
implemented in the software was more limited. We used non-informative multivariate 
normal distributions for the priors for regression coefficients, and inverse Wishart 
distribution with moderate degrees of freedom, namely 6, and the identity scale matrix as 
the prior for G. 

3. Results 

We communicate the results mostly with graphs. We first discuss how to interpret these 
graphs with the aid of a generic outcome. We present three types of graphs: 

1. Caterpillar plots of the program-specific treatment effects. When examining one 
of these plots, the reader is able to determine the estimate of the effect of a specific 
program, place it in the context of other programs, understand the precision of the 
estimate, and understand the sensitivity of the estimate to methodological 
decisions.  

2. Overlaid prior and posterior distribution of the standard deviation of the treatment 
effects random slopes. In program evaluation context, this is the most important 
parameter in the entire Bayesian modeling effort. By comparing the prior and 
posterior distributions, the reader can get some sense of the importance of the prior. 

3. Anticipated efficacy of the program at a new site. This posterior predictive 
distribution directly demonstrates the magnitude of the effect and the likelihood 
that a new program funded by the same stream with the same regulations under the 
same general economic conditions is beneficial to its participants in terms of a 
given outcome. 

3.1 Caterpillar plots 

While the latter two kinds of plots simply visualize (simulated, approximate) probability 
distributions of variables of interest, caterpillar plots are somewhat idiosyncratic to small 
area estimation models (with some similarities found in forest plots in the meta-analysis 
literature). Consider the following plot in Figure 1. These are direct survey estimates 
(differences of means by arm) of treatment effect in educational attainment. The estimates 
are sorted by the point estimate (the dot in the middle of the confidence interval). Three 
estimates are negative although not significant; the largest ones are about 0.3 (i.e. 30 
percentage points). Program names are masked because the grantees to HPOG 1.0 were 
promised that identifiable statistics about their performance would not be published. The 
95% confidence intervals are also depicted. The half-width of confidence intervals vary 
from about 0.1 to about 0.4. About half of the confidence intervals contain zero. 
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Figure 1. Example of a caterpillar plot: direct estimates. 

Source: Abt Associates modeling of HPOG 1.0 data. 

Let us now present a caterpillar plot for the same outcome but using Bayesian small area 
estimation methods (Figure 2). It uses the same principles: programs are sorted by 
estimates, and credible intervals are shown. Note the change of scale of the x-axis: the 
range in Figure 1 is from –0.3 to 0.6, while the range in Figure 2 is from about –0.1 to 
about 0.25, reflecting shrinkage of Bayesian estimates. All estimates are positive, although 
the 8 out of 10 smallest ones are not significantly different from zero. The estimates range 
from 0.03 to 0.18, exhibiting much smaller spread. The half-length of credible intervals is 
0.05 to 0.10, much shorter than that of the direct estimates in Figure 1.  
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Figure 2. Example of a caterpillar plot: Bayesian small area estimates. 

Source: Abt Associates modeling of HPOG 1.0 data. 
 
Finally, we also considered another frequentist small area estimation method that is based 
on maximum likelihood estimation of random effect models and empirical Bayes 
prediction of random effects. The results are presented in Figure 3. 
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Figure 3. Combined direct, mixed model assisted empirical Bayes, and Bayesian 
caterpillar plots. 

Source: Abt Associates modeling of HPOG 1.0 data. 
 

Blue-purple lines with circles are direct estimates, i.e., the differences in mean outcome 
within a program. Red lines and squares are Bayesian estimates. Green lines with an X 
mark are small area estimates based on the mixed model estimated by maximum likelihood, 
and empirical Bayes predictions of random effects. The range is the 95% confidence 
interval, and the marked point is the estimate. Note that the green X are almost on top of 
the red squares. This means that the Bayesian and frequentist mixed modeling approaches 
yield nearly identical estimates of local program impacts. However, the error bands are 
dramatically different. As mentioned above, the EB estimate as currently implemented is 
known to not account for the sampling errors in the estimate of the random effect variances; 
as a result, the confidence intervals are too short. The agreement of the model-based and 
the direct estimates is in that Bayesian credible intervals and the EB confidence intervals 
are generally contained within the confidence intervals of the direct estimates and have 
nonzero overlap for all areas. 
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Given the deficiencies of the EB approach, we treat this method as a sensitivity check and 
a comparison to other methods, especially given that this method is actually used in the 
small area estimation literature; but we do not recommend using it for policy. Rao and 
Molina (2015) discuss the mean squared error (MSE) and its estimation for linear models 
in sections 7.1 and 7.2. They introduce useful quantities of the contributions to the MSE: 
the term 𝑔1𝑖 due to prediction of the area (program) effect, the term 𝑔2𝑖 due to estimating 
the regression coefficients, and the term 𝑔3𝑖 due to estimating the variance components. 
The first two terms can be obtained by moderately complicated algebra, and they are 
encoded in the confidence intervals presented on the caterpillar plots. Estimation of the 
third term is complicated. Rao and Molina (2015) cite methods that rely on specific 
distributional assumptions (normality of the random effects), method of moments 
estimators of the variance components, and parametric bootstrap methods for MSE 
estimation (Lahiri 2003). It appears that the best performing methods are the double 
bootstrap methods, where (1) a bootstrap sample is constructed first, and (2) another 
bootstrap loop is used to estimate the requisite variances within that sample. These methods 
impose an exponentially higher computational burden, where the underlying mixed logistic 
regression models would need to be run hundreds of thousands of times. We decided 
against this approach, especially given that the Bayesian approach was sufficiently simple 
to implement and provided additional information helpful in the program evaluation 
context, such as the anticipated efficacy forecast, that the frequentist method would not be 
able to. 

3.2 Passing distributions from HPOG 1.0 to HPOG 2.0 

The distribution of √𝑔22, the standard deviation of the random slope of treatment for the 
first round is presented in Figure 4 for the same outcome as the caterpillar plots in Figures 
1–3.  

 
Figure 4. Prior vs. posterior distribution of √𝑔22, and a gamma approximation, for HPOG 
1.0 data and analysis. Prior distribution: half-Cauchy with scale of 1; posterior 
approximation: gamma with shape α=6.55, rate β= 0.0307. 
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Figure 5. Prior vs. posterior distribution of √𝑔22, and a gamma approximation, for HPOG 
2.0 data and analysis. Prior distribution: gamma with shape α=6.55, rate β= 0.0307; 
posterior distribution approximation: gamma with shape α= 30.25, rate β= 0.01048. 

The results for the other two parameters of the random effect covariance matrix G, the 
random intercept variance 𝑔11  and the correlation parameter 𝑔12/√𝑔11𝑔22  have less 
prominence in the substantive evaluation terms than the variance of the treatment effect 
slopes that has an important interpretation of the extent of external validity and 
reproducibility, but these parameters are also important in terms of providing priors for the 
subsequent HPOG 2.0 analysis. The suggested parameters for the random intercept 
variance are the method of moments estimates for gamma distribution (which is a 
generalization of the 𝜒2  distribution that variance estimates follow for the case of the 
normal data, allowing for arbitrary scale and shape/degrees of freedom.) The degrees of 
freedom parameter for 𝑔11 ranged from about 20 to about 50. The moment estimate for the 
LKJ posterior shape parameter 𝜂 can found from the relation to the variance, Var[𝑟] =

Γ(𝜂 +
1

2
)/2Γ(𝜂 +

3

2
). However, since the distribution is symmetric around zero, it is does 

provide a good approximation to the posterior distributions encountered in practice. For 
the purposes of passing the information about correlation concentration to the future 
rounds, the LKJ shape parameter was instead estimated from the posterior distribution 
percentile to match the 90th percentile of absolute values. As the bivariate correlation 
matrix has determinant 1 − 𝜌2 , and the LKJ distribution is characterized by 𝑓(𝑪, 𝜂) ∝
|𝑪|𝜂−1 = (1 − 𝜌2)𝜂−1 where 𝑪 is the resulting correlation matrix, the distribution of 𝜌2 is 
Beta( 1, 𝜂 − 1)  so the required parameter estimates can be obtained from an inverse 
incomplete Beta function. For the outcomes studied, the HPOG 1.0 posteriors 
corresponded to the shape parameter ranging from 3.0 to 6.9. 

3.3 Predictions at an unobserved site 

Bayesian estimation allows for easy MCMC simulation of the predicted model 
performance at a new site. For the 𝑘-th iteration of the chain, the prediction can be formed 
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as of 𝛾(𝑘) + 𝜏new
(𝑘)  where the hypothetical program effect at a new, yet unobserved location 

𝜏new
(𝑘)  is drawn from 𝑁(0, 𝑔22

(𝑘)
). The resulting distributions, being mixtures of normals, 

typically have tails heavier than normal. A substantively important predictive quantity is 
the posterior prediction of the program having a positive impact; for wave 1, it was 
estimated at 94.4%, and for wave 2, at 98.2%. As the variance components distribution in 
wave 2 is characterized by a much higher number of degrees of freedom, the wave 2 
distribution is closer to normal. 

 

(i) HPOG 1.0 

 

(ii) HPOG 2.0 
Figure 6. Predicted impacts at a new site: (i) HPOG 1.0; (ii) HPOG 2.0. 
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