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Abstract 
The 2018 Commercial Buildings Energy Consumption Survey (CBECS) aimed to 
efficiently oversample buildings greater than 200,000 square feet due to their greater 
energy consumption. Previous CBECS cycles found building size was correlated with key 
statistics of interest such as total annual fuel use. In 2018 and previous cycles, CBECS used 
a multi-frame design (i.e., multiple existing building lists combined with a multi-stage area 
probability frame) to meet this objective. Thus, the sample design used a building-size 
categorical variable to help create the relatively homogenous sampling strata for the 
building-level selection stage. Not unexpectedly, the categorical frame variables used to 
create the sampling strata had significant classification error. This research explores how 
misclassification rates can vary by frame in an establishment survey context and the 
negative effects on precision of the sample. Specifically, we compare the building-size 
category assigned on the frame to the building-size category reported by the respondent. 
Based on these results, we suggest two competing design modifications that may generate 
a more efficient design in future CBECS cycles. 
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1. Introduction 

In disproportionate sampling allocations, such as a Neyman allocation (Lohr, 2019), the 
precision gains from stratification are maximized when all frame units are correctly 
classified to strata. Stratum misclassification (where the stratum reported by respondents 
is not the same as the assigned stratum on the sampling frame) leads to increased variation 
in the base weights (inverse of the probability of selection weights) of cases within each 
stratum. If there is perfect agreement between the stratum assigned on the sampling frame 
and the respondent-reported stratum, then all cases within each stratum have the same base 
weight and there is no variation in base weights among cases within stratum. Stratum 
misclassification leads to larger variation in the weights, which in turn lowers the precision 
of the key estimates. A multi-frame sample design can potentially exacerbate the stratum 
misclassification issue, as different frames can contain different levels of misclassification 
on the stratification variables and attempting to account for and/or reduce the 
misclassification across multiple frames can bring increased costs. This paper examines 
the misclassification rates in each of the six separate sampling frames in one of the 
stratification variables in the building-level selection process of the 2018 Commercial 
Buildings Energy Consumption Survey (CBECS), building-size category. It then explores 
two potential solutions for misclassification in this multi-frame study and addresses the 
positive and negative aspects of each solution. 
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2. 2018 CBECS Frame Construction and Sample Design 

CBECS is a nationally representative, multi-frame, repeated cross-sectional survey of 
commercial buildings in the United States sponsored by the Energy Information 
Administration (EIA). The first CBECS cycle occurred in 1979 and since then new, cross-
sectional cycles have been administered every 3 to 6 years. For the last several cycles, the 
CBECS sample design has used a Neyman allocation with total annual major fuel use as 
the key statistic. Building size (in square feet) and building use were highly correlated with 
total annual major fuel consumption in CBECS cycles prior to 2018 (including a correlation 
of 0.695 in the 2012 CBECS) and thus were used as the building-level stratification 
variables for the 2018 CBECS. The 2018 CBECS contained 24 building level-sampling 
strata based on six building-size categories and four building-use categories. This paper 
focuses solely on misclassification within the six building-size categories for measuring 
the amount of stratum misclassification in the 2018 CBECS and two potential methods for 
addressing this misclassification within a future CBECS sample design. The six building-
size categories are listed below: 
 
Building-Size Categories (in square feet) 
 
 1,001 – 10,000  
 10,001 – 25,000 
 25,001 – 50,000 
 50,001 – 100,000 
 100,001 – 200,000 
 Greater than 200,000 (> 200,000) 
 
With the highest variance of total annual major fuel use occurring in the largest commercial 
buildings, the Neyman allocation generates a desired sample size for the largest building-
size category that exceeds what a three stage area-probability frame can support. Although 
the CBECS segments are much larger in geographic size than block-level segments 
typically generated in area-probability designs for household surveys, the CBECS area 
segments do not contain enough commercial buildings > 200,000 square feet (sqft) to meet 
the demands of the highly disproportional Neyman allocation. Thus, in addition to 
generating an area probability frame of commercial buildings, the CBECS also uses five 
other list frames to identify commercial buildings > 200,000 sqft within the selected 
primary sampling units (PSUs). The addition of these five list frames allows CBECS to 
select the desired number of large commercial buildings identified by the Neyman 
allocation. The five list frames are: 
 
 Airport (based on publically available campus-level data provided by the Federal 

Aviation Administration) 
 Federal (based on publically available building-level data provided by the General 

Services Administration) 
 College/University (based on campus-level data purchased from a vendor) 
 Hospital (based on campus-level data purchased from a vendor) 
 Common Premises Location or CPL (based on multiple-business building data 

purchased from a vendor) 
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Along with using the area probability frame, Westat used an innovative virtual listing 
system (VLS1) to estimate building square footage for the airport, college, and hospital list 
frames. The lists for these three frames began at the campus level. From each list, a 
stratified, systematic sample of campuses was selected. Each selected campus was then 
virtually listed to identify the commercial buildings > 200,000 sqft. Finally, a set of 
buildings on the selected campuses believed to be > 200,000 sqft were selected to meet the 
requirements of the Neyman allocation. The federal and CPL frames were acquired at the 
building level and included estimates of building square footage. These two frames were 
restricted to buildings estimated to be > 200,000 sqft, so buildings were selected directly 
from the lists with no virtual listing required. 
 
Table 1 presents the average final, nonresponse-adjusted weight by sampling frame and 
frame building-size category. This table demonstrates for the 2018 CBECS how building-
size category misclassification affects precision as well as the relationship between the 
magnitude of the misclassification and the reduction in the precision of key estimates 
within strata. In order to meet the goals of the Neyman allocation, the buildings > 200,000 
sqft were heavily oversampled, which helped produce small, average final weights. The > 
200,000 sqft column also shows the difference in final average weights by sampling frame 
for buildings believed to be > 200,000 sqft. The biggest discrepancy is between the Federal 
and Area frames, where the average final weight of buildings believed to be > 200,000 sqft 
on the Area frame is 10 times larger than the average final weight of buildings selected 
from the Federal frame.  
 
Turning the focus to the “Area” row of Table 1, the average final weight approximately 
increases by a factor of 2 as one moves right to left from larger to smaller frame building-
size categories (i.e., 67 -> 133 -> 302->…2,955). The larger the distance between the 
building-size category on the sampling frame and the respondent-reported2 building-size 
category, the greater the increase in the variation of the weights. For example, for a selected 
building from the CPL frame, if the respondent reported the building-size category as 
100,001 to 200,000 sqft, then the mean final weight of the building and the majority of 
other buildings in the respondent-reported building-size category differ by a factor of 7 
(133/19). However, if the respondent reported a building-size category of 1,001 – 10,000 
sqft (as did occur for 11 percent of all selected buildings from the CPL frame), the average 
final weight of the responding CPL building and the large majority of other buildings that 

                                                      
1 As discussed in Giangrande et al. (2018), an innovation introduced for the 2018 CBECS was the 

use of virtual listing to generate a list of commercial buildings within the selected segments, 
rather than using in-person listers. Westat developed a virtual listing system (VLS) that used 
satellite imagery to help identify commercial buildings and estimate each commercial building’s 
square footage. Virtual listers estimated a commercial building’s size in sqft by outlining the 
building’s footprint on the satellite image and estimating the number of floors in the commercial 
building. Using geographic information system technology, the VLS estimated the square 
footage of the building’s footprint based on the outline captured by the virtual lister and 
multiplied the estimated square footage of the footprint by the estimated number of floors to 
generate a total building square footage. 

2 Throughout this paper, the terms “respondent-reported building sizes” and “respondent-reported 
building size categories” refer to edited respondent-reported values. Not unexpectedly, there is a 
fair amount of error each CBECS cycle in the initial respondent-reported building size values. 
Thus, as a standard quality control procedure during post-data collection processing, EIA 
reviews the initial respondent-reported building size values and edits them as necessary in an 
effort to reduce measurement error. 
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reported being between 1,001 and 10,000 sqft would differ by a factor of 155 (2,955/19), 
leading to a greater decrease in precision. 
 
Table 1: Average Final Weight by Sampling Frame and Frame Building-Size Category 

Frame 
Frame building size category (in square feet)3 

1,001 – 
10,000 

10,001 – 
25,000 

25,001 – 
50,000 

50,001 – 
100,000 

100,001 – 
200,000 > 200,000 

Airport  13 
Federal 6 
College 9 
Hospital 12 
CPL 19 
Area 2,955 1,553 655 302 133 67 

 
3. Potential Misclassification Solutions and Research Questions 

3.1 Misclassification Solutions 
Stratum misclassification in disproportionate allocations is not a new phenomenon, and 
sample design literature discusses two potential solutions to this issue—mathematical 
programming and two-phase sampling. Mathematical programming (Dantzig 1965; 
Valliant and Gentle 1997) is defined as the optimum allocation of limited resources among 
competing priorities, under a set of constraints. In a sample design context, the goal of the 
mathematical program is either to (a) minimize the overall sample size given the constraints 
of minimum precision goals by stratum and fixed misclassification rates, or (b) maximize 
precision by stratum within the constraints of a fixed sample size and misclassification 
rates. Option (a) will be the mathematical programming objective discussed later in this 
analysis. 
 
Two-phase sampling was introduced by Jerzy Neyman (1938). In this method, the sample 
designer obtains auxiliary information from a large sample of units via an inexpensive 
method. This is called Phase 1. The sampling statistician then uses the auxiliary 
information to subsample units for more expensive data collection at Phase 2. In the context 
of CBECS stratum misclassification, the Phase 1 auxiliary information is an indicator of a 
building > 200,000 sqft and the less expensive Phase 1 method is virtual listing estimates. 
Given that only the Federal and CPL frames were not virtually listed, two-phase sampling 
will only be a useful solution if either of those two frames is shown to have relatively high 
levels of stratum misclassification. 
 
3.2 Research Questions 
With these issues in mind, this paper investigates two research questions: 
 
1. Which sampling frame(s) generated the highest building-size misclassification rates? 
2. Among the two potential options for addressing the loss in precision within stratum 

due to misclassification—mathematical programming and two-phase sampling— 
which method or combination of methods appears most useful for a future CBECS 
sample design? 

                                                      
3 All but the > 200,000 sqft frame building size category for the five list frames have been shaded 

in grey because all buildings on each list frame were believed to be > 200,000 sqft prior to data 
collection and were assigned to the > 200,000 sqft frame building size category. 
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4. Results 

4.1 Misclassification Rates 
To address the first research question, “Which sampling frame(s) generated the highest 
building-size misclassification rates?,” we examined misclassification rates by sampling 
frame. Table 2 presents the weighted percentage of commercial buildings by respondent-
reported building-size category and list sampling frame. In an ideal (and highly unlikely) 
scenario in the context of CBECS, each respondent-reported building size on each of the 
five list frames would be > 200,000 sqft. The green-shaded cells are the percentage of 
responding buildings that were correctly classified on the sampling frame in the > 200,000 
sqft building-size category. The cells shaded in yellow are the percentage of responding 
buildings that were classified on the sampling frame as > 200,000 sqft, but the respondent 
reported were between 100,001 and 200,000 sqft. The yellow-shaded buildings were only 
off by one size category, minimizing the decrease in precision due to unequal weighting. 
Ideally, all respondent-reported building-size category values on the five list frames would 
be greater than 100,000 sqft and most would be greater than 200,000 sqft. With 11 percent 
of responding buildings selected from the CPL frame reporting a building size between 
1,001 and 10,000 sqft, the CPL frame is the major culprit in the building-size 
misclassification for the 2018 CBECS. 
 
Table 2: Weighted Percentage of Responding Commercial Buildings by List Frame and 

Respondent-Reported Building-Size Category 

List frame 
Respondent-reported building size category (in square feet) 

1,001 – 
10,000 

10,001-
25,000 

25,001 – 
50,000 

50,001 – 
100,000 

100,001 – 
200,000 > 200,000 

Airport 0% 0% 0% 0% 0% 100% 
Federal 0% 0% 1% 1% 2% 96% 
College 0% 0% 0% 0% 24% 76% 
Hospital 0% 0% 0% 12% 4% 84% 
CPL 11% 3% 8% 8% 19% 51% 

 
Although the CPL frame was the outlier in terms of misclassification, there were other 
frames that contained misclassification, but to a lesser degree. Within the hospital list 
frame, 12 percent of the selected buildings had respondent-reported building sizes between 
50,001 and 100,000 sqft. The virtual listing team explained this may have occurred because 
it was difficult to estimate the number of floors within some oddly shaped hospital 
buildings. Often, these hospital buildings had different sections that varied widely in the 
number of floors, and the number of floors in each section was difficult to determine from 
bird’s-eye view or street-view images of the building. 
 
Table 3 presents building-size misclassification rates for the area probability frame. Unlike 
the list frames, the buildings on the area probability frame could be any size greater than 
1,000 sqft to be eligible for CBECS sample selection. Thus, Table 3 contains a row for 
each of the six frame building-size categories.  
 
In this table, the numbers off of the diagonal represent the weighted misclassification rates 
by different frame building-size and respondent-reported building-size combinations. The 
pattern follows the pattern of the virtually listed list frames in Table 1 (i.e., the airport, 
college, and hospital frames). The cell shading in Table 3 follows the same rules as those 
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in Table 2: green-shaded cells contain the percent of responding buildings assigned to the 
correct building-size category on the area sampling frame, while the yellow-shaded cells 
are responding buildings that were off by one building-size category on the area frame. The 
large majority of the frame building-size categories are correct (cells shaded in green on 
the diagonal) or off by one size category (cells shaded in yellow), which minimizes the 
decrease in precision due to misclassification. Interestingly, the misclassification 
percentages are higher below the diagonal than above the diagonal. This means that a 
higher percentage of the misclassification occurred due to the virtual listers overestimating 
the building size than underestimating it.  
 

Table 3: Weighted Percentage of Responding Commercial Buildings by Area Frame 
Building-Size Category and Respondent-Reported Building-Size Category 

Area frame 
building size 

category 

Respondent-reported building size category (in square feet) 
1,001 – 
10,000 

10,001 – 
25,000 

25,001 – 
50,000 

50,001 – 
100,000 

100,001 – 
200,000 > 200,000 

1,001 – 10,000 93% 7% <1% 0% 0% <1% 
10,001 – 25,000 26% 60% 14% <1% 0% 0% 
25,001 – 50,000 3% 25% 58% 14% 0% 0% 
50,001 – 100,000 1% 3% 24% 62% 10% 0% 
100,001 – 200,000 <1% 4% 3% 32% 56% 5% 
> 200,000 0% <1% 1% 4% 32% 63% 

 
4.2 Mathematical Programming Solution 
To address the final research question, “Which method or combination of methods appears 
most useful for a future CBECS sample design?,” we began by developing a mathematical 
programming approach that would minimize the overall sample size while accounting for 
building-size category misclassification rates and achieve the effective sample size within 
each building-size category indicated by the original Neyman allocation. As described in 
Green (2000), mathematical programming approaches require the following elements in 
order to obtain an optimal result (i.e., a desired maximum or minimum): an objective 
function; a set of decision variables; and other parameters and constraints. We defined each 
of these elements as: 
 
Objective Function: Minimize the overall actual sample size, after accounting for 
misclassification (n’’) 
 
Decision Variables: Actual sample size by frame building-size category (nh’’) 
 
Other Parameters: Frame building-size population counts (Nh); misclassification rates 
 
Constraints: The effective sample size post-misclassification (neff’’) cannot be less than the 
effective sample size from the original Neyman allocation (neff’), both overall and by 
building size class h. 
 
We used Kish’s (1992) formula to calculate the design effect due to unequal weighting by 
building size class h due to implementing a disproportionate allocation: dh_eff = 
(∑(𝑁ℎ𝑑

2

𝑛ℎ𝑑
)) ∗  

𝑛

𝑁2 
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Constraints in formulas: 
 
 neff’’ >= neff’, which is equivalent to n’’/deff’’ >= n’/ deff’ 

 nh_eff’’ >= nh_eff’, which is equivalent to nh’’/ dh_eff’’ >= nh’/ dh_eff’ 

Table 4 contains the desired number of completed interviews, the design effect due to 
unequal weighting, and the effective number of completed interviews, both for the original 
Neyman allocation and the mathematical programming solution after accounting for the 
building-size misclassification.  
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Table 4: Sample Size, Design Effect Due to Disproportionate Allocation, and Effective Sample Size by Frame Building-size Category for Original 
Neyman Allocation and Mathematical Program Solution Accounting for Building-Size Misclassification 

 
Building size category 

Overall 1,001 – 
10,000 

10,001-
25,000 

25,001 – 
50,000 

50,001 – 
100,000 

100,001 – 
200,000 >200,000 

Neyman allocation 
n’ 1,550 964 561 557 531 2,297 6,500 
deff

’ 1.0 1.0 1.0 1.0 1.0 1.6 2.3 
neff

’ 1,590 964 561 557 531 1,471 2,826 
Mathematical program solution for misclassification 

n′ 2,160 1,549 565 546 1,110 2,716 8,636 
% moved out of n’ 7% 40% 42% 38% 18% 40% N/A 
% moved in to n” 21% 29% 58% 64% 56% 4% N/A 
n” 2,537 1,301 785 935 1,378 1,700 8,636 
deff

” 1.1 1.3 1.2 1.7 2.1 1.2 2.2 
neff

” 2,254 964 656 557 662 1,471 3,857 
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The upper portion of Table 4 contains the following three statistics, both overall and by 
building-size category: (1) the baseline Neyman allocation of 6,500 completed interviews 
prior to accounting for any building-size misclassification; (2) the Kish design effect due 
to unequal weighting (deff’); and (3) the effective sample size (neff’). The deff’ of 1.6 for the 
>200,000 sqft building-size category, as opposed to the design effect of 1.0 for the other 
five categories, is driven by the fact that buildings in the largest building-size category are 
selected from six separate sampling frames that were sampled at much different rates (see 
Table 1). The buildings in the other frame building-size categories are only selected from 
the area frame and have the same sampling rate within the category, hence producing a deff’ 
of 1. The overall deff’ of 2.3 is due to the fact that the goal of the Neyman allocation is not 
to generate a proportionate allocation, but instead to minimize variance of an estimator for 
a fixed sample size, assuming the costs per unit are the same across all building-size 
categories. The Neyman allocation will deviate from proportional allocation when the 
estimated population standard deviations (Sh) are different across the strata. This deviation 
from proportionate allocation is the case in CBECS, where the Sh for the key statistic, total 
annual major fuel use, is much greater for the larger buildings than the smaller ones. 
 
The lower portion of Table 4 displays six statistics, by building size: (1) the allocation 
generated by the mathematical program according to the frame building-size category (n’); 
(2) the percent of responding buildings that were in that building-size category on the frame 
and “moved out” to a different building-size category based on the respondent-reported 
building size; (3) the percent of responding buildings in that building-size category based 
on the respondent-reported building size that “moved in” from a different frame building-
size category; (4) the allocation generated by the mathematical program according to the 
respondent-reported building-size category (n’’; i.e., after accounting for 
misclassification); (5) the design effect due to unequal weighting after accounting for 
misclassification (deff’’); and (6) the effective sample size after accounting for 
misclassification (neff’’). 
 
The mathematical program solution generates an overall sample size (n = 8,636) that is 33 
percent larger than the initial sample size of 6,500 completed interviews.4 One way to 
explain what is driving the mathematical program solution is to measure the amount of 
movement within each building-size category based on classification based on the 
sampling frame values versus the respondent-reported values. As shown in Table 1, the 
cases moving into a building-size category have a different final weight than those 
originally selected in the category, while the cases moving out reduce the sample size 
within the category and remove cases with similar weights. Forty percent of the 2,716 

                                                      
4 Note that due to the constraint that the effective number of completed interviews cannot be less 

after accounting for building-size misclassification and design effect due to unequal weighting in 
the mathematical programming approach than the effective number of completed interviews 
from the original Neyman allocation (nh_eff’’ >= nh_eff’), the overall number of completed 
interviews generated by the mathematical program had be larger than that of the Neyman 
allocation. To help verify that the allocation of 8,636 completed interviews generated by the 
mathematical program was the minimum value that could be achieved given the constraints 
stated above, we set extra constraints on the n’’ values to see if a lower minimum could be 
achieved. For example, we added a constraint of n’’ for the 1,001 – 10,000 sqft category of 
2,400. However, this resulted in generating a new allocation of 8,713, with the decrease of 137 
completed interviews allocated to the smallest building size category (2,537 – 2,400) being 
outnumbered by increases to the number of completed interviews allocated to the 10,001 – 
25,000 and 25,001 – 50,000 building size in order to meet the neff’’ of 964 for the 10,001 – 
25,000 building size category. 
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completed interviews assigned as > 200,000 sqft on the sampling frame moved to a smaller 
category when reclassified with the respondent-reported values. On the other hand, only 
four percent of the 1,700 completed interviews were cases that moved into the > 200,000 
sqft category from any smaller category on the sampling frame. As Tables 2 and 3 show, 
the largest proportion of cases that moved out were from the Area and CPL frames, the 
frames with the largest average final weights for cases > 200,000 sqft. This combination 
of few cases moving in and many cases moving out among cases with the largest weights 
drove the deff’ down from 1.6 in the Neyman allocation to 1.2 in the mathematical program 
allocation.  
 
While movement helped reduce the deff’’ for the largest building-size category, the 
deleterious effects of the movement, especially the movement of buildings from the largest 
size category to smaller categories, can be seen in the weighting effects greater than one 
for all other building-size categories, most notably the 100,001 – 200,000 sqft category 
with a deff’’ = 2.1. As seen in Tables 2 and 3, when buildings in the largest building-size 
category on the frame are misclassified, they most often move to the adjoining building-
size category of 100,001 to 200,000 sqft. These buildings “moving in” to the 100,001 to 
200,000 sqft category from the largest building-size category have different sampling rates 
because they were selected from different sampling frames, adding to the increase in 
variation of the weights. In addition, as seen in the 50,001 – 100,000 row of Table 3, 
buildings from this building-size category on the frame are also moving into the 100,001 
to 200,000 sqft category, generating even more variation in the weights and producing a 
weighting effect of 2.1. 
 
4.3 Two-Phase Sampling Solution 
Another method to address the building-level misclassification would be to implement a 
two-phase sample (Neyman, 1934) on the frame with the highest misclassification rates, 
the CPL frame.5 While the mathematical programming approach starts from a place of 
assuming the misclassification rates are fixed, two-phase sampling attempts to reduce the 
misclassification rates via less expensive data collection methods in the first phase. With 
only 50 percent of all responding buildings selected from the CPL frame found to be > 
200,000 sqft, a two-phase design would select twice as many buildings from the CPL frame 
as initially believed to be needed after applying the estimated eligibility rates and response 
rates to the original Neyman allocation solution. Virtual listers would determine which of 
the selected CPL listings were > 200,000 sqft. Among the CPL selections believed to be > 
200,000 sqft, the sampling statisticians would sub-select to get to the desired number of 
sample cases to complete the full interview. 
 

5. Discussion 

A Neyman allocation, like the one used for the 2018 CBECS, does not take into account 
stratum misclassification. However, misclassification of the frame building-size category, 
one of the two variables used to generate CBECS building-level sampling strata, is an issue 
for the multi-frame CBECS sample design. Of the six CBECS sampling frames, the CPL 
frame is the biggest offender, both in terms of the misclassification rate and the increase in 

                                                      
5 The Federal list frame could also implement a two-phase sample. However, given that 96 percent 

of all responding buildings from the Federal list frame were correctly classified on the frame as > 
200,000 sqft, the small amount of reduction in misclassification generated by a two-phase design 
would not likely be worth the extra costs of implementing the first phase of the two-phase 
design.  
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relative difference in the weights generated by responding cases “moving” to strata with 
much different sampling rates. Forty-nine percent of all responding buildings selected from 
the CPL frame were reported to be less than 200,001 sqft by respondents. In addition, 11 
percent of responding buildings from the CPL frame were reported to be in the 1,001 to 
10,000 sqft category. Buildings in this smallest building-size category that were correctly 
assigned to this category on the sampling frame had an average weight that is greater than 
buildings selected from the CPL frame by a factor of 155. The area frame also experienced 
a fair amount of misclassification; however, the misclassification was predominantly 
contained to responding buildings “moving” to contiguous building-size categories whose 
sampling rates are more similar than non-contiguous building-size categories, helping limit 
the loss in precision due to misclassification. 
 
A useful finding for future CBECS cycles is that when virtual listers made building-size 
category misclassifications, they tended to be errors of overestimation. This was not 
unexpected as virtual listers were told to overestimate the building size when in doubt, to 
avoid undercovering and potentially missing large buildings. However, the concerns about 
undercoverage of large buildings did not materialize—only 5 percent of responding 
buildings selected from the area frame categorized as 100,001 to 200,000 sqft by virtual 
listers were reported by respondents to be > 200,000 sqft and no responding area frame 
buildings categorized as less than 100,001 sqft by virtual listers were reported by 
respondents to be > 200,000 sqft. Given this, the next CBECS sample design could be 
improved by removing any instructions to overestimate building-size estimates when in 
doubt. 
 
We discussed two potential solutions to the misclassification issue: mathematical 
programming and two-phase sampling. The mathematical program assumes that the 
misclassification is fixed and generates a minimum allocation that meets specified 
precision levels while accounting for the misclassification and its negative effects on 
precision. The mathematical program produced an allocation (n = 8,636) that was 33 
percent larger than the original Neyman allocation (n = 6,500). On the other hand, the two-
phase sample design attempts to reduce the misclassification, while minimizing the 
increase in costs by using a less expensive data collection method in the first phase. For 
CBECS, the two-phase sample design would be focused on reducing the misclassification 
rate in buildings selected from the CPL frame, given that the CPL frame is the key driver 
of building-size misclassification in CBECS. 
 
Each method has its advantages and disadvantages. The advantage of the mathematical 
program is it accounts for the misclassification observed across all frames. However, this 
advantage comes with a 33 percent increase in allocation, a substantial cost that few 
projects would be eager to absorb. For the two-phase design, the advantages are that (a) it 
would not require an increase in the allocation of 6,500 completed interviews; (b) it can 
target the main driver of the CBECS building-size misclassification, the CPL frame; and 
(c) it is easy to implement at a relatively low cost. The downside is that would only address 
the misclassification of the CPL frame and none of the other frames. 
 
Given these trade-offs, future CBECS sample designs may want to consider one of the 
following two approaches. A lower cost approach would be to focus all efforts on reducing 
misclassification. This would attempt to reduce misclassification by implementing the two-
phase design on the CPL frame while also doing further research on the buildings that were 
misclassified by virtual listers and devising methods to increase accuracy in the building-
size estimates of the virtual listing team. A more expensive approach would implement 
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everything from the lower cost approach as well as a mathematical program to help account 
for the remaining misclassification after reasonable reduction efforts have been exhausted. 
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