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Abstract
In order to assess the lifetime characteristics of highly reliable products, the step-stress acceler-

ated degradation test (ADT) is a practical and effective solution, especially when there are very
few items available for testing. During the past decades, the step-stress ADT has been studied by
many researchers based on the assumption that the underlying degradation path follows one of the
well-known but restricted stochastic processes such as Wiener, gamma, and inverse Gaussian. In
practice, however, the degradation path of a product/device may not follow these specific processes,
and the researchers are calling for a more flexible but unified approach toward generalized degrada-
tion models. To address this issue, the exponential dispersion process has been proposed, which is
a generalized stochastic process including Wiener, gamma, and inverse Gaussian processes as spe-
cial cases. In this work, we develop the step-stress ADT of products/devices when the underlying
degradation path follows a class of the exponential dispersion processes. Based on this framework,
the design optimization for the step-stress ADT is formulated under the C-optimality. Under the
constraint that the total experimental cost does not exceed a pre-specified budget, the optimal design
parameters such as measurement frequency and test termination time are determined via minimiz-
ing the approximate variance of the estimated mean time to failure of a product/device under the
normal operating condition.

Key Words: accelerated degradation test, design optimization, exponential dispersion process,
step-stress loading

1. Introduction

Several decision variables should be determined carefully in the planning stage of ADT
in order to conduct ADT efficiently with constrained resources in practice. These design
parameters include the sample size, the stress levels, the sample allocation proportions, the
measurement intervals and frequencies, the stress change time points, the total test dura-
tion, etc. This is an important decision problem for reliability engineers and practitioners
as these decision variables affect both the precision of the parameter estimates and the ex-
perimental costs; see Han (2015, 2019, 2021a, 2021b). During the past decades, the design
optimization of ADT has been investigated extensively based on the assumption that the
underlying degradation path follows one of the stochastic processes mentioned above. For
designing a constant-stress ADT with non-monotonic degradation paths, Pan et al. (2009),
Lim and Yum (2011), Tsai et al. (2014) adopted the Wiener process. Kim et al. (2018)
extended the work by including two stress variables while Chen et al. (2016) proposed a
nonlinear generalized Wiener process. The design optimization of a step-stress ADT based
on the Wiener process was investigated by Liao and Tseng (2006), Hu et al. (2015), Sung
and Yum (2016). Ge et al. (2010) examined the stress optimization while Zhao et al. (2019)
explored the Bayesian designs under various optimality criteria. For planning a constant-
stress ADT with non-decreasing degradation paths, Ling et al. (2015), Zhang et al. (2015),
Duan and Wang (2019) considered the gamma process. Jiang et al. (2019) addressed the
inferential issues in this regard while Tsai et al. (2012) included the random effects for
the parameter heterogeneity and Tsai et al. (2016) studied a two-variable ADT design.
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Tseng et al. (2009) considered planning a step-stress ADT based on the gamma process
while Pan and Sun (2014) studied the problem with multiple performance characteristics.
Wang and Xu (2010) introduced the inverse Gaussian process as an alternative to model
the monotonic degradation path, and Ye et al. (2014) investigated the design optimization
of a constant-stress ADT with this stochastic process. Using this framework, Wang et al.
(2017) proposed the M -optimal design while Wu et al. (2019) studied a multi-objective
design. Wang et al. (2016) developed the optimal step-stress ADT based on the inverse
Gaussian process, and Duan and Wang (2018) approached the problem based on a propor-
tional degradation rate model. The Bayesian perspective was also considered by Peng et al.
(2014), Li et al. (2017).

Based on its strong model flexibility as a generalization of the exponential family, here
we study the design optimization for a general k-level step-stress ADT when the underlying
degradation path follows the TED process. The saddle-point approximation is employed
to produce a tractable distribution of the TED model. With a given degradation threshold
for a soft failure, the cumulative distribution function (CDF) and the probability density
function (PDF) of FPT/FHT at the normal usage stress level are also approximated us-
ing the Birnbaum-Saunders distribution. Subsequently, the mean time to failure (MTTF)
is obtained, and the design optimization for planning a step-stress ADT is then investi-
gated under the constraint that the total experimental cost does not exceed a pre-specified
budget. The decision parameters such as the stress change time points and the inspec-
tion/measurement frequencies are to be tuned under various criteria. Assuming an evenly
spaced inspection/measurement period, a real engineering case study is provided to illus-
trate the methods developed in this study. The numerical results show that the proposed
model performs well, and in general, the power parameter ρ of the TED process plays a
significant role in determining the optimum design points.

The rest of this article is organized as follows. The degradation model for a k-level
step-stress ADT based on the TED process is formulated in Section 2. The newly proposed
parameterization for the stress-response link is discussed, which maintains the additive
and reproductive properties of the TED process even under non-constant stress regimes.
The saddle-point approximation to the distribution of a degradation increment/decrement
is provided as well as the lifetime distributions approximated by the Birnbaum-Saunders
distribution. The cost functions for the constrained designs are defined in Section 3, and
upon deriving the expected Fisher information, the C-optimal design criterion is defined
under the time and cost constraints. Section 4 demonstrates the design efficiency of the
proposed methodology using a case study.

2. Model Formulation

2.1 Exponential Dispersion Process

Let s(t) denote the specified function of (transformed) stress loading for the ADT under
consideration, which is a deterministic function in the natural time scale t ≥ 0. We define
sU to be the normal use-stress level and sH to be the upper bound of stress level below
which the degradation mechanism is unchanging. Then, the stress loading is standardized
as

x(t) = s(t) − sU
sH − sU

, t ≥ 0

such that the range of x(t) is between 0 and 1 inclusive. Now, let 0 ≤ x1 < x2 < ⋯ < xk ≤ 1
to be the ordered k standardized stress levels to be used for the (step-up) step-stress ADT.
Let 0 ≡ τ0 < τ1 < τ2 < ⋯ < τk be the corresponding stress change time points with τk
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denoting the termination time of test. Also, let τi−1 ≡ ti,0 < ti,1 < ⋯ < ti,mi ≡ τi specify
the mi inspection times points at stress level xi for i = 1,2, . . . , k. Then, let Yi(Υ(t))
for t ≥ 0 describe the degradation path of a product or test item placed at stress level xi
over time. Here, Υ(t) is a known time-transformation function, which is non-negative and
monotonically increasing with Υ(0) = 0. It provides additional model flexibility by ac-
celerating or decelerating the natural time scale, and it can be a piece-wise function with
each piece corresponding to a unique stress level. As a default, the natural time scale is
represented when Υ(t) is an identity function (viz., Υ(t) = t). Now, it is understood
that Yi(0) = 0 (i.e., no initial degradation), and non-overlapping increments of Yi(Υ(t))
are stationary and statistically independent according to the properties of the exponential
dispersion process. Also, each increment/decrement ∆Yij = Yi(Υ(ti,j)) − Yi(Υ(ti,j−1))
for j = 1,2, . . . ,mi follows the exponential dispersion distribution with parameters θ and
λi∆t

⋆
ij , where ∆t⋆ij = Υ(ti,j) −Υ(ti,j−1) > 0 is the corresponding increment of the trans-

formed time. The density of ∆Yij is then defined as

f(y; θ, λi∆t
⋆
ij) = c(y;λi∆t

⋆
ij) exp (θy − λi∆t⋆ij κ(θ)) (1)

with suitable functions c(y; ⋅) and κ(⋅). The moment-generating function (MGF) of ∆Yij
is then obtained as

M
∆Yij

(z) = exp (λi∆t⋆ij[κ(z + θ) − κ(θ)])

and its cumulant generating function is

K
∆Yij

(z) = λi∆t⋆ij[κ(z + θ) − κ(θ)]

Based on this, the mean and variance of ∆Yij are obtained as

E[∆Yij] = K ′

∆Yij
(0) = λi∆t⋆ij κ′(θ)

V ar[∆Yij] = K ′′

∆Yij
(0) = λi∆t⋆ij κ′′(θ) > 0

which implies that with λi > 0, κ′′(θ) > 0. That is, κ′(θ) is increasing in θ and so is
E[∆Yij].

Using the MGF, it can be easily shown that ∆Yi = Yi(Υ(τi))−Yi(Υ(τi−1)) = ∑mi
j=1 ∆Yij

also follows the exponential dispersion distribution with parameters θ and λi∆τ⋆i where
∆τ⋆i = Υ(τi) − Υ(τi−1) = ∑mi

j=1 ∆t⋆ij is the transformed duration of stress level xi for
i = 1,2, . . . , k. Since a step-stress ADT implements a non-constant loading of stress,
it requires an additional model to incorporate the effect of changing stresses over the
course of a test. Based on the additive accumulative damage model, the total degrada-

tion observed at time ti,j can be expressed as Y (Υ(ti,j)) =
i−1

∑
i′=1

mi′

∑
j′=1

∆Yi′j′ +
j

∑
j′=1

∆Yij′ =

i−1

∑
i′=1

∆Yi′ + Yi(Υ(ti,j)) − Yi(Υ(τi−1)), and it follows the exponential dispersion distribu-

tion with parameters θ and∑i−1i′=1 λi′∆τ
⋆
i′ +λi(Υ(ti,j)−Υ(τi−1)). Ultimately, Y (Υ(τk)) =

∑ki=1∑mi
j=1 ∆Yij = ∑ki=1 ∆Yi follows the exponential dispersion distribution with param-

eters θ and ∑ki=1 λi∆τ⋆i as the exponential dispersion model is additive and reproductive
with shared θ. Although the exponential dispersion model is closed under convolution, it
not closed under scale transformation in general. To resolve this, an important class of
the exponential dispersion model, known as Tweedie exponential dispersion (TED), was
proposed by recognizing that the exponential dispersion model can be characterized by
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its variance function; see Jørgensen (1987, 1992). For the TED model, the unit variance
function is defined as a power function of the mean. That is κ′′(θ) = [κ′(θ)]ρ where
ρ ∈ (−∞,0] ∪ [1,∞) is a shape parameter. Then, with θL as the hypothetical lower bound
of θ, the function κ(θ) can be derived depending on the value of ρ.

2.2 Saddle-point Approximation

Still the analytic form of (1) is difficult to obtain without the specification of ρ for the
TED model. In turn, the likelihood function cannot be written in an explicit form, and the
MLE of the model parameters cannot be computed. In order to tackle this problem, the
saddle-point approximation method based on the MGF is suggested, which approximates
the PDF of any distribution with a high degree of accuracy; see Lugannani and Rice (1980).
According to Daniels (1954), the saddle-point approximation to f(y; ρ, θ, λi∆t

⋆
ij) can be

obtained as

f(y; ρ, θ, λi∆t
⋆
ij) ≈

1√
2πK ′′

∆Yij
(z∗ij)

exp (K
∆Yij

(z∗ij) − z∗ijy)

where z∗ij is the solution to K ′
∆Yij

(z∗ij) = y. Since K ′
∆Yij

(z) = λi∆t
⋆
ij κ

′(z + θ) and

K ′′
∆Yij

(z) = λi∆t⋆ij κ′′(z + θ), one can derive z∗ij , K∆Yij
(z∗ij) and K ′′

∆Yij
(z∗ij) depending

on the value of ρ. Therefore, a closed-form expression of (1) is deduced as

f(y; ρ,µ0, λi∆t
⋆
ij) =

1√
2π(λi∆t⋆ij)1−ρ

y−ρ/2 exp ( − λi∆t⋆ij dij(y)) (2)

where the unit deviance function is

dij(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y

λi∆t⋆ij
log

⎛
⎝

1

µ0

y

λi∆t⋆ij

⎞
⎠
− y

λi∆t⋆ij
+ µ0 ρ = 1 ;

− log
⎛
⎝

1

µ0

y

λi∆t⋆ij

⎞
⎠
+ 1

µ0

y

λi∆t⋆ij
− 1 ρ = 2 ;

1

(1 − ρ)(2 − ρ)
⎛
⎝

y

λi∆t⋆ij

⎞
⎠

2−ρ

− µ1−ρ0

1 − ρ
y

λi∆t⋆ij
+ µ2−ρ0

2 − ρ ρ ∈ (−∞,0] ∪ (1,2) ∪ (2,∞)

with µ0 = κ′(θ). It can be shown that dij(y) is continuous on ρ ∈ (−∞,0] ∪ [1,∞) by

using the fact that lim
h→0

yh − 1

h
= log y for y > 0.

It should be also noted that although (2) is an approximated distribution, it still yields
the exact distributions for the well-known special cases of ρ = 0,2,3, resulting in the exact
stochastic processes; see Jørgensen (1992). When ρ = 1, it also produces the Poisson pro-
cess upon utilizing Stirling’s approximation. For other values of ρ, Zhou and Xu (2019),
Chen et al. (2020) illustrated numerically that the approximated distribution is pretty much
identical to the one based on Dunn and Smyth (2005, 2008), implemented in the statistical
programming language R. Thus, the TED model can describe more complex and diverse
degradation processes with higher flexibility and wider applicability compared to the con-
ventional stochastic models that have been studied in the literature.

2.3 Stress-Response Link

To speed up the degradation of test items, more severe operating environments or con-
ditions can be imposed by non-normal levels of stress factors such as temperature, pressure,
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humidity, vibration, loading, chemical agents, voltage, cycles, etc. This change can affect
the rate and/or volatility of the degradation evolution. For the reduction of the parameter
dimension, it is considered that at any stress level xi, λi has a log-linear stress-response
relationship, specified as

logλi = β0 + β1xi (3)

where the regression parameters (β0, β1) need to be calibrated. This log-linear link is a very
popular and well-supported model. Besides its simplicity, a number of physics-based life-
stress relationships all validate this log-linear link, which includes (modified) Arrhenius,
temperature-humidity, (inverse) power law, Eyring, and temperature-non-thermal relation-
ships; see Li et al. (2020). Using this stress-response link, the degradation paths can be
extrapolated from the accelerated conditions so that the lifetime information at the normal
operating condition can be deduced analytically.

2.4 Lifetime Distribution

Let Y0(Υ(t)) describe the degradation path of a product under the normal operating
condition (viz., stress level x0) for t ≥ 0. When Y0(Υ(t)) crosses a pre-specified critical
threshold y

D
, the (soft) failure occurs, and the product’s lifetime T0 is defined to be the

time of this event. It is known as the first passage time (FPT) or the first hitting time (FHT)
of a stochastic process, defined as

T0 = inf {t > 0 ∣ Y0(Υ(t)) ≥ y
D
}

Since the TED process includes numerous sub-models whose degradation evolution may
not be monotonic, it is difficult to derive the distribution of T0 in a unified fashion. For
instance, the TED model with ρ = 0 (viz., Wiener process) features a non-monotonic
degradation dynamics whereas the cases of ρ = 2 (viz., gamma process) and ρ = 3 (viz.,
inverse Gaussian process) exhibit a monotone degradation path, resulting in different distri-
butions for the corresponding FPT/FHT. It is well known that the Υ-transformed FPT/FHT
(viz., Υ(T0)) of the Wiener process (viz., ρ = 0) has an inverse Gaussian distribution.
As Y0(Υ(t)) is practically non-decreasing for other values of ρ, Hong and Ye (2017) sug-
gested to approximate the probability distribution of Υ(T0) by the Birnbaum and Saunders
fatigue life distribution extensively used in reliability analyses. Accordingly, the CDF and
PDF of T0 are given as

F
T0

(t; y
D
) = P(Y0(Υ(t)) ≥ y

D
) ≈ 1 −Φ

⎛
⎝
y
D
− µ0λ0Υ(t)√
µρ0λ0Υ(t)

⎞
⎠

= Φ
⎛
⎝

1√
µρ0λ0

⎛
⎝
µ0λ0

√
Υ(t) − y

D√
Υ(t)

⎞
⎠
⎞
⎠
, (4)

and

f
T0

(t; y
D
) ≈ µ0λ0Υ(t) + y

D

2Υ(t)
√
µρ0λ0Υ(t)

Υ′(t)φ
⎛
⎝

1√
µρ0λ0

⎛
⎝
µ0λ0

√
Υ(t) − y

D√
Υ(t)

⎞
⎠
⎞
⎠
, (5)

respectively, where Φ(⋅) and φ(⋅) are the standard normal CDF and PDF while λ0 =
exp(β0) owing to the log-linear relationship, and Υ′(t) = d

dtΥ(t). For Υ(T0), the shape

parameter of its distribution is 1/
√
y
D
µ1−ρ0 whereas y

D
/(λ0µ0) is the scale parameter.
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The median lifetime of T0 is then Υ−1 ( y
D

λ0µ0
), where Υ−1(⋅) is the unique inverse of

Υ(⋅). Since the first two moments of Υ(T0) are approximated to be

µ⋆
T0
∶= E[Υ(T0)] =

1 + 2y
D
µ1−ρ0

2λ0µ
2−ρ
0

and

σ⋆2
T0
∶= V ar[Υ(T0)] =

5 + 4y
D
µ1−ρ0

4(λ0µ2−ρ0 )2
,

the mean and variance of T0 can be approximated to be

E[T0] ≈ Υ−1(µ⋆
T0

) +
σ⋆2

T0

2
Υ−1
(2)(µ

⋆

T0
) (6)

and
V ar[T0] ≈ σ⋆2T0

[Υ−1
(1)(µ

⋆

T0
)]

2

using the delta method, where Υ−1
(r)(t) =

dr

dtr Υ−1(t) for r = 0,1,2, . . ..

3. Cost-constrained ADT Design

In order to conduct an ADT experiment efficiently with constrained resources in prac-
tice, several decision variables such as the sample size, allocation proportions, stress levels
and durations, inspection/measurement periods and frequencies should be determined care-
fully at the design stage. It is because these decision variables affect the experimental cost
as well as the precision of the parameter estimates of interest. There is a body of literature
addressing the model optimization related to certain cost functions. Under the constraint
that the total experimental cost does not exceed a pre-specified budget, a typical decision
problem of interest can be formulated as to optimize (minimize or maximize) an objective
function of choice subject to CT ≤ CB , where CB is the pre-specified budget and CT is the
total cost for running an ADT.

3.1 Cost Function

Assuming no complete loss of functionality of a test item (i.e., hard failure) due to
shocks or any other causes during the test, the total cost of a step-stress ADT with the
sample size n can be expressed in general as

CT = Cset + nCunit +
k

∑
i=1

Cop(xi)∆τi + nm●Cins (7)

where ∆τi = τi − τi−1 =
mi

∑
j=1

∆tij is the duration of stress level xi for i = 1,2, . . . , k while

∆tij = ti,j − ti,j−1 is the inspection/measurement period for j = 1,2, . . . ,mi. Among the
non-negative cost parameters in (7), Cset denotes the fixed cost for setting up an ADT ex-
periment, which includes the costs of facility and testing chambers. Cunit is the cost of each
test unit, including the costs of manufacturing, purchasing and/or installation plus post-test
scrapping, waste management, refurbishing or disintegration. Cop(x) is the operation cost
of conducting an ADT per unit time under the given setup which depends on the applied
stress level x. For the sake of simplicity, it is assumed that the operation costs at the (instan-
taneous) stress change times are negligible. Moreover, although both Cset and Cop(x) may
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increase with the scale of ADT (e.g., A larger n requires a larger facility to accommodate),
here we assume that the changes in Cset and Cop(x) are negligible in a neighborhood of n
under the optimal condition, keeping these costs constant and uniform. This is a reasonable
assumption as the fixed costs accommodate a range of the sample sizes by absorbing the
scaling/sizing effects until it is necessary to require additional resources (i.e., step-wise
cost increments). Lastly, Cins is the cost of each inspection and measurement per test unit.

Based on (7) with the cost parameters, the design space appears to be composed of
both continuous and discrete decision variables, which are ∆τi and mi for i = 1,2, . . . , k.
A closer analysis reveals that the complete design space also includes all the inspection/
measurement periods ∆tij’s in addition to the stress durations ∆τi and the inspection/
measurement frequencies mi. In order to reduce the dimensions of the decision variables
as well as to restrict the design space to a discrete manifold so that the optimal designs can
be located using a grid search algorithm, an evenly spaced inspection/measurement period
∆t can be assumed across the stress levels. That is, ∆t = ∆tij for all i = 1,2, . . . , k and

j = 1,2, . . . ,mi such that ∆τi = mi∆t, or ∆t = τk/m● where m● =
k

∑
i=1

mi > 0 is the total

number of inspection/measurement. Under this setup, (7) can be rewritten as

CT = Cset + nCunit + τk
k

∑
i=1

πiCop(xi) + nm●Cins (8)

where πi = mi/m● is precisely the proportion of the total test duration τk assigned to the
stress level xi such that ∆τi = πiτk. Given the termination time of test τk along with
the sample size n and the budget CB , the design of a step-stress ADT can be completely
specified by the inspection/measurement frequencies (m1,m2, . . . ,mk), which is the k-
tuples of non-negative integers as mi = 0,1,2, . . .. With an alternative parameterization,
the design can be also specified by (π1, π2, . . . , πk−1,m●) under the conditions 0 ≤ πi ≤ 1,
∑ki=1 πi = 1 and m● ∈N.

3.2 C-optimal Design

When planning ADT, it is often the aim of the experiment to estimate the parameters
of interest with maximum precision and minimum dispersion possible. For a step-stress
ADT, such a parameter of interest is E[T0], the mean lifetime of a test unit at the normal
usage stress level x0 as provided in (6). For convenience, assuming the identity function

Υ(t) = t for the time-transformation, E[T0] = µ⋆T0
= 1 + 2y

D
µ1−ρ0

2λ0µ
2−ρ
0

with λ0 = eβ0 since

x0 ≡ 0. Using the delta method with the inverse of the expected Fisher information matrix
I−1
E

(ϑ), the objective function of interest in this case is defined as

ϕ
C
(⋅) = n AVar(µ̂⋆

T0
) = n ∇µ⋆⊺

T0
I−1
E

(ϑ) ∇µ⋆
T0

= n2µ2−ρ0

∣I
E
(β0, β1)∣

k

∑
i=1

⎡⎢⎢⎢⎢⎣
xiµ

⋆

T0
+ (1 − ρ)(xi − x̄m)

logµ0

⎛
⎝
∂µ⋆

T0

∂ρ

⎞
⎠

⎤⎥⎥⎥⎥⎦

2

λi∆τi

− 4(1 − ρ)
m● logµ0

⎛
⎝
∂µ⋆

T0

∂ρ

⎞
⎠

2

(9)

where AVar stands for the asymptotic or approximate variance, and µ̂⋆
T0

= 1 + 2y
D
µ̂1−ρ̂0

2λ̂0µ̂
2−ρ̂
0

is

the MLE of µ⋆
T0

according to the invariance property of the MLE. The gradient of µ⋆
T0

as a
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function of the model parameters is given as

∇µ⋆
T0

=
⎛
⎝
∂µ⋆

T0

∂ρ
,
∂µ⋆

T0

∂µ0
,
∂µ⋆

T0

∂β0
,
∂µ⋆

T0

∂β1

⎞
⎠

⊺

= (µ⋆
T0

logµ0 −
y
D

µ0λ0
logµ0,−

2 − ρ
µ0

µ⋆
T0
+ (1 − ρ)y

D

µ20λ0
, −µ⋆

T0
, 0)

⊺

The C-optimal design minimizes (9) for the maximal precision of µ̂⋆
T0

.

4. Illustrative Case Study

Here, the proposed ADT planning method is illustrated with the carbon-film-resistor
data from Meeker and Escobar (1998). The resistance value of the carbon-film resistors
increases over time, and changes in resistance will cause the reduction of the performance
of the product or even system failures. The product lifetime is defined as the time when the
percent increase in resistance (QC) hits a critical threshold y

D
= 5 under the normal op-

erating temperature 50○C. With a specified budget CB = $1500 (ignoring the setup cost),
it is desired to construct the optimal simple step-stress ADT (viz., k = 2) with the sample
size of n = 9. The Arrhenius model is assumed for the stress-response relationship with
the test temperatures at 83○C and 133○C. After standardization, these are x1 = 0.45 and
x2 = 1.00. After fitting the carbon-film resistors ADT data from a pilot study, the parame-
ters are set to be (ρ,µ0, β0, β1) = (2.00,0.06,−8.29,2.54) along with the cost parameters
Cunit = $53/unit, Cop(x1) = Cop(x2) = $0.48/hour, and Cins = $1.30/measurement. Un-
der the C-optimality, the optimal step-stress ADT design was determined with the linear
time transformation Υ(t) = t. The optimal design required the inspection/measurement
period at ∆t☆ = 32 with the measurement frequencies of m☆

1 = 16 and m☆
2 = 22 for each

stress level, resulting in the total test duration of τ☆2 = 1216 hours. As the parameter esti-
mates could depart from the true parameter values in practice, the sensitivity of the optimal
designs on the estimated parameter values was also investigated via Monte Carlo simula-
tions. The optimal designs were found quite stable and robust for a moderate departure
from the assumed parameter values.
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