
riskmetric: A Risk-based Workflow to Evaluate the Quality
of R Packages

Douglas Kelkhoff1, Yilong Zhang2, Eli Miller3

Eric Milliman4, Marly Gotti4, Juliane Manitz5, Mark Padgham6

1Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
2Merck & Co., Inc., Kenilworth, NJ, USA

3Atorus Research, Madison, WI, USA
4Bioegen Inc., 300 Binney St, Cambridge, MA 02142, USA

5EMD Serono, 45 Middlesex Tpk, Billerica, MA 01821, USA
6rOpenSci & EcoHealth Alliance, 20 Eighth Avenue, Ste. 1200, New York, NY 10018,

USA

Abstract
Open source tools offer easier access to leading edge methods than ever before,
but with that comes new risks of code quality that aren't addressed by familiar
regulated industry practices. At the R Validation Hub, we offer the R package
riskmetric to help bridge that gap. The package provides a platform for
quantifying the quality of an R package, supporting risk-based validation of
software opening the door for faster and more dynamic incorporation of open
source tools into regulatory analysis.

We will give a walkthrough of the riskmetric package, highlighting potential use
cases ranging from scientific end users to systems administrators, and discuss how
the package contributes one piece of the R Validation Hub's software strategy for
advancing the role of open source tools in the biopharmaceutical clinical
development process.

Key Words: R package, validation, open source, software development, software risk

1. Introduction

Validation is a core component of the lifecycle of software tools used for decision
making in regulated industries, such as the pharmaceutical industry. Software validation
should provide confidence in the installation and user-facing behaviors of a given piece
of software. Inevitably, the stringency of this process is governed by the perceived risk of
a software component, applying extra caution with tools that may be subject to regulatory
review including interactions with patient data and analysis for regulatory decision
making. This evaluation comprises the risk assessment of any software component prior
to validation.

1.1 Validation in the Context of Modern Package Repositories
Within the pharmaceutical industry, pre-configured and centrally administered systems
have been the focal point of validation. Such an approach is convenient when analytic

90

tools are provided as a packaged distribution. However, modern statistical and analytic
tools, such as R and its surrounding package ecosystem, are more commonly distributed
as modular components or packages. With this added flexibility built into an analytic
environment comes the challenge of assessing the risk of an entire cohort of tools,
individually validating them for regulated use and evaluating any changes to the system
to determine if changes comporomise the validity of results. To aid in this decision
making process, our team has developed the riskmetric R package, which provides a
selection of risk assessments as well as an extensible framework for incorporating future
assessments1. This work is part of a broader effort as part of the R Validation Hub to
provide guidance and tools to support the validation of R environments, with a focus on
applications in the pharmaceutical industry2.

1.2 Measures of Software Quality
Measuring software risk is not a well defined problem, and decision making is often
governed by interpretation of many heuristics used to best approximate the quality and
reliability of software. There are many dimensions to the problem of assessing risk, and
each has their own heuristics that might inform a risk decision. Furthermore, some risks
may be more permissible than others and might be better handled by the host system
where the software is to be installed. Broadly, categories of risk may be divided into:

1.2.1 Technical Quality
Within the R language, technical quality is broadly addressed by the built in R CMD
check utility, assuring that a package meets basic requirements to be appropriately
distributed and tests built into the package pass on the given environment.

1.2.2 Community Adoption
User adoption can be a good indicator of reliability. High quality open-source tools often
attract a larger number of users, offering more attention to potential software bugs and a
higher likelihood of long-term maintenance.

1.2.3 Development Practices
Adherence to accepted best practices can indicate core competencies of the development
team and can provide assurances that the software will maintain a fundamental level of
quality through such activities as continuously integrated testing and behavioral
guidelines such as a contribution guide and code of conduct. Beyond the R language,
guidance and evaluation of open source development practices has drawn the attention of
language-agnostic efforts to establish best practices3,4.

1.2.4 Security Considerations
Naturally, any software used in a regulated setting is subject to security scrutiny, and R
packages are no exception. Broadly speaking, security considerations are better
controlled on a host system than within each individual R package. Nevertheless, there
are cursory evaluations that can be done to highlight potentially insecure behaviors and
check the use of components that have known vulnerabilities.

1.2.5 Inter-package Compatibility
Finally, R packages do not exist in isolation and should be evaluated within the context of
their software dependencies and the host system. Individual package behaviors may be
affected by the availability of software dependencies, and the risk of those package
behaviors may be affected. This is still an active area of development.

91

2. riskmetric Package Overview

2.1 Package Overview
At a high level, the riskmetric package provides an interface to collect package
information from a variety of frequent sources of package information. This may include
public package repositories, public source code repositories, local source code or locally
installed package libraries. This information builds a collection of package metadata
which may be helpful for a risk assessment. This metadata is used to derive a number of
package metrics – heuristics which may be helpful atomic criteria that can be compared
across packages. Finally, these criteria are scored, consolidating metrics into numeric
indications of their quality and allowing for aggregate comparison of individual packages
or package cohorts.

Figure 1: riskmetric package data flow overview.

2.2 Design Goals
Beyond being a tool for assessing packages, riskmetric is designed to be an
extensible foundation for customizing a risk assessment workflow, allowing enterprises
and regulated industry contributors to tailor a risk assessment to their application. This
includes the addition of new metrics, customizing the scoring functions for existing or
new metrics and defining an aggregating function to summarize overall package risk.
Likewise, these hooks for customization allow for more rapid experimentation and
contribution, allowing for an accessible path from user to contributor.

Additionally, a core design goal of riskmetric was to handle many of the challenges
of metric execution order. As metrics may rely on similar, and occasionally
computationally intensive derived attributes of packages, the execution engine was
designed such that these relationships need not be predefined before computation, freeing
developers of the cognitive burden of managing the collection of metadata.

2.3 Example Use
To highlight how riskmetric may be used, the following R code is provided to
showcase a simplified workflow. Included below is the R code equivalent of the
workflow described in Figure 1. Shown below are the package scores calculated by
riskmetric. As well, each intermediate function call could likewise be use to inspect
intermediate heuristics and package data.

library(riskmetric)
library(dplyr)

92

pkg_ref(c("riskmetric", "utils", "tools")) %>%
 as_tibble() %>%
 pkg_assess() %>%
 pkg_score()

#> # A tibble: 3 × 18
#> package version pkg_ref pkg_score news_current
#> <chr> <chr> <list<pkg_ref>> <dbl> <pkg_scor>
#> 1 riskmetric 0.1.0 riskmetric<install> 0.399 1
#> 2 utils 4.0.3 utils<install> 0.786 0
#> 3 tools 4.0.3 tools<install> 0.857 0
#> # … with 13 more variables: has_vignettes <pkg_scor>,
#> # has_bug_reports_url <pkg_scor>, bugs_status <pkg_scor>,
#> # license <pkg_scor>, export_help <pkg_scor>,
#> # downloads_1yr <pkg_scor>, has_website <pkg_scor>,
#> # r_cmd_check <pkg_scor>, remote_checks <pkg_scor>,
#> # has_maintainer <pkg_scor>, has_news <pkg_scor>,
#> # has_source_control <pkg_scor>, covr_coverage <pkg_scor>

3. Future Work

riskmetric represents a community effort to make the risk assessment process more
reliable, consistent and user friendly. As such, it is under constant development, with new
areas of interest continuing to surface.

Currently, an area of interest is the calculation of metrics which are dependent on the
context in which they are evaluated. Notably, this includes considerations about the
dependency structure of a package library and the interoperability of installed packages.
Additional work is ongoing to provide a graphical interface to the riskmetric functionality
to improve ease-of-use for non-technical users.

Acknowledgements

We’d like to thank the R Validation Hub, and its sponsors the R Consortium and the
PSI/EFSPI AIMS SIG. We’d also like to recognize the contributions and support from
ROpenSci whilst designing the architecture of riskmetric and continuing to provide input
for key design decisions.

References

1. riskmetric. riskmetric: Metrics to evaluate the risk of r packages. GitHub. Retrieved
September 14, 2021, from https://github.com/pharmaR/riskmetric.

2. R Validation Hub. Retrieved September 14, 2021, from https://www.pharmar.org/.

3. Open Source Security Foundation (openssf). Open Source Security Foundation.
(2021, January 14). Retrieved September 14, 2021, from https://openssf.org/.

4. Open source guides. Linux Foundation. (2021, April 5). Retrieved September 14,
2021, from https://www.linuxfoundation.org/resources/open-source-guides/.

93

