
The Rose Garden Event: A Hierarchical Bayesian Approach to Modeling

Positive Coronavirus Tests

Jedidiah Harwood* Eric A. Suess†

Abstract

We present an example of a Bayesian hierarchical model, for an advanced undergraduate Bayesian

Statistics class, with a focus on explaining the variability in coronavirus testing. This demonstration

was applied to data from various Trump events throughout 2020, where testing and social distancing

were not enforced. Using R and the JAGS software for Gibbs Sampling, we developed predictive,

posterior distributions for the total number of people who would have tested positive for coronavirus

at each (and every) event. Additionally, we developed posterior distributions for the coronavirus test

sensitivity and specificity. The MCMC chains appeared to properly converge to the posterior distri-

butions, and was further suggested so, by the Gelman-Rubin statistic.

Key Words: Bayesian, Hierarchical model, Statistics Education, MCMC, Gibbs Sampling

1. Introduction

On September 26, 2020, then-President Trump held a party in the White House Rose Gar-

den, to celebrate the nomination of Amy Coney Barrett to the Supreme Court. It would

later become known as a ”super spreader” event.

Over 300 people were in attendance, and every guest tested negative for coronavirus

before entry. Subsequently, numerous attendees contracted coronavirus. This poses the

following question: If every attendee at the Rose Garden event tested negative, then why

did a subsequent coronavirus outbreak occur?

The answer lies in the fact that the coronavirus tests are imperfect. This, in essence, is

the motivation for our example.

To assess this situation, we built a Bayesian hierarchical model to produce posterior

estimates for the coronavirus test sensitivity and specificity, the underlying probability of

testing positive, the underlying prevalence of coronavirus in the population, a predictive

distribution for the number of people who may have tested positive for coronavirus, given

a set of event sizes and the number of people in each event who tested positive for the

coronavirus. These posterior estimates were found by using a Gibbs Sampler. To apply

our model, we gathered data on the events that Trump had held during the height of the

pandemic. However, these events did not enforce coronavirus testing. As a result, we

implemented a simulation to estimate the number of people who would have tested positive

at these events, in order to generate our posterior estimates.

After generating our predictive and posterior estimates, we utilized trace plots, as well

as the Gelman-Rubin statistic to demonstrate that the MCMC chains had properly con-

verged.

This model can serve as an example of a Bayesian hierarchical model for an advanced

undergraduate Bayesian Statistics class, and demonstrates the versatility of Bayesian mod-

els to overcome issues that would have led to difficulties in a frequentist approach, in par-

ticular through the use of latent variables.

*Department of Statistics, University of California, Davis, 1 Shields Ave, Davis, CA 95616
†Department of Statistics and Biostatistics, California State University, East Bay, 25800 Carlos Bee Blvd,

Hayward, CA 94542

1256

Figure 1: Diagram of Model Parameters

2. What is the Model?

2.1 Parameters

To represent the number of people who had tested positive for the coronavirus at each event,

i, we used yi.

yi ∼ binomial(νi, Ntotali)

We modeled yi with a binomial distribution, under the assumption that there was some un-

derlying, varying, probability of testing positive (νi), at each event, i. Associated with each

underlying probability with testing positive, is the event’s size (Ntotali). This binomial

distribution serves as the likelihood function for our model parameters.

An important aspect of diagnostic testing, is the accuracy of the test, which are ac-

counted for through the sensitivity and specificity of the test. Sensitivity represents the

probability for one to test positive for the disease, given that they actually have contracted

the disease. Specificity represents the probability for one to test negative for the disease,

given that they have not contracted the disease. Here, we represent the sensitivity with η,

and the specificity with θ. We used the following prior distributions.

η ∼ beta(910, 90)

θ ∼ beta(950, 50)

For the model, we placed beta prior distributions on η and θ, due to its simplicity and

convenience. The prior distribution for the sensitivity had a mode of 91%. The prior

distribution for the specificity had a mode of 95%.

For each of the Trump events in 2020, we assumed that there was a varying, underlying

prevalence for the coronavirus in the population. To represent the coronavirus prevalence

at each event, i, we used πi.

πi ∼ beta(ω(κ− 2) + 1, (1− ω)(κ− 2) + 1)

Rather than use the typical α and β shape parameters for the prior placed upon πi, we used

the mode of the distribution (ω), and the concentration of the distribution (κ) so as to more

easily specify our prior beliefs on the prevalence of the coronavirus. Using ω and κ, we

can reparameterize with respect to α and β, as shown in the equation above.

1257

In our model, we placed prior distributions on ω and κ. As a result, πi is dependent on

both ω and κ.

To represent the underlying probability of testing positive at each event, we used νi.

With πi, η, θ, and the law of total probability, we formulated the prior distribution of νi.

νi = ηπi + (1− θ)(1− πi)

Due to the formulation of νi, its prior distribution is dependent on πi, η, and θ.

As mentioned earlier, we used ω and κ to represent the mode and concentration of the

prior distribution put upon πi.

ω ∼ beta(6, 95)

(κ− 2) ∼ gamma(5.8, 0.48)

We placed a beta prior on ω, with the mode of the distribution centered at around 6%.

Instead of placing a prior distribution on strictly κ, we placed a gamma prior on (κ−2), and

specified in our implementation of the model, the relationship between the κ and (κ− 2).1

2.2 Predictive, Posterior Distributions

Our model produces predictive, posterior distributions for the number of people who would

test positive for coronavirus – within each and throughout all of the events. To represent

the number of positive tests within each event, we used Pyi. To represent the number of

positive tests throughout all the events, we used Pytot.

Pyi ∼ binomial(νi, Ntotali)

Pytot =
N∑

i=1

Pyi

2.3 Limitations

We assumed that for every event, the same type of test was used. We also made the assump-

tion that the underlying coronavirus prevalence distribution, was the same for each event.

If we were to apply this model to an event where social distancing (or other precautionary

measures) took place, it is possible that the underlying prevalence distribution would be

different from that of a non-socially distant event.

3. Implementation

3.1 The Data

To apply our model, we collected data on 73 different Trump events (including the Rose

Garden event). These events varied in size. Presented in Table 1 is a numerical summary

of the event sizes. The smallest of the 73 events had 110 participants, while the largest had

30000 participants.

Table 1: Summary of Event Sizes

Min Q1 Median Q3 Max

110 1200 5000 7000 30000

1Figure 1 does not explicitly show this relationship in the hierarchy.

1258

Unfortunately, as these events did not enforce coronavirus testing, there was no data on

the number of people who tested positive at these events. Subsequently, we simulated the

number of people who would have tested positive at these events, using some reasonable

assumptions, and a binomial distribution.

To simulate the data, we randomly generated an underlying probability of testing pos-

itive for each event. These probabilities were randomly sampled from a beta distribution,

with a mode of 5%. From there, we used each event’s simulated probability of testing

positive and size, to create a binomial distribution from which we simulated the data.

P (+)i ∼ beta(5.9, 94.1)

yi ∼ binomial(P (+)i, Ntotali)

Using R, we implemented the simulation.

Reading in Data

covid19trump <- read.csv("whitehouse_covid_events.csv")

Number of Events

k <- nrow(na.omit(covid19trump))

Generating P(+)

prob_nu <- rbeta(k, 5.9, 94.1)

Loading different event sizes

n <- na.omit(covid19trump$Number_of_Participants)

Simulating the Number of Positive Cases in Each Event

positive_cases_sim <- function(x){

rbinom(1,x, prob_nu)

}

y <- lapply(n, positive_cases_sim)

3.2 JAGS Implementation

To compute our posterior estimates, we used JAGS, accessed through R packages rjags and

runjags.2

In order to specify the model to JAGS, we used a text file that contained the structure

of our model. From there, we specified the initial values of our model parameters.3

modelString <- "

model {

for (i in 1:k){

Likelihood in Code

y[i] ˜ dbin(nu[i], Ntotal[i])

Probability of Testing Positive

nu[i] = eta*pi[i] + (1-theta)*(1-pi[i])

Prior for Prevalence

2We recommend using runjags, as it allows parallel computing.
3We set initial values of η = θ = .95, ω = 0.05, and κ = 10.

1259

pi[i] ˜ dbeta(omega*(kappa-2) + 1,

(1-omega)*(kappa-2) + 1)

Predictive Distribution

Py[i] ˜ dbin(nu[i], Ntotal[i])

}

Mode of the Beta Prior on pi[i]

omega ˜ dbeta(6, 95)

Concentration for the Beta Prior on pi[i]

kappa = kappaMinusTwo+2

(kappa - 2) Cannot be Negative

kappaMinusTwo ˜ dgamma(5.8, .48)

Priors for Test Parameters

eta ˜ dbeta(910, 90)

theta ˜ dbeta(950, 50)

Predictive Distribution

Py_tot = sum(Py)

}

"

Write to File

writeLines(modelString, con="model.txt")

Implement using runjags

library(runjags)

runJagsOut <- run.jags(method="parallel",

model = "model.txt",

monitor = c("nu","pi","omega","kappa",

"eta","theta","Py", "Py_tot"),

data = dataList,

inits = initsList,

n.chains = nChains,

adapt = nAdaptSteps,

burnin = nBurninSteps,

sample = ceiling(nUseSteps/nChains),

thin = nThinSteps,

summarise = FALSE,

plots = FALSE)

Convert to MCMC List Object

codaSamples = as.mcmc.list(runJagsOut)

Although not explicitly shown, we supplied runjags initial values for our model’s parame-

ters, in the form of a list object. For more information on how to use runjags, we recom-

mend viewing the package’s R documentation.

1260

4. Posterior Estimates

4.1 Highest Density Intervals

After running the Gibbs Sampler, we used the R packages ggplot2 and tidybayes to asses

our results. Presented in Table 2 is a 95% Highest Density Interval (HDI) for the mode

of our posterior estimates. It is important to note, that this 95% probability interval has a

different, more intuitive interpretation than a frequentist confidence interval.

From the 95% HDI for the sensitivity η, we can see that there is a 95% probability,

that the test sensitivity fell between 88.8% and 92.43%. This implies that it is plausible,

for upwards of 10% of all tests to return false negative results. With such an imperfect

test sensitivity, it is of no question, that an event such as the Rose Garden event would be

possible – where every attendee tested negative, yet may have had coronavirus.

Table 2: 95% HDI Intervals for Mode of Posterior Estimates

Posterior Estimate Lower HDI Upper HDI

η 0.9076 0.8880 0.9243

θ 0.9510 0.9489 0.9539

ω 0.0025 0.0008 0.0053

κ 76.9259 57.9097 99.0559

Pytot 24,989 24,543 25,400

Py1 33 20 49

ν1 0.0671 0.0515 0.0893

π1 0.0218 0.00247 0.0470

. . . .

. . . .

Py73 543 478 599

ν73 0.0540 0.0501 0.0582

π73 0.0059 0.0009 0.0118

In addition to possible false negatives, we can see that the tests were also prone to false

positives. According to the HDI for θ, it is likely that upwards of 6% of tests were false

positives.

The latent variables, πi, the underlying true prevalence of the population at the time of

event i, and vi, the underlying probability of a randomly selected person from the popula-

tion testing positive for event i were estimated for each event. The values for i = 1 and

i = 73 are included in Table 2.

4.2 Density Plots

In Figure 2 is a density plot of the posterior distribution of Pytot. The golden bar in the

plot represents the 95% HDI for the mode of the distribution. We can see that around

11,600 people would have tested positive for the coronavirus, as a result of all the Trump

events. However, this number includes false positive results. Based on the 95% HDI, we

can conclude that it was 95% likely that between 24, 543 and 25, 400 people would have

tested positive.

1261

Figure 2: Density Plot of Pytot

As evident from Figure 3, there is some variability in the number of people who would

have tested positive, between the different events. This variability is mainly due to the dif-

fering event sizes. For example: You may notice that the distribution of π7 is significantly

shifted to the right of the others. This is because the seventh event had significantly more

attendees than the others – and therefore, more people who could test positive.

1 2 3 4 5 6 7 8 9 10

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0

100

200

300

400

Density

C
o

u
n

t

Figure 3: Density Plots for Pyi

From Figure 4, we can see the scope of the imperfections in the coronavirus tests used.

Due to the amount of false positives, the distribution of νi is significantly shifted to the

right of πi.

As shown in the density plot, the posterior distribution for θ is shifted to the right of η.

We can gather that the posterior distribution of η has wider range of credible values than θ.

1262

4 5 6

1 2 3

0.00 0.05 0.10 0.00 0.05 0.10 0.00 0.05 0.10

0

50

100

0

50

100

estimate

d
e

n
s
it
y variable

nu

pi

Figure 4: Overlaid Densities of πi and νi

0

100

200

300

0.86 0.88 0.90 0.92 0.94 0.96

estimate

d
e

n
s
it
y variable

eta

theta

Figure 5: Overlaid Densities of η and θ

5. Diagnostics

5.1 Trace Plots

In order to assess if the Gibbs Sampler converged to the posterior distributions, we used the

R packages ggplot2 and tidybayes. Using the trace plots, we can determine if there are any

abnormalities in the MCMC sampling algorithm.

1263

11200

11600

12000

0 2000 4000 6000

.iteration

P
y
_

to
t

.chain

1

2

3

4

Figure 6: Trace Plot for Pytot

4 5 6

1 2 3

0 2000 4000 6000 0 2000 4000 6000 0 2000 4000 6000

0

20

40

60

80

0

20

40

60

80

.iteration

P
y

.chain

1

2

3

4

Figure 7: Trace Plot for Pyi

1264

4 5 6

1 2 3

0 2000 4000 6000 0 2000 4000 6000 0 2000 4000 6000

0.02

0.04

0.06

0.02

0.04

0.06

.iteration

n
u

.chain

1

2

3

4

Figure 8: Trace Plot for νi

0.88

0.90

0.92

0.94

0 2000 4000 6000

.iteration

e
ta

.chain

1

2

3

4

Figure 9: Trace Plot for η

1265

0.976

0.978

0.980

0.982

0 2000 4000 6000

.iteration

th
e

ta

.chain

1

2

3

4

Figure 10: Trace Plot for θ

As evident from the trace plots, it appears that all the MCMC chains have successfully

converged, for each of the parameters. While these trace plots can be helpful to assess for

the MCMC chains’ convergence, it is oftentimes more useful to confirm with a statistic and

hypothesis test.

5.2 Gelman-Rubin Statistic

The Gelman-Rubin statistic is often used to assess the convergence of MCMC chains. It

can be thought of as a sort of ANOVA F -Ratio, to compare the variance between each

chain to within each chain. Similar to an ANOVA, if the Gelman-Rubin statistic is near

1, it suggests that there is no significant difference between the chains – implying that the

chains have successfully converged to the posterior distributions.

Posterior Estimate Upper C.I.

Pytot 1.0000076 1.0001058

ω 0.9999569 1.0000408

κ 1.0000918 1.0003094

η 0.9999740 1.0000254

θ 1.0001809 1.0004417

Table 3: Gelman-Rubin Statistics for Non-Event Specific Parameters

1266

Posterior Estimate Upper C.I.

Py1 1.0000912 1.0003353

ν1 1.0002477 1.0009390

π1 1.0006337 1.0013397

. . .

. . .

Py73 1.0001174 1.0004958

ν73 1.0000770 1.0002103

π73 1.0007099 1.0008744

Table 4: Gelman-Rubin Statistic for Event-Specific Parameters

In Tables 3 and 4, the Gelman-Rubin statistics for all of the posterior distributions are

around 1. Additionally, none of the upper confidence limits for the Gelman-Rubin statistics

are significantly above 1. This shows that the variance between each chain, is (almost)

the same as the variance within each change. Therefore, we can conclude that the random

sampling algorithms successfully converged to the posterior distributions.

6. Conclusion

Through this model, we were able to simulate and model the diagnostic testing data with

an understanding of the limitation of the imperfect sensitivity and specificity of tghe test

used to screen the attendants of the Rose Garden event which resulted in many coronavirus

cases. Additionally, we were able to create predictive posterior distributions for the num-

ber of people who would have tested positive, at each of former-President Trump’s events

held throughout the height of the pandemic. Using diagnostics such as the Gelman-Rubin

statistic, we were able to conclude that our MCMC chains had successfully converged to

the posterior distributions of interest.

1267

REFERENCES

Brooks, S. P., Gelman, A. (1998). General Methods for Monitoring Convergence of Iterative Simulations.

Journal of Computational and Graphical Statistics. Volume 7(4), Pages 434-455.

Kruschke, J. (2015). Doing Bayesian Data Analysis: A Tutorial with R, Jags, and Stan (2nd ed.). Academic

Press/Elsevier.

Mandavilli, A. (2020, October 02). The White House relied on a rapid test, but used it in a way it was

not intended. Retrieved from URL: https://www.nytimes.com/2020/10/02/us/elections/the-white-house-

relied-on-a-rapid-test-but-used-it-in-a-way-it-was-not-intended.html

Plummer, Martyn (2019). rjags: Bayesian Graphical Models using MCMC. R package version 4-10. URL:

https://CRAN.R-project.org/package=rjags

Plummer, Martyn. (2003). JAGS: A Program for Analysis of Bayesian Graphical Models using Gibbs Sam-

pling. 3rd International Workshop on Distributed Statistical Computing (DSC 2003); Vienna, Austria.

124.

R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical

Computing, Vienna, Austria. URL: www.R-project.org/

Suess, Eric A., Gardner, I.A., Johnson, W.O. (2002). Hierarchical Bayesian model for prevalence inferences

and determination of a country’s status for an animal pathogen. Preventive Veterinary Medicine, Volume

55(3), Pages 155-171

1268

