
Neural Networks for Prediction of functional data

Weiru Han1* Lu Lu1† Jiangfeng Zhou2‡

Abstract

Neural networks are popular for classification and prediction involving a large number of inputs

and a small number of output variables. However, they have not been broadly used for predicting

functional output. Motivated from a physical science study which involves predicting the spectrum

curve from metamaterial optical device with different geometrical parameter settings, we developed

neural network models that utilized the multi-layer perceptron for predicting the functional output.

To optimize the network architecture, first a screening design was used to explore the impact of

model hyperparameters such as the numbers of layers and nodes and the choices of activation func-

tions. Then a two-phased genetic algorithm called NSGA-II [Deb et al., 2002] was developed to

search the optimal structures to simultaneously minimize the training and prediction errors as well

as the model complexity. The first phase used a discrete non-dominated sorting genetic algorithm

to seek top-ranking combinations of the number of nodes, activation functions and optimization

methods. The second phases used a continuous search focusing on optimizing the number of nodes.

Finally, desirability functions were used to further select the most robust models from pareto front.

The proposed method will be illustrated with an optical device optimization example.

Key Words: multi-layer perceptron, functional principal component analysis, factorial design

experiment, evolutionary algorithm, multiple objective optimizations, desirability functions

1. Introduction

The term “functional data analysis” was first presented by [Ramsay, 1982], but the his-

tory of the field is much older and dates back to [Grenander, 1950, Rao, 1958]. Typi-

cal functional data consists of a sample of observations that are also regarded as a set

of curves or real-valued functions X1(t), X2(t), · · · on a compact interval τ = [0, t]
[Wang et al., 2016]. Much work dealing with functional data usually aims at smoothing

curves, clustering and classification and so forth. A growing area concentrates on func-

tional regression, where the relationship between functional covariates and vector of re-

sponses or functional responses are of main interest. However, few studies have focused on

predicting functional data using a vector of predictors. One of the main reasons is that it is

invariably easier to extract features from information with higher dimension compared to

those with lower dimension.

In our experiment, there are 4 types of geometric parameters of discs and device that are

related to the shape of reflection and transmission curves, which are dis-alignment distance

in X-axis denoted by a, dis-alignment distance in y-axis denoted by b, thickness of the

device denoted by tBCB and radius of the disc denoted by r where r = dGDA/2. An

example of discs and device is illustrated in figure 1 as well as these 4 geometric features.

While the overall goal of this project is to predict reflection and transmission curves as

functional data using 4 geometric parameters as scalar variables, several issues are needed

to be addressed prior to that. Indeed, we mainly focus on two problems:

1. How to find a group of promising models to predict function data regardless of di-

mension using limited number of scalar variables?

*Department of Mathematics and Statistics, University of South Florida, weiruhan@usf.edu
†Department of Mathematics and Statistics, University of South Florida, weiruhan@usf.edu
‡Department of Physics, University of South Florida, jiangfengz@usf.edu

475

Figure 1: An example of a photonic device

2. How to form a systematic way in selecting the near-optimal models?

Datasets were generated from a simulation of a 500-run space filling design which is

shown in figure 2. Inside the plot, t represents tBCB as the thickness of the device and d
represents dGDA in figure 1 as the diameter of the disc. In our research, we used radius of

the disc r = dGDA/2 as one of 4 predictor variables to train the model.

While reflection and transmission curves could not fit well with polynomial regression

models, we adopted classic neural networks which belong to the multi-layer perceptron

with backpropagation to predict functional data in that neural networks are advantageous

in capturing nonlinear response surface. To address the first issue, we utilized a common di-

mension reduction method called functional principal component analysis (short for FPCA)

to reduce the dimension of those curves. The benefit of this approach is that it can guarantee

that functional data can be represented by a relatively small number of coordinates while

still preserving a majority of information of the data, which is highly useful especially when

there are too many sampling points of functional data After dimension reduction, these co-

ordinates can be fed into multi-layer perceptron as response to train models. After carrying

out the training process, predicted coordinates are projected back into the original space

using basis expansion to compare with original curves. Predicted performance of curves

can be unfavorable either because the model is too simple or too complicated. Therefore,

models that could be considered as promising if they can nicely balance the trade-off be-

tween model complexity and predicted accuracy. To address the second problem, notice

that different model hyperparameters have impact on predicted performance, we applied an

evolutionary method called a fast and elitist non-dominated sorting genetic algorithm (short

for NSGA-II) to find a group of near-optimal models. However, typical genetic algorithm

may require a large search space for obtaining the best models which is of huge time and

cost. Therefore, we conducted a screening design experiment prior to employing NSGA-II

to narrow down the search space first. At the end, desirability functions were given in order

to select a small group of best solutions from pareto front.

The structure of the paper is formulated as follows. Section 2 introduce the basic idea

behind functional principal component analysis and how it relates to the general principal

component analysis for multivariate data. Section 3 illustrates how we design a screening

experiment as well as their corresponding results. Section 4 demonstrates the application

of NSGA-II algorithm and how it is imposed considering different targets in 2 phases.

Section 5 presents the use of desirability functions in selecting a small subset of optimal

models from pareto front.

476

Figure 2: Input space for 4 geometric parameters

2. Functional Principal Component Analysis

Suppose we have N curves denoted by

x1(t), x2(t), · · · , xN (t) (1)

t ∈ τ = [0, T] (2)

where τ is a compact interval, thus predicting curves is actually predicting functions which

is unrealistic for general methods. To reduce the dimension of functional data, [Karhunen, 1946]

independently discovered the FPCA expansion

xi(t) = µ(t) +

∞
∑

k=1

yikξk(t) (3)

yik =

∫

τ

(xi(t)− µ(t))ξk(t)dt (4)

where yik are the functional principal component scores (short for FPCs) of the curve xi(·),
ξk(t) is the weight function measured at point t, and µ(t) is the mean curve (function) of

x1, · · · ,xN measured at point t. It is evident to show that the first k terms of above equation

for large enough k could provide a good approximation to xi(t). In fact, as a counterpart of

477

principal component analysis for multivariate data, FPCA also shares the same properties

where yik and ξk are obtained by eigen-decomposition for covariance function denoted by

V (s, t) =
1

N

N
∑

i

xi(s)xi(t) (5)

To obtain eigen-components, we need to solve the equation
∫

τ

V (s, t)ξ(t) = λξ(s) (6)

where λ represents eigenvalue. The challenge here is how to find a method to compute

the integral. In general, there are 3 approaches that can be utilized to approximate the in-

tegral, including discretizing functions into n equally spaced values [Rao, 1958], using pre-

specified basis such as fourier basis to express those functions [Ramsay and Silverman, 1997],

or using numerical integral [Stoer and Bulirsch, 2002].

For our study, we choose to discretize functional data into n equally spaced values and

convert our problem into multivariate case. After discretization, we get an n × N matrix

X = [x1,x2, · · · ,xN], of which each function xi(·) is replaced by a vector xi consists of

n values xi(t1),xi(t2), · · · ,xi(tn) where t1, t2, · · · , tn are n equally spaced points from

the compact interval τ . We subtract X from its row mean to obtain a n × N matrix X∗

ensuring that each row has zero mean; thus, we can calculate covariance matrix Σ as

Σ =
1

N
X∗(X∗)T (7)

We then obtain the eigenvalues λi and eigenvectors ψi by calculating the equation

Σψi = λiψi w.r.t (8)

‖ψi‖
2
2 = 1, ψT

i ψj = 0, ∀i 6= j (9)

We rank eigenvalues in a decreasing order to get λ1, λ2, · · · as well as the associated

eigenvectors ψ1, ψ2, · · · . We select k terms of eigenvectors ψ1, · · · , ψk either manually

or by how much percentage these eigen-components explain to the total variation of the

data which can be calculated as
∑k

i=1
λi∑

i=1
λi

. At last, k terms of eigenvectors constitute an

eigen-basis projecting X to Y = XTψ, from a higher n-dimensional space to a lower

k-dimensional space. A detailed process of PCA is summarized in algorithm 1

Algorithm 1: Principal component analysis

Input: observation matrix X =
[

x1 · · · xN

]

n×N

threshold σ ∈ (0, 1)
Output: Principal component weight matrix Ψ =

[

ψ1 · · · ψk

]

Principal component score matrix Y =
[

y1 · · · yk

]

N×k

1 For each row of observation matrix X, subtract them from mean value of the row

to get a n×N matrix X∗ ensuring each row has zero mean

2 Calculate covariance matrix Σ = 1
N
X∗(X∗)T

3 Compute eigenvalues λ and eigenvectors ψ such that Σψ = λψ
4 Rank eigenvalues in a decreasing order to get λ1, λ2, · · ·
5 Obtain ψi corresponding to λi
6 Choose k manually or select ψ1, · · · , ψk such that

∑k−1
i λi
∑

i λi
< σ &

∑k
i λi

∑

i λi
≥ σ

7 Output Y = (X)TΨ

478

Figure 3: Scree plot for reflection data

The rank of X∗ is at most N − 1, thus for an n×n covariance matrix Σ, we can obtain

at most min(n,N−1) nonzero eigenvalues λi. In our case, we have 500 curves each for the

reflection and transmission data, with 1001 equally spaced frequency points from interval

[40,60], thus we can obtain at most 499 nonzero eigenvalues. Figure 3 is a scree plot with

a log scale in y-axis showing the variance explained after carrying out principal component

analysis to reflection data. In effect, we find out that among 500 principal components,

the first 6 principal components cover more than 99% of the variance of the data showing

that we can use only 6 principal components as the basis to reduce the dimension of the

data without losing much information. However, since the main goal is to find a promising

model with a higher accuracy, we select all 500 principal components as the basis so that

each observation is represented by 500 principal component scores in the later experiments.

3. Screening design experiment

To narrow down the search space, we design a screening experiment to select a group

of candidate hyperparameters of neural networks, which is summarized in table 1. For

this experiment, network models have 3 options for choosing number of hidden layers

including 2,4,6 hidden layers. After fixing the number of layers, number of hidden units are

the same through all hidden layers and contains 5 possible values which are adopted from

default values in general convolutional neural networks for convenience; Act1 represents

the activation function connecting from the input layer to the first half hidden layer, and

Act2 represents the activation function connecting from the first half hidden layer to the last

hidden layer; search space is the same for both activation functions including 11 common

function types. Figure 4 illustrates a network with 4 hidden layers whose number of nodes

for all hidden layers is 512; Act1 is “relu” and Act2 is “exponential”. For regression

problems, typical choice of activation function for output layer is linear function, thus we

choose not to add any activation function between the last hidden layer and output layer to

guarantee a linear combination.

For different model architectures, we fix the training epochs as 100 so as to observe

which model will converge the best in a limited update time. Functional data is discretized

by 1001 equally distributed frequency points and reduced to 500 dimensions by FPCA

as the training output. Optimizer is chosen as “adam” as it has been proved to be the

479

Figure 4: Multi-layer perceptron with 4 hidden layers

most effective optimizer in terms of the training cost in many scenarios, one can also refer

to [Ruder, 2016] where it benchmarked multiple optimizers on the multi-layer perceptron

and convolutional neural networks, respectively. Data is divided into 5 folds in order to

calculate 5 folds cross validation errors. To select a group of superior model structures, the

criteria is to investigate the main and interaction effect measured by cross validation errors.

Due to the fact that prediction of network is the principal component scores with the lower

dimension, we need to project scores using eigen-basis to the original space to obtain the

fitted data; thus, errors are computed by comparing the fitted data with those discretized

curves. Suppose we denote N discretized curves with n equally spaced points as xi(tj) and

fitted curves as x̂i(tj), i = 1, 2, · · · , N, j = 1, 2, · · · , n, mean square error would be

MSE =
1

N

N
∑

i=1

‖xi − x̂i‖
2
2 (10)

Hyperparameters Levels

Layers 2,4,6

Nodes 32,64,128,256,512

Act1 and Act2
selu, relu, elu, hard sigmoid,

exp, tanh, softplus, linear

Table 1: Selection of hyperparameters

480

Hence the cross-validation error would be the average of MSE for 5 folds, calculated as

CV error =
1

5

5
∑

p=1

1

Nfp

∑

r∈fp

‖xr − x̂r‖
2
2 (11)

where p is the fold index, fp is the observation index set and Nfp represents the number of

observations in p′s fold.

For each level of layers number, there are 605 factor combinations. Through all exper-

iments, only networks with 2 hidden layers can export valid results with errors between 0

and 1. For networks with 4 layers, 5 combinations fail for reflection data and 6 combina-

tions fail for transmission data, and for networks with 6 layers, 23 models each for both

type of data fail.

The main reason is evident either in that the exploding gradient or vanishing gradient.

We notice that all failed models contain ”exponential” as activation function whose gradi-

ent has no limitation; then by using backpropagation algorithm, gradient may be multiplied

to an extremely high value so as to overflow and obtain NA values. Multiplicative gradient

values with respective to functions such as ”sigmoid” or ”tanh” are apt to be zero especially

for deep neural networks, which will cease updating gradient, that is, the gradient vanishing

problem. All failed cases manifest activation function 1 and 2 are either all ”exponential

or a combination of ”exponential” and functions like ”sigmoid” that are not capable of

resolving gradient exploding problem.

Through all valid cases, we average their cross-validation errors for single factor or

two factors combination. Most marginal effects are less than 0.01, nevertheless there are

marginal effects larger than 0.1 regardless of the option for Act1 when Act2 is “SoftMax”.

We then remove “SoftMax” as the option in Act2 considering the fact that those large

values may increase the bias in observing the marginal effects for Act1.

Figure 5a and Figure 5b depict marginal effects of Act1 and Act2 in terms of different

layers. While blue, orange and red lines represent models with 2,4 and 6 hidden layers

respectively, we can easily observe the instability exists in networks with 6 hidden layers

while models with 2 or 4 hidden layers are more stable; Both graphs show that for most

activation functions, 2-layer model has no difference in predicted performance compared

to 4-layer model and can be even better especially when activation function is ”softplus”

and ”exponential” for Act1 and Act2, respectively.

To lower down the randomness of the training, we repeat aforementioned procedures

by shuffling the data to have different splits. We collect those consistent results, and find

out that for reflection data:

• Models with 2 hidden layers have the better and more stable mean performance than

4 and 6 hidden layers

• When number of hidden layers is 2 and Act1 =’relu’,’elu,’selu’,’linear’,’softsign’,’tanh’,

marginal effect of Act1 is always better than other 5 activation functions

• When number of hidden layers is 2 and Act2 = ’elu’,’selu’,’softplus’,’exponential’,

marginal effect of Act2 is always better than other 7 activation functions

481

(a) marginal effect of act1 for reflection

(b) marginal effect of act2 for reflection

Figure 5: marginal effect of activation function 1 and activation function 2 with respect to

different layers and data

482

4. NSGA-II algorithm

In design of experiments usually multiple criterions are to be considered, all of which

cannot be optimized at the same time; that is, any criterion must be optimized at the cost

of diminishing at least one of other criterions. Instead of finding solutions that can perform

the best only in one aspect, we aim to find pareto optimal set that can best balance the

trade-off between different criterions. Suppose we denote solutions as Si, i = 1, 2, · · · ,

and we relate each solution to a criterion vector F (Si) comprised of C objective functions

f1(Si), f2(Si), · · · , fC(Si), we say Si pareto dominates Sj or Sj is dominated by Si if

fk(Si) ≥ fk(Sj) for k = 1, 2, · · · , C (12)

at least one k from 1, 2, · · · , C such that (13)

fk(Si) > fk(Sj) (14)

As such, pareto optimal set is the collection of solutions which dominates all other solu-

tions that are not in the pareto optimal set, and solutions in the pareto optimal set cannot

dominate each other. The collection of the corresponding criterion vectors for pareto opti-

mal set is called pareto front. To optimize multiple objectives and find those pareto optimal

solutions a general method is the genetic algorithms. Usually, pareto optimal set contains

an ocean of possible solutions, thus two different strategies can be applied to further se-

lect the smaller group of optimal solutions from pareto front. The first strategy usually is

applied prior to the optimization process which is to scalarize vector of multiple objective

functions into a scalar function. Methods include weighted linear combination of objec-

tive functions, distance functions, desirability functions, etc. However, selected optimal

solutions are highly sensitive to different weighting schemes using these methods, and of-

tentimes require multiple GA search for different weights, which could not apparently be

the best strategy considering time and cost. The second strategy is to apply multiple crite-

ria to the pareto front after optimization [Chapman et al., 2018]; methods include additive

desirability functions, utopia point method and so on. Details of the second strategy and

corresponding results are illustrated in the section 5.

While our final objective is to find a promising model to predict the functional data,

it is also noteworthy to lessen the model complexity. Thus, how to balance the trade-off

between model complexity and prediction performance is vital to the research. Here we use

number of trainable parameters to signify the model complexity, which is directly related

to the number of hidden units in different layers. For a network with 2 hidden layers, the

number of trainable parameters is calculated as

#trainable parameters = (inputdim + 1) ∗ first hidden layerdim+

(first hidden layerdim + 1) ∗ second hidden layerdim+

(second hidden layerdim + 1) ∗ output layerdim

In our research, we focus on minimizing training and predicted errors as well as min-

imizing the model complexity. However, it is more likely that as model complexity de-

creases, errors increase. Depending on the dimension for input layer and output layer,

number of units for different hidden layers should be adjusted within a reasonable interval.

To optimize our problem, we employ a fast and elitist non-dominated sorting algorithm

(short for NSGA-II) [Lu et al., 2011] to find the optimal set.

After carrying out screening design, a group of candidate solutions is chosen as a new

search space to explore the near-optimal networks. From screening experiment, we observe

that networks with 2 hidden layers can always output efficient results regardless of how we

483

Unit 1 64,128,192,256,320,384,448,512

Unit 2 64,128,192,256,320,384,448,512

Act1 Relu, elu, selu, linear, softsign, tanh

Act2 elu, selu, softplus, exponential

Optimizer adadelta, adagrad. adamax, adam

Table 2: Search space of model for reflection data in Phase I

configure the model, which means as layer stacks, there is more chance that the model pre-

dicts worse than being more accurate. For this reason, we select networks with 2 hidden

layers as a fixed structure in the subsequent experiment. To verify whether adam is the

best optimizer, we expand the search space of optimizer with other 3 different optimizer

functions. Our algorithm contains 2 phases, of which the first aims to find the best configu-

ration of activation function and optimizer by doing a quick search, and the second aims to

further explore the relationship between hidden unit number and model performance while

fixing the structure of pareto optimal solutions from the last generation of phase I.

We encode network architecture into a chromosome consists of 5 genes which is shown

in Figure 6. Table 2 represents the search space of models for predicting reflection data in

the phase I; unit 1 and unit 2 represent the number of hidden units for the first and the

second hidden layers, respectively. For simplicity, we choose integer to represent activa-

tion function and optimizer types but keep unit number as the true number. For example,

in finding the optimal models for reflection data, a chromosome labeled as 64-128-1-4-4

represents a 2-layer model, whose first hidden layer contains 64 units, and second hidden

layer contains 128 units; the activation function connecting between input layer and first

hidden layer is relu, and the activation function connecting between the first hidden layer

and the second hidden layer is exponential function; the optimizer type is adam.

Figure 6: chromosome-alike solution structure

4.1 Phase I

In this section, we propose a quick search for a candidate set of optimal models by selecting

a small number of values for the unit number. We can stop the searching process after a

fixed generations, a fixed processing time, or improvement of objective functions reach a

threshold [Chapman et al., 2018]. In our experiment, we manually set up a fixed genera-

tions to terminate the search process. We first introduce several terminologies and notation

484

Unit 1 Unit 2 Act1 Act2 Optimizer

Parent 1 32 64 1 2 1

Parent 2 64 128 2 4 4

↓ ↓ ↓ ↓ ↓
Offspring 32 128 1 4 1

Table 3: Cross over by randomly picking up genes from both sides; for offspring, gene

1,3,5 are from parent 1,gene 2,4 are from parent 2

Unit 1 Unit 2 Act1 Act2 Optimizer

Parent 1 64 128 2 4 4

↓ ↓ ↓ ↓ ↓
Offspring 32 128 1 4 1

Table 4: Randomly choose genes to mutate. Gene 1,3,5 are selected to mutate in this

example

used in the genetic algorithm:

• Parent is a set of solutions that will generate the offspring

• Offspring is a set of solutions obtained by cross over and mutation from parent;

• Population is the selected set of solutions that will move to the next generation as the

new parent

• G represents number of generations

• NPg
represents population size of g′s generation, NP1

represents initialized popula-

tion size

• NPFg
represents pareto front size at the beginning of g′s generation

• cg represents minimum number of offspring solutions created in g′s generation

• ag represents minimum number of solutions included in the population

At the first generation, we initialize NP1
random structures from search space, and

train them to obtain the objective functions; then we rank solutions by their front levels and

crowding distances; thereafter, we compute the number of solutions in tier 1 front to obtain

first tier pareto front size at the first generation NPF1

We use a similar method as in [Chapman et al., 2018] with a slight difference to update

population size and offspring size by not specifying the maximum population size and

maximum offspring size. To guarantee fast convergence, each solution from the first tier

pareto front will be selected to do cross over and mutation; Mutation process is also slightly

different for different generation in the first phase. Suppose phase I contains G generations.

Then procedure is formulated as follows.

1. For the first G/2 generations when 1 ≤ g ≤ G/2

(a) Cross over Select two solutions with the probability proportional to the rank

from the whole population, randomly exchange genes from both sides to gen-

erate a new offspring. Repeat this procedure cg/2 times.

485

Unit 1 Unit 2 Act1 Act2 Optimizer

Parent 1 200 100 1 1 4

Parent 2 120 210 1 1 4

↓ ↓ ↓ ↓ ↓
Offspring 160 160 1 1 4

Table 5: In this phase, results of activation functions and optimizer has converged; gene 1

and gene 2 of offspring are obtained by averaging gene 1 and gene 2 from two parents

Unit 1 Unit 2 Act1 Act2 Optimizer

Parent 1 120 210 1 1 4

↓ ↓ ↓ ↓ ↓
Offspring 120 30 1 1 4

Table 6: For the whole population, few chromosome has a value of 210 for the second

gene. then the second gene is most likely to be chosen to mutate

(b) Cross over For each solution from first tier pareto front, select another solu-

tion in the same front with the probability proportional to the rank, randomly

exchange genes from both sides to generate a new offspring. This procedure

takes NPFg
times. Process of (a) and b are illustrated in table 3.

(c) Mutation Select one solution with the probability proportional to their rank

from the whole population. Select a random number of genes to mutate from

the search space randomly. Repeat this procedure cg/2 times.

(d) Mutation For each solution from first tier pareto front, Select a random num-

ber of genes to mutate from the search space randomly. This procedure takes

NPFg
times. Process of (c) and (d) are illustratedd in table 4

(e) Fitness For cg + 2NPFg
offspring solutions, obtain objective functions.

(f) Rank Combine parent and offspring; rank solutions based on front levels and

crowding distances.

(g) Selection Choose the top ag+NPFg+1
solutions as the new population (parent)

to the next generation

(h) Iteration g = g+1

2. For the second G/2 generations when G/2 < g ≤ G

(a) Cross over Select two solutions with the probability proportional to the rank

from the whole population, randomly exchange genes from both sides to gen-

erate a new offspring. Repeat this procedure cg/2 times.

(b) Cross over For each solution from the first tier pareto front, select another so-

lution in the same front with the probability proportional to the rank, randomly

exchange genes from both sides to generate a new offspring. This procedure

takes NPFg
times. Process of (a) and (b) is the same with previous steps,

which can also be illustrated in 3

486

(c) Mutation Select one solution with the probability proportional to their rank

from the whole population. Calculate the frequency of each gene over the

whole population; gene that occurs less is more likely to be chosen to mutate.

Repeat this procedure cg/2 times.

(d) Mutation For each solution from first tier pareto front, calculate the frequency

of each gene over the whole population; gene that occurs less is more likely to

be chosen to mutate. This procedure takes NPFg
times. Process of (c) and (d)

is illustrated in 6, which is different from previous steps

(e) Fitness For cg + 2NPFg
offspring solutions, obtain objective functions.

(f) Rank Combine parents and offspring; rank solutions based on front levels and

crowding distances.

(g) Selection Choose the top ag+NPFg+1
solutions as the new population (parent)

to the next generation

(h) Iteration g = g+1

After G generations, solutions from the first tier pareto front of the last generation will be

put into the Phase II where all optimizer and activation functions are consistent and fixed.

4.2 Phase II

At phase II, we are interested in the relationship between number of hidden units at different

layers and predicted performance. As such, 3 genes that represent activation functions and

optimizer type are removed in that phase I has found out the best combination of activation

functions and optimizer; The cross over and mutation procedure are for the first 2 genes

that represent number of hidden units for the first hidden layer and the second hidden layer.

Recall that in the Phase I, there are only 8 levels for choosing the number of hidden units.

For phase II, we change the search space from 64, 96, 128, · · · , 512 to 30, 40, · · · , 510.

Procedure is formulated as follows:

1. Select pareto optimal set from the last generation of phase I as the parent in the

beginning of phase II

2. For G generations when 1 ≤ g ≤ G

(a) Cross over Select two solutions with the probability proportional to the rank

from the whole population, average two genes from both sides and round to

ten digits to generate a new offspring. Repeat this procedure cg/2 times.

(b) Cross over For each solution from first tier pareto front, select another solution

in the same front with the probability proportional to the rank, average two

genes from both sides and round to ten digits to generate a new offspring. This

procedure takes NPFg
times. Process of (a) and (b) in this phase is illustrated

in table 5, which is different from phase I

(c) Mutation Select one solution with the probability proportional to their rank

from the whole population. Calculate the frequency of each gene over the

whole population; gene that occurs less is more likely to be chosen to mutate.

Repeat this procedure cg/2 times.

487

(d) Mutation For each solution from the first tier pareto front, calculate the fre-

quency of each gene over the whole population; gene that occurs less is more

likely to be chosen to mutate. This procedure takes NPFg
times. Process of

(c) and (d) is illustrated in table 6

(e) Fitness For cg + 2NPFg
offspring solutions, obtain objective functions.

(f) Rank Combine parent and offspring; rank solutions based on front levels and

crowding distances.

(g) Selection Choose the top ag+NPFg+1
solutions as the new population (parent)

to the next generation

(h) Iteration g = g+1

5. Results

At the beginning of the phase I, we initialize 20 random structures from the search space

(NP1
= 20), and set up number of generations G at 20. The minimum number of offspring

solutions cg is 20 so that cross over and mutation procedures are executed for the whole

population 10 times each. The minimum number of population size ag is 10 which means

for each generation, 10 solutions outside the first tier front are selected to be included in the

next generation. For the first generation, among 20 solutions there are 6 solutions which are

from the first tier. After 3 generations, combinations of activation functions and optimizer

are the same for all pareto optimal solutions indicating that the optimal structure in our

experiment is a network with 2 hidden layers using ’Adam’ as optimizer, of which the

activation function connecting between input layer and the first hidden layer is ’relu’ and

activation function connecting between the first hidden layer and the second also the last

hidden layer is ’exponential’. At the last generation of Phase I, there are 20 pareto optimal

solutions representing the final group of optimal structures, of which only one structure

contains more hidden units in the second hidden layer than the first hidden layer.

We then take those 20 optimal structures from the last generation of phase I as the parent

in the first generation of Phase II. Note that in the phase I there are only 64 combinations

of unit 1 and unit 2, after refinement, there are totally 2401(49 ∗ 49) combinations. While

number of optimal structures at the first generation of phase I is 6, at the last generation of

phase II there are 96 optimal structures. Among all structures only 1 of them contains more

hidden units in the second hidden layer than the first layer.

To further select a smaller subset of optimal solutions from pareto front, we impose

pareto approach [Lu et al., 2011, Chapman et al., 2018] to combine 3 objectives functions

into 1 objective function with the form of additive desirability function

DF = w1d1 + w2d2 + w3d3 (15)

where d1, d2, d3 represent desirability values [Derringer and Suich, 1980] for 3 objective

functions, w1, w2, w3 represent the importance of different objectives and Σ3
i=1wi = 1.

We scale each desirability value into [0, 1] using one-sided transformation mentioned in

[Derringer and Suich, 1980], where 0 represents the worst objective value and 1 represents

the best objective value. Due to lack of enough prior information regarding the importance

for each objective, we choose to explore the entire weight space to choose those solutions

which can perform the best under most weight combinations. Figure 7 is the mixture plot

considering different weighting scheme for additive desirability function. Among 96 so-

lutions from the pareto optimal sets, 13 solutions are selected from pareto front which is

488

Figure 7: Mixture plot using entire weight space

shown in Table 4, 11 of them are labeled by their index. Figure 8 is the trade-off plot for

3 objectives, where x-axis represents the index of each solution and y-axis represents the

desirability values. Sets selected from the pareto front are marked as black points in the

plot. From graphs we can see that during the training, difference between training error and

test error is very small, thus minimize the training error can also at the same time minimize

the test error. If we add more weights to the model complexity, then probably the optimal

model will be chosen as model with index 199, whose first hidden layer has 390 units, and

second hidden layer has 30 units.

6. Conclusion and Discussion

In this paper, we show that neural networks are capable of predicting functional data by

applying discretization and dimension reduction first. For those periodic curves, one can

also use basis such as Fourier basis to express curves as a number of coordinates. Screen-

ing design is highly useful before using genetic algorithms since it gives an intuitive of

a group of candidate solutions so that researchers can narrow down the search space and

find optimal solutions in a more efficient way. In finding the promising models, usually

multiple objectives are considered including predicted performance and model complexity.

The NSGA-II algorithm with 2 phases is favorable in dealing with multi-objective prob-

lems in several aspects. First it divides solutions into multiple front levels and rank them

using front levels and crowding distances; this approach can preserve more than the general

genetic method. Second, while the search space still contains an ocean of combinations of

possible parameters, it focuses on finding the most significant factors at first in the first

phase by doing a quick search and takes more time for studying insignificant factors in the

489

Index Unit1 Unit2 Train MSE Test MSE # paras

129 512 420 0.0017 0.0019 428520

1351 250 30 0.0039 0.0040 24280

333 400 190 0.0020 0.0021 173690

331 512 128 0.0021 0.0023 132724

57 400 140 0.0022 0.0023 128640

140 420 200 0.0019 0.0021 186800

1012 400 100 0.0024 0.0026 92600

610 490 70 0.0026 0.0028 72730

30 512 320 0.0018 0.0020 327220

7 450 240 0.0019 0.0020 230990

199 390 30 0.0037 0.0039 29180

51 300 140 0.0022 0.0024 114140

114 480 110 0.0023 0.0024 110810

Table 7: Selected optimal model structures from pareto front

Figure 8: Trade-off plot for 3 objective functions

490

second phase; compared to the method that directly search the entire space, it can tremen-

dously lower down the time and cost. The pareto approach is more acceptable especially

when prior knowledge of importance for different objectives is not explicit. Under those

circumstances, the promising way is to assign the weight to those objectives from entire

space and select solutions from pareto front which perform the best under the majority of

weighting schemes. If researchers know the importance of each objective, then one can

certainly assign different weights to the objectives and turn multi-objective problem into

the single objective problem. Above methods together form a systematic way in finding

the promising model when multiple objectives should be taken into consideration, and can

be generalized to find more structure especially when we aim to study the impact of batch

normalization, dropout rate or learning rate and so on.

7. Acknowlodgement

This work is supported by AFOSR/AOARD grant FA2386-18-1-4104

REFERENCES

[Chapman et al., 2018] Chapman, J. L., Lu, L., and Anderson-Cook, C. M. (2018). Using multiple criteria

optimization and two-stage genetic algorithms to select a population management strategy with optimized

reliability. Complexity, page 18.

[Deb et al., 2002] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective

genetic algorithm: Nsga-ii. Ieee Transactions on Evolutionary Computation, 6(2):182–197.

[Derringer and Suich, 1980] Derringer, G. and Suich, R. (1980). Simultaneous-optimization of several re-

sponse variables. Journal of Quality Technology, 12(4):214–219.

[Grenander, 1950] Grenander, U. (1950). Stochastic processes and statistical inference. Arkiv för Matematik,

1(3):195–277.

[Karhunen, 1946] Karhunen, K. (1946). Zur Spektraltheorie stochastischer Prozesse.

[Lu et al., 2011] Lu, L., Anderson-Cook, C. M., and Robinson, T. J. (2011). Optimization of designed exper-

iments based on multiple criteria utilizing a pareto frontier. Technometrics, 53(4):353–365.

[Ramsay and Silverman, 1997] Ramsay, J. and Silverman, B. (1997). Functional Data Analysis.

[Ramsay, 1982] Ramsay, J. O. (1982). When the data are functions. Psychometrika, 47(4):379–396.

[Rao, 1958] Rao, C. R. (1958). Some statistical methods for comparison of growth curves. Biometrics,

14(1):1–17.

[Ruder, 2016] Ruder, S. (2016). An overview of gradient descent optimization algorithms. ArXiv,

abs/1609.04747.

[Stoer and Bulirsch, 2002] Stoer, J. and Bulirsch, R. (2002). Introduction to numerical analysis. Texts in

applied mathematics. Springer.

[Wang et al., 2016] Wang, J.-L., Chiou, J.-M., and Müller, H.-G. (2016). Functional data analysis. Annual

Review of Statistics and Its Application, 3(1):257–295.

491

	Introduction
	Functional Principal Component Analysis
	Screening design experiment
	NSGA-II algorithm
	Phase I
	Phase II

	Results
	Conclusion and Discussion
	Acknowlodgement

