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Abstract
Advancement in manufacturing has significantly extended the lifetime of consumer products, while
at the same time made it harder to perform product life testing at the normal operating conditions
due to the extensively long operational life spans. Accelerated life testing (ALT) mitigates this issue
by testing units at higher stress levels so that the lifetime information can be acquired more quickly.
The lifetime of a product at normal operation can then be estimated through extrapolation using
a regression model. However, there are potential technical difficulties involved since the units are
subjected to higher stress levels than normal. In this work, we develop an adaptive design of a step-
stress ALT in which stress levels are determined sequentially based on the information obtained
from the preceding steps. After each stress level, the estimates of the model parameters are updated
and the decision is made on the direction of the next stress level by using design criteria such as
D- and C-optimality. Assuming the popular log-linear assumption between the mean lifetime and
stress levels, this adaptive design and inference are illustrated based on exponential lifetimes with
progressive Type-I censoring.

Key Words: accelerated life tests, adaptive design, Fisher information, progressive Type-I censor-
ing, step-stress loading

1. Introduction

Life testing is a critical stage of product commercialization. Waiting for extended times
to examine the life time and robustness of a product is not realistic. Accelerated life testing
(ALT) enables getting the life estimates of a product in quick and reliable manner (e.g.,
Tang et al. (2007), Tseng (1994)). Some examples of ALT include subjecting devices to
extreme temperatures, pressure, vibrations, voltage, or other environmental conditions at a
fast pace in order to accelerate failure mechanisms and thus enable failures identification
faster. The main goal of ALT is to estimate the product life distribution under normal con-
ditions in shorter time so products maintain a short path to the marketplace associated with
full product reliability characterization. For a comprehensive review on the ALT models
and methods, see, for example, Escobar and Meeker (2006) and references therein.

Accelerated stress-testing takes several forms. Some are time dependent such as Ramp
and cyclic stress. Others are time independent such as constant step stress. Constant step
stress is most commonly used due to the availability of existing theoretical methods (e.g.
Miller and Nelson (1983), Meeker and Escobar (1993), Khamis and Higgins (1996), Zhu
and Elsayed (2013), Han and Ng (2013)). Adaptive ALT combines ALT and decision
making after each step. The main advantages of such an approach are to significantly
shorten testing time and to estimate the parameters of interest with better precision and
efficacy, in addition to Cost saving (e.g., Lee et al. (2018)).

Several studies have addressed the adaptive constant stress testing. For instance, (Tang
and Liu (2010)) planned sequential tests on constant stress levels by proposing a Bayesian
framework. The objective is to optimize both sample allocations and stress combinations
at lower stress levels of subsequent accelerated tests. Cramer and Illiopoulos (2010) devel-
oped adaptive stress to extend the progressive Type-II censoring model with an objective to
choose next censoring numbers based on previous censoring numbers and previous failure
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times. Shen et al.(2017) used order statistics technique to derive likelihood by assuming
a general log-location scale distribution for product lifetime. These authors worked on in-
creasing stress level adaptively in order to avoid insufficient failures. Furthermore, You
and Pham (2017) developed self-adaptive stress accelerated life tests (SAS-ALT) that de-
termines the next step stress based on the failure data of the previous step-stress.

In this paper, we develop an adaptive step-stress accelerated life test entitled ada-ALT
for an exponential lifetime distribution with a single step-stress variable. The ada-ALT
algorithm assumes that a log linear relationship exists between the mean time of failure
and stress level, along with an exponential distribution from cumulative exposure model
for the effect of changing stress in a step-stress ALT. At each stress step, we formulate
an optimization function that minimizes the variance of the MLE estimates by using the
information matrix. A decision on the next move of the stress level in direction (increase
or decrease) is then made with a dependence on C-optimality and D-optimality design
criteria. An illustration based on simulation is presented and discussed in Section 4. It is
important to emphasize that one ought to be wise in choosing the stress test to be within
the design limits of the product. The rest of the paper is organized as follows. Section 1
presents the model formulation and derivation of MLE of the model parameters and the
associated Fisher information for the step-stress ALT. In Section 2, C-optimality and D-
optimality are defined based on the determinant of the variance. In Section 3, we present
the results of illustrative numerical study.

1.1 Problem Formulation

We start by a simple step stress. Randomly, we select a standardized stress level X1

belongs to ]X0, X(n)[, where X0 is the normal operation stress level at which we want to
estimate the mean lifetime of units using extrapolation. X(n) is the maximum standardized
stress level we can test unit on. Initializing at X1, we start with N1 units. We follow the
unit timeline until the first failure time occurrence. Assuming that the first failure time y1
occurs during monitoring time lag τ1, then, we move to the next standardized stress level
X2. We start with N2 = N1 − 1 total units. The units are monitored until first failure
occurred at this level y2, assuming the failure time at this level is τ2. After this, a decision
should be made to stay on the same level or to move up or down in stress level direction.
Figure 1 illustrates the formulation of the problem.
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Figure 1: An illustration of the adaptive step-stress ALT.

The following assumptions are used while constructing the sequential adaptive stress
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level:

1. Lifetime of units follows an exponential distribution at each stress level, with the
PDF given by

fi(t) =
1

θi
exp

(
− t

θi

)
, 0 < t <∞

2. The stress level at time t is parameterized as

X(t) =
s(t)− sH
sU − sH

, t ≥ 0

where sH is the highest stress level and sU is the used stress where we would like to
predict the lifetime distribution of the units.

3. At any stress level Xi, the mean failure time to failure (MTTF) of a test unit θi is a
log-linear function of stress represented as

log θi = α+ βXi

The Accelerated Failure Time (AFT) of units is considered exponential such as

f(t) =

i−1∏
j=1

Sj(∆j)

 fi(t− τi−1)
if

{
τi−1 ≤ t < τi for i = 1, 2, . . . , k − 1

τk−1 ≤ t <∞ for i = k

The cumulative distribution function is derived as

F (t) = 1−

i−1∏
j=1

Sj(∆j)

Si(t− τi−1)
if

{
τi−1 ≤ t < τi for i = 1, 2, . . . , k − 1

τk−1 ≤ t <∞ for i = k

The joint distribution function of the failure counts n = (n1, n2, n3, ..., nk) = (1, 1, n3, ...., nk)
and yi = (yi,1, yi,2, yi,ni) is derived as

f(y, n) =

k∏
i=1

Ni!

(Ni − ni)!
f(ti)[S(ti)]

Ni−ni

f(y, n) =

[
k∏
i=1

Ni!

(Ni − ni)!

][
k∏
i=1

θi
−ni

]
exp

(
k∑
i=1

Ui
θi

)
where

n1 = 1, n2 = 1, n3 = n3,

N1 = n, N2 = N1 − 1 = n− 1, N3 = N2 − 1 = n− 2,

τi = yi,1, ∆i = τi − τi−1

Therefore,

Ui =

ni∑
l=1

(yi,l − τi−1) + (Ni − ni)∆i
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is the i-th total time on Test Statistics at stress level Xi.
Using assumption 3, the log-likelihood of (α, β) is given by

l(α, β) = −α
k−1∑
i=1

ni − β
k−1∑
i=1

niXi −
k−1∑
i=1

Ui exp(−α− βXi) (1)

Since the logarithmic function is a monotonic, differentiating with respect to α, and β, and
solving simultaneously provides the Maximum Likelihood Estimators (MLE) (α̂, β̂). The
MLE (α̂, β̂) are obtained by solving the following score function.

k−1∑
i=1

Uie
−α−βXi =

k−1∑
i=1

ni (2)

k−1∑
i=1

UiXie
−α−βXi =

k−1∑
i=1

niXi (3)

Solving for (2), we get

α̂ = log

(∑k−1
i=1 Uie

−βXi∑k−1
i=1 ni

)
(4)

Replacing (4) in (3), the MLE of β or β̂ the solution of∑k−1
i=1 UiXie

−β̂Xi∑k−1
i=1 Uie

−β̂Xi

=

∑k−1
i=1 niXi∑k−1
i=1 ni

(5)

The explicit form of β̂ is the solution of (5). Because it is not straight forward to show the
exact form of β̂, we refer to Han and Bai (2019) to show existence and uniqueness of β̂,
solution of (5). Once we get β̂, we can now plug it in (4) to get the form of α̂.

1.2 The Hybrid Information

Due to non-linear nature of the MLE, statistical inference with MLE is based on the
asymptotic result of MLE. Thus (α̂, β̂) is approximately distributed as bivariate normal
with mean E

[
(α̂, β̂)>

]
= (α, β)> and variance matrix I−1(α, β), where I(α, β) is the

expected Fisher information matrix of (α, β). The information matrix is

I(α, β) =

(
Iα Iαβ
Iαβ Iβ

)
By utilizing the log likelihoods obtained in (2) and (3), Fisher information matrix can

be expressed as a sum of observed information Iobs and expected information Iexp. We
start by showing derivation of each term.

Iα = E

[
−∂

2l(α, β)

∂α2

]
=

k−1∑
i=1

Ui
θi

+
1

θk
E[Uk]

=

k−1∑
i=1

Ui
θi

+
1

θk

(
E

[
nk∑
l=1

(Yk,l − τk−1)

]
+ E[Nk − nk](τk − τk−1)

)
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It should be noted that Yk,1, Yk,2, Yk,3, Yk,4, . . . , Yk,nk
|nk are distributed jointly as order

statistics from a random sample of size nk with the distribution left truncated at τk−1 and
right truncated at τk. Therefore, in deriving the expected value of E [

∑nk
i=1 Yk,1], we use

the property that

E

[
nk∑
l=1

Yk,l

]
= E

[
nk∑
l=1

E[Yk,l|nk]

]
= θk − τk

Sk(∆k)

Fk(∆k)
+

τk−1
Fk(∆k)

Therefore,

E[Uk] = E[Nk]Fk(∆k)θk

with ∆k = τk − τk−1. For k = 1, 2, 3, . . ., the hybrid information matrix In(α, β) can be
expressed as

In(α, β) =

(
Iαα Iαβ
Iαβ Iββ

)
where

Iαα =
k−1∑
i=1

Ui
θi

+
E[Uk]

θk
=

k−1∑
i=1

Ui
θi

+NkFk(∆k)

Iαβ =

k−1∑
i=1

xi
Ui
θi

+ xk
E[Uk]

θk
=

k−1∑
i=1

xi
Ui
θi

+ xkNkFk(∆k)

Iββ =
k−1∑
i=1

x2i
Ui
θi

+ x2k
E[Uk]

θk
=

k−1∑
i=1

x2i
Ui
θi

+ x2kNkFk(∆k)

2. Ada-SSALT Proposed Algorithm

Figure 2 below summarizes the steps we used in the ada-ALT algorithm. First we
identify the user defined variables as inputs. These are the total number of objects we start
the experiment with denoted by n, the time of experiment τmax, the first level randomly
chosen to start with X1, and the stress step size ∆X . We enter first stress level X1 chosen
randomly until first failure of objects is observed. We record time of failure τ1 and move
up to the next stress level denoted by X2. We observe the remaining n − 1 objects until
first failure occurs at this level. Therefore, n2 = 1 and we record time of failure τ2. At
this point, MLE estimates of the coefficient represented in (1) is calculated by using (4)
and (5). We then check whether the total number of failures recorded is greater than total
number of objects, we start the experiment with n or whether time of failures τi is greater
than or equal τmax. If the conditions are achieved, we stop the experiment and report the
MLE used. Otherwise, we proceed to calculate the optimality criteria.
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Input:


n, !
max

, 

X1, Δx 


END!

-  Set initial stress level X1


-  Observe first failure n1=1


-  Record time !
1 



-  Go up to stress level X2


-  Determine n2=1, !
2



Maximize likelihood equation and update MLE of # and $


-  Calculate appropriate optimality criteria objective

-  Minimize to derive the optimal stress level Xi


- Using Xi, determine duration of stress level !
i

- Observe failure times (Yi1, Yi2,…,Yini) below !
i

Total 

failures ≥ n


OR 


!
i
 ≥ !

max



i= i+1


Figure 2: Ada-SSALT Algorithm Steps

At this step, a decision on which direction to move next in step stress should be defined.
This is done by minimizing the joint precision of MLE by using different optimality criteria.
In this section, we will be using the D-optimality and C-optimality criteria.

2.1 D-optimality Criteria

Using D-optimality, the main objective function is designed based on the determinant
of the inverse of the Fisher information matrix or equivalently the reciprocal of the determi-
nant of Fisher information matrix. The objective function to minimize can be represented
as

φD(∆) = |I(α, β)|−1 = 1/|I(α, β)|

where
|I(α, β)| = ax2k + bxk + c

with

a = NkFk(∆k)

k−1∑
i=1

Ui
θi

b = −2NkFk(∆k)
k−1∑
i=1

xi
Ui
θi

c =

(
k−1∑
i=1

x2i
Ui
θi

)(
k−1∑
i=1

Ui
θi

+NkFk(∆k)

)
−

(
k−1∑
i=1

xi
Ui
θi

)2
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Or equivalently, by using induction, D-optimality can be written as

φD(xk) = |I−1n (α, β)|

=

k−1∑
i=1

k−1∑
j=i+1

(xi − xj)2
Ui
θi

Uj
θj

+NkFk(∆k)
k−1∑
i=1

(xi − xk)2
Ui
θi

−1 (6)

and

φ′D(xk) = Nk|In(α, β)|−2

=
β∆k

θk
Sk(∆k)

k−1∑
i=1

(xi − xk)2
Ui
θi

+ 2Fk(∆k)
k−1∑
i=1

(xi − xk)
Ui
θi

2.2 C-optimality Criteria

The C-optimality minimizes the (asymptotic) variance of the estimator of the lifetime
at normal stress level (i.e., when x0 = 0). Using the invariance property of MLE, the
objective function of the C-optimality is V (log θ̂0) = V (α̂) to be minimized. An objective
function to serve this purpose is expressed as

φC(xk) = AV ar(log α̂) = (1 0) I−1n (α, β)

(
1

0

)
= φD(∆)Iββ =

1

|I(α, β)|

(
k−1∑
i=1

x2i
Ui
θi

+ x2kNkFk(∆k)

)
(7)

and

φ′C(xk) = φ′D(xk)

(
k−1∑
i=1

x2i
Ui
θi

+ x2kNkFk(∆k)

)

−xkNkφD(xk)

(
xk
β∆k

θk
Sk(∆k)− 2Fk(∆k)

)
We calculate φD(xk) and φC(xk) as presented in (6) and (7) at three stress levels: current
stress level (X2), above one level (X3) and below one level (X1). Keep in mind the move
in stress level should be slow in order to avoid achieving the shock event fast. The stress
level that minimizes the objective of interest (φD(xk) or φC(xk)) is the next stress level to
choose. Using Xi, we determine the duration of stress level τi. We observe failure times
(Yi1, Yi2, Yi3, . . . , Yini) under the condition to stay below τi. Then we repeat the process.

3. Illustrative Results

A simulation study is performed to test the ada-SSALT algorithm by usingD-optimality
and C-optimality designs optimization. Illustrations are shown in Figures 3 and 4. We start
with n = 20 total units, the starting stress level is 0.3 with an increment of 0.1 such as
XK = X0 + (k − 1)∆X . The termination time is set to 3. The step duration at iteration k
is set to

∆k = min{w τ2, −θk log(1− p)}

with adjustments for max step duration w = 0.5 and median lifetime for step duration
p = 0.5.

 
662



We set the initial parameters of interest to be α = 2 and β = −1, and taking into
consideration the negative relationship that exists between log of mean lifetime and the
stress level. Different results were obtained out of the simulation. We display the results
by setting the seed to ’1’ and ’12345’ as shown in Figure 3 (D-optimality) and Figure 4
(C-optimality), respectively. Noting that the seeds are preset to enable reproduction of the
results. In each result you can see a panel with 5 different plots. The horizontal axis for
all plots displays the experiment time τ . Looking at Figure 3 with D-optimality objective
function, a walk through each plot along with interpretation is provided. Top panel shows
the stress level trend chosen after the first two levels. The first two of these levels are color
coded by blue and the rest with black. After the second level, we can see the decision made
based on (6). The decision is to move upward in direction till the end of the experiment.
The second panel shows the D-optimality objective function at each stress level chosen
for each iteration. This is calculated based on (6). The third panel records the number of
failures. In the first two iterations, we have observed one failure at each level. At third
iteration, no failures were observed. As a consequence, the algorithm decides to go level
up in direction where 4 failures were recorded. In the fourth and fifth panels, we display
the MLE estimates of intercept (α̂) and slope (β̂) at each iteration.

As we can see, using (4) and (5), at the third iteration we start by bad estimators with
α̂ = 7.1481 and β̂ = −14.733 with wide confidence intervals. Then as it progresses and
goes to the last iteration, the algorithm converges to initial set for α and β and the confi-
dence interval became narrower. Similarly, one can see the results of D-optimality criteria
using a different seed ’12345’, illustrated in Figure 3 (b). In the first panel, we now a
see downward trend as opposed to upward when seed was set to 1. Different seed combi-
nations result in a set of decisions such as moving monotonically upward, monotonically
downward, or mix of up and down directions. The results based on C-optimality design
criteria are presented in Figure 4 (a) and (b). Similar description and interpretation of the
results is applicable, similar to that of the D-optimality.
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Figure 3: D-optimality Simulation Results
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Figure 4: C-optimality Simulation Results

4. Conclusion

We developed an adaptive step-stress accelerated life test (ada-SSALT) algorithm in
which we adaptively obtain stress levels based on the information from the preceding steps.
The decision on direction and value of the next step is derived based on C-optimality and
D-optimality designs. The formulation and derivation of the problem is provided in Section
1 and 2. Preliminary results of the simulation show that depending on the first stress level
chosen and the predetermined time spent at each step, the direction of the next stress level
can be derived. This direction depends on the initial failure time setting.

The next step is to optimize the adaptive lag in time stepping using different quan-
tile ranges. We will also consider different lifetime distributions, censoring schemes with
additional optimality designs such as A-, M -, and E-criteria. A test of efficiency of the
algorithm will be examined by comparing this algorithm to the optimal simple step stress
ALT in the presence of shock effect.
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