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Abstract

Bayesian factor models represent a very popular tool in the analysis of high-dimensional datasets.
The cumbersome task of determining the number of factors has in recent years been addressed in
literature by employing nonparametric models for the automatic inference on the number of factors.
However, factors are usually assumed to be normally distributed. In reality, this assumption may
prove to be too restrictive. Here, the factor model with automatic inference on the number of factors
is extended to the non-Gaussian case. We relax the assumption of normality by employing a Laplace
prior on factors. Two types of shrinkage priors are considered: the multiplicative gamma process
prior and the cumulative shrinkage process, based on a sequence of spike-and-slab-distributions.
An estimator of the covariance matrix, used to bound the prior on the idiosyncratic variances away
from zero, is adapted to the non-Gaussian case. The models are tested both on simulated data sets
as well as on a Eurozone countries inflation rates data set.

Key Words: Factor analysis, multiplicative gamma process, Laplace prior, non-Gaussian factors,
adaptive Gibbs sampling, shrinkage, spike-and-slab prior

1. Introduction

In the recent two decades there has been considerable research done in the area of
Bayesian factor analysis. However, inference on the true number of factors has for a long
time remained a challenging task. The most common approach in the literature is to use
various criteria to define the number of factors before running the MCMC algorithm. For
example, Bai and Ng (2002) use information criteria to compare models with different
factors’ cardinalities, Kapetanios (2010) does model comparison using test statistics while
Polasek (1997) and Lopes and West (2004) rely on marginal likelihood estimation to deter-
mine the true number of factors in the model. As a different approach, Frühwirth-Schnatter
and Lopes (2018) suggest a one-sweep algorithm to estimate the true number of factors
from overfitting factor models.

Another strand of literature covers models, which do not perform any preliminary in-
ference on the number of factors but instead allow the number of factors to be potentially
infinite. The dimension reduction is then achieved by assuming a nonparametric prior on
factor loadings which penalises the increase in number of factors. Bhattacharya and Dun-
son (2011) introduced the multiplicative gamma process (MGP) prior for the increasing
penalisation of the loading matrix columns, which has been widely applied, see, e.g., Mur-
phy et al. (2020), among many others. Knowles and Ghahramani (2011) and Rockova and
George (2016) use the Indian Buffet Process (IBP) to enforce sparsity on factor loadings.
Recently, Legramanti et al. (2020) suggest to employ a sequence of spike-and-slab priors
that introduces cumulative shrinkage on the growing number of loading matrix columns.

A common assumption in factor analysis is that the factors are normally distributed. In
reality, this assumption does not always hold. There is a growing econometric literature
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on models dealing with non-Gaussian variables (see, for example, Chiu et al. (2016) and
Piatek and Papaspiliopoulos (2018)). However, to our knowledge, infinite factor models
have so far been mostly applied to models with normal factors. In this paper, we relax
the assumption of normality by assigning a Laplace prior to common factors in an infinite
factor model.

For the inference on factors’ cardinality, we consider two approaches. First, we follow
Bhattacharya and Dunson (2011) and assume an MGP prior for our factor loading matrix.
Second, we employ the cumulative shrinkage prior (CUSP), introduced in Legramanti et
al. (2020) as a more efficient alternative to the MGP prior. We perform comparative analysis
of the two approaches both on a simulated dataset and on Eurozone inflation data.

2. Bayesian factor model

2.1 Basic factor model with latent factors

A basic factor model with latent factors is usually written in the form

yt = Λft + εt,

where each of the p variables yt = (y1t, . . . , ypt)
′ in a random sample y = (yt, t = 1, . . . , T )

of T observations are related to an k-dimensional vector of latent random variables (com-
mon factors) ft = (f1t, . . . , fkt)

′. Λ is the unknown p×k factor loading matrix with factor
loadings Λij , k represents the number of factors and it is assumed that k � p.

Usually the factors are assumed to be orthogonal and normally distributed:

ft ∼ Nk(0, Ik). (1)

Furthermore, ft and fs assumed pairwise independent for t 6= s. The idiosyncratic errors
are assumed normal and also pairwise independent:

εt ∼ Np(0,Σ), Σ = diag(σ21, . . . , σ
2
p). (2)

From (2) it is evident that the p elements of yt are independent conditional on ft, so all
dependence in the model is generated through common factors. It follows from (1) and (2)
that the observations yt also arise from a multivariate normal distribution,

yt ∼ Np(0,Ω), Ω = ΛΛ′ + Σ.

2.2 Relaxing the assumption of Gaussian factors

While the assumption that common factors follow a Gaussian distribution is valid for
many applications, there is a number of cases where it can be questioned. In the recent
literature on factor models, Piatek and Papaspiliopoulos (2018), for example, use a data set
from psychology with a clear evidence of non-Gaussian factors. In economics, time paths
of interest rates, stock market prices and returns as well as inflation rates often exhibit non-
Gaussian features. Factor models have already proved useful in explaining dependencies
and movements of inflation rates in various countries. Neely and Rapach (2011), among
others, studied 64 countries’ inflation rates in a Bayesian dynamic latent factor model and
found that world and regional factors explain a large proportion of price change in individ-
ual countries.

In this paper, we analyze a data set on inflation rates in 19 Eurozone countries. The
dataset contains monthly inflation rates from February 1997 to October 2019, in total 273
observations. Following standard practice, the time series for each country were de-meaned
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Figure 1: Eurozone inflation data set. QQ plot comparing the observed inflation rates to a normal
distribution.

and standardised. The QQ plot in Figure 1 shows that for a majority of countries the
inflation rates do not look like they are normally distributed. In addition, we performed
the Shapiro-Wilk test of normality to test the validity of the assumption that the dataset is
normally distributed. Table 1 shows that for at least 14 countries the p-value of the Shapiro-
Wilk test is below any reasonable threshold, which allows us to reject the null hypothesis
of normality.

2.3 Sparse factor models with Laplace prior

A natural alternative to a Gaussian prior on factors, which also accounts for some level
of sparsity, is a Laplace distribution L with a zero mean and a scale hyperparameter cj :

fjt ∼ L(0, cj), j = 1, . . . , k.

With the assumption that the factors are independent, the joint density of the factors fac-
torises into individual factor densities:

p(ft) =

k∏
j=1

1

2 cj
exp−|fjt|

cj
.

The variance of a Laplace distributed random variable is 2c2j , so to obtain factors with unit
variance we need to choose cj = 1/

√
2 for all factors.
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Table 1: Eurozone inflation data set. Shapiro-Wilk test of normality.

Country Shapiro-Wilk Country Shapiro-Wilk
name p-value name p-value
France 0.05450 Ireland 0.02031
Germany 0.47867 Cyprus 0.07933
Italy 0.00023 Slovakia 0.00000
Spain 0.00000 Slovenia 0.00000
Netherlands 0.00000 Estonia 0.00000
Greece 0.00001 Lithuania 0.00000
Finland 0.00000 Latvia 0.00000
Portugal 0.00515 Luxembourg 0.30377
Austria 0.00087 Malta 0.00692
Belgium 0.00024

A Laplace distribution can be presented as an infinite mixture of normal distributions,
given as a marginal distribution of the bivariate random variable (fjt, wjt), where

fjt|wjt ∼ N(0, wjt), wjt ∼ Exp(1/2c2j ). (3)

This representation will be useful in Section 3.3 and 4.2, were we develop adaptive Gibbs
samplers for factor models with Laplace priors. The prior variance wjt is latent and can be
recovered from Bayes theorem given fjt:

p(wjt|fjt) ∝ p(fjt|wjt) p(wjt) ∝ w−1/2jt exp

(
−

f2jt
2wjt

)
exp

(
−wjt

2 c2j

)

Replacing wjt with w̃jt = 1/wjt, we obtain:

p(w̃jt|fjt) ∝ w̃−3/2jt exp

(
−
f2jtw̃jt

2

)
exp

(
− 1

2 c2j w̃jt

)
(4)

As a result, w̃jt given fjt follows an inverse Gaussian distribution, w̃jt|fjt ∼ InvGau( 1
|fjt| cj ,

1
c2j

).

2.4 Identification issues in factor models

In general, the decomposition Ω = ΛΛ′+ Σ is not unique. Firstly, this decomposition
will also hold for any semi-orthogonal matrix P (PP ′ = I) and Λ1 = ΛP , gt = P ′ft,
in which case the two models

yt = Λft + εt and yt = Λ1gt + εt

are observationally equivalent. This problem is known in factor analysis as rotational in-
variance and additional constraints are required to uniquely identify the model parameters.
For Gaussian factors this problem is usually solved by assuming the loading matrix be
positive lower triangular, see e.g. Lopes and West (2004) and Frühwirth-Schnatter and
Lopes (2018), with the choice of factors’ order being an important modeling decision.

One of the advantages of models with non-Gaussian factors is that the factor loading
matrix is uniquely identified, usually up to signs and column permutations. In particular
for non-Gaussian factors with distributions that are symmetric around zero, such trivial
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rotations P are the only ones, where ft and gt = P ′ft can have the same distribution.
This means that rotational invariance is not an issue for non-Gaussian factor models.

Another issue is how to ensure that in the following representation

Ω = ΛΛ′ + Σ, Ω = ΘΘ′ + Σ0,

Σ = Σ0 and, hence, the cross-covariance matrix ΛΛ′ = ΘΘ′ is uniquely identified. This
is the problem of variance identification and it can easily fail if the number of factors is
too high. The row deletion property of Anderson and Rubin (1956) states that whenever an
arbitrary row is deleted from Λ, two disjoint submatrices of rank k remain. This imposes an
upper bound on the number of factors, namely k ≤ p−1

2 , and raises the interesting question,
whether variance identification can actually hold in an infinite factor model. The effective
number of factors in such models is not, in fact, infinity, but instead either a conservatively
chosen upper bound, H , as in Legramanti et al. (2020), or the number of active factors k∗

estimated during MCMC sampling as in Bhattacharya and Dunson (2011). Nevertheless,
there is no formal means to guarantee that the condition of Anderson and Rubin is going
to hold. The value of k∗ often varies from iteration to iteration and it theoretically can
remain for some time at a rather high level even after the burn-in period, thus influencing
the posterior computations of parameters. In sparse factor models, which is the original
application of the MGP shrinkage prior, the identification problem becomes even more
complicated as additional restrictions on the non-zero elements of the loading matrix are
needed to ensure variance identification (see Frühwirth-Schnatter and Lopes (2018)).

However, in many real life applications the true number of factors satisfies k � p and
in many cases the condition k ≤ p−1

2 will not be violated after some sufficient burn-in
period, thus allowing variance identification.

In addition, identification of factor loadings is not necessary for some applications,
such as forecasting, variable selection and estimation of the marginal covariance matrix.
For these applications infinite factor models can be a useful tool which results in improved
posterior estimations. Another possibility is to use such models for a preliminary inference
on the number of factors before running a different model for estimating factor loadings.

3. Infinite Factor Models with Multiplicative Gamma Process Prior

3.1 Prior assumptions

3.1.1 MGP shrinkage prior on factor loadings

The MGP prior on the factor loadings introduced by Bhattacharya and Dunson (2011)
has the following form:

λih|φih, τh ∼ N(0, φ−1ih τ
−1
h ), φih ∼ G(ν1/2, ν2/2), τh =

h∏
l=1

δl,

δ1 ∼ G(a1, b1), δl ∼ G(a2, b2), l ≥ 2,

where δl (l = 1, . . . ,∞) are independent, τh is a global shrinkage parameter for the h-th
column, φih are local shrinkage parameters for the elements of the h-th column.

Bhattacharya and Dunson (2011) state that if a2 > 1 then τhs are stochastically in-
creasing with increasing h. Durante (2017) argues that this is not sufficient to guarantee
the increasing shrinkage property in a general case. Instead, a2 > b2 + 1 and a2 > a1
are necessary and sufficient conditions for the increasing penalization of a high number of
factors as long as a1 > 0 and a2 > 0 and the values of a1 are not excessively high. We
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follow Bhattacharya and Dunson (2011) and set b1 and b2 at 1 and let the data define the
values of a1 and a2 in a Metropolis-within-Gibbs step imposing a hyperprior of G(2, 1) on
both shape parameters.

3.1.2 Prior on idiosyncratic variances

Bhattacharya and Dunson (2011) assume an inverse Gamma prior σ2i ∼ G−1(c0, C0)
on the variance of the error term with the same shape and rate hyperparameter c0 andC0 for
all p variables yit and set the hyperparameters at c0 = 1 and C0 = 0.25. In our simulations
on synthetic data this approach worked well in cases when p � T , however, with p com-
parable or bigger than T the posterior distribution of some of the variances happens to be
multimodal, with one mode lying at zero (a Bayesian analogue of the Heywood problem).

In view of this problem, we follow Frühwirth-Schnatter and Lopes (2018) in setting
the shape and rate hyperparameters in such a way as to bound the prior away from 0. This
yields the following prior:

σ2i ∼ G−1(c0, (c0 − 1)/Ω̂−1
i,i),

where (̂Ω−1) is an estimator of the precision matrix of the data and c0 is a hyperparam-
eter which is set to 2.5. As the sample precision matrix is unstable when p is not small
compared to T and not available in case when p ≥ T , we follow Frühwirth-Schnatter and
Lopes (2018) and use the estimator (̂Ω−1) = (b0+T/2)(b0S0+0.5

∑T
t=1 yty

T
t )−1, where

b0 is a hyperparameter. This approach has also been applied in Murphy et al. (2020) in the
context of infinite factor models.

For standardised data, S0 can be replaced by the identity matrix Ip. For the case of
unstandardised data, we follow Murphy et al. (2020) and Wang et al. (2015) who suggest
to first use the estimator for the inverse correlation matrix and then scale it by the diagonal
entries of the sample covariance matrix, thus yielding the following estimator:

(̂Ω−1) = diag(S)−
1
2

(
(b0 + T/2)(b0R0 + 0.5

T∑
t=1

yty
T
t )−1

)
diag(S)−

1
2 ,

whereR0 is the correlation matrix of the data and S is the sample covariance matrix.
This method works well, when the distribution of the original data set is approximately

normal. When the data exhibits non-Gaussian features, like in the case when the factors
are simulated from a Laplace distribution or the inflation rates data, the above mentioned
method cannot be applied. A common practice with datasets of a moderate sample size,
exhibiting a bell shape when plotted on a graph, and with unknown variance, is to use the
Student’s t-distribution, which puts a lower probability to the center and a higher probability
to the tails. Following this practice, we suggest to use the multivariate t-distribution to
derive an estimator of the inverse of the marginal covariance matrix:

yt ∼ tν(µ,Ω),

where the degrees of freedom ν is equal to the number of observations minus one.
To obtain an estimator of Ω, we sample from the posterior distribution of Ω given the

data. To this aim, we use a Gibbs sampling algorithm based on the representation of the
tν(µ,Ω) distribution as an infinite scale mixture of multivariate normal distribution, with
the scaling parameter having a Gamma distribution:

yt ∼ Np(µ,Ω/ηt), ηt ∼ G(ν/2, ν/2),
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where µ = 0 for de-meaned data. Under the Wishart prior Ω−1 ∼ Wp(b0,B0), the
precision matrix and the scaling parameters η = (η1, . . . , ηT ) can be sampled in two steps:

Step 1. Sampling the precision matrix from

Ω−1|η,y ∼ Wp

(
b0 + T/2,B0 + 0.5

T∑
t=1

ηtyty
T
t

)
.

Step 2. Sampling the scaling parameters ηt independently for each observation yt from

ηt|Ω, ν,y ∼ G ((ν + p)/2, (ν + dM (yt; Ω))/2) ,

where dM (yt; Σ) = yTt Ω−1yt is the Mahalanobis distance of yt from the origin. Hence,
observations with a small Mahalanobis distance obtain higher weights than observations
with a large Mahalanobis distance.

Like for the Gaussian case, for unstandardised data an estimator based on the correla-
tion matrix can be used:

(̂Ω−1) = diag(S)−
1
2

(
(b0 + T/2)(b0R0 + 0.5

T∑
t=1

η̂tyty
T
t )−1

)
diag(S)−

1
2 ,

where η̂t is the average of the MCMC draws. Using this estimator to replace the inverse
covariance matrix in the prior for idiosyncratic variances significantly decreases the occur-
rence of multimodality in the posterior of the error term components.

3.2 Adaptive inference on number of factors

Although the number of factors theoretically are allowed to be infinitely large, in reality
one should choose a suitable level of truncation k∗, which should be large enough not to
miss any important factors, but not overly conservative to waste computational effort.

The sampler is initiated with a conservative guess k0, which is assumed to be substan-
tially larger than the supposed actual number of factors. At each iteration the posterior
samples of the loading matrix contain information about the effective number of factors.
Let m(g) be the number of columns of the loading matrix having all elements in a pre-
specified small neighbourhood of zero. Then k∗(g) = k∗(g−1) − m(g) is defined to be
the effective number of factors at iteration g. To keep balance between reducing dimen-
sionality and exploring the whole space of possible factors, k∗ is adapted with probability
p(g) = exp(α0 + α1g) with the parameters chosen so that the adaptation occurs more
often at the beginning of the chain and decreases in frequency exponentially fast (the adap-
tations are designed to satisfy the diminishing adaptation condition of Roberts and Rosen-
thal (2007), which is necessary for convergence). When the adaptation occurs, the redun-
dant factors are discarded and the corresponding columns are deleted from the loading
matrix. If the number of such columns drops to zero, a factor is added, and the parameters
are sampled from the corresponding prior distributions. Adaptation is made to occur after a
burn-in period, in order to ensure that the true posterior distribution is being sampled from
before truncating the loading matrices.

3.3 Adaptive Gibbs sampler

The adaptive Gibbs sampler of Bhattacharya and Dunson (2011) is easily adjusted to a
factor model, where the common factors follow a Laplace distribution. These modifications
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exploit the scale mixture representation (3) of the Laplace distribution and the conditional
posterior of the latent scales given in (4).

Step 1. Sample λi for i in (1, . . . , p) from

λi|− ∼ Nk∗
(
(Ψ−1i + σ−2i FF

T )−1Fσ−2i y
T
i , (Ψ

−1
i + σ−2i FF

T )−1
)

where Ψ−1i = diag(φi1τ1, . . . , φik∗τk∗).

Step 2. Sample σ−2i for i in (1, . . . , p) from

σ−2i |− ∼ G

(
c0i +

T

2
, C0i +

1

2

T∑
t=1

(yit −Λ′ift)
2

)
.

Step 3. Sample ft for t in (1, . . . , T ) from

ft|− ∼ Nk∗
(
(Φk∗ + ΛT

k∗Σ
−1Λk∗)

−1ΛT
k∗Σ

−1yt, (Φk∗ + ΛT
k∗Σ

−1Λk∗)
−1)

where Σ = diag(σ21, . . . , σ
2
p) and Φk∗ = diag(w̃1t, . . . , w̃k∗t) in case of a Laplace prior

on factors.
Sample w̃ht for t in (1, . . . , T ) and h in (1, . . . , k∗) from

p(w̃ht|fht) ∼ InvGau

(
1

|fht| ch
,

1

c2h

)
.

In case of a Gaussian prior on factors as in Bhattacharya and Dunson (2011), Φk∗ is equal
to the identity matrix and sampling w̃ht is skipped.

Step 4. Sample φih for i in (1, . . . , n) and h in (1, . . . , k∗) from

φih|− ∼ G
(
ν1 + 1

2
,
ν2 + τhλ

2
ih

2

)
.

Step 5. Sample δ1 from

δ1|− ∼ G

(
2a1 + pk∗

2
, 1 +

1

2

k∗∑
l=1

τ
(1)
l

p∑
i=1

φilλ
2
il

)
.

Sample δh for h ≥ 2 from

δh|− ∼ G

(
2a2 + p(k∗ − h+ 1)

2
, 1 +

1

2

k∗∑
l=h

τ
(h)
l

p∑
i=1

φilλ
2
il

)

where τ (h)l =
∏l
t=1,t6=h δt for h in (1, . . . , k∗).

Step 6. As the conditional posterior densities of a1|δ1 and a2|δ2, . . . , δk∗ , given by

a1|δ1 ∼
a1

Γ(a1)
δa1−11 e−(a1+δ1), a2|δ2, . . . , δk∗ ∼ Γ(a2)

−(k∗−1)a2

(
k∗∏
l=2

δl

)a2−1
exp

[
−

(
a2 +

k∗∑
l=2

δl

)]
,

are not straightforward to sample from, we use a simple symmetric random walk Metropolis-
within-Gibbs step with ap1 ∼ N(a1, s

2
1) and ap2 ∼ N(a2, s

2
2) serving as proposal densities.

The acceptance probabilities are:

ρa1 =
Γ(a1)

Γ(ap1)

ap1
a1
δ
ap1−a1
1 ea1−a

p
1 ,

ρa2 =

(
Γ(a2)

Γ(ap2)

)−(k∗−1) ap2
a2

(
k∗∏
l=2

δl

)ap2−a2
ea2−a

p
2 .
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Step 7. At each iteration we generate a random number ug from U(0, 1). If ug ≤ p(g) we
then check if some columns of the loading matrix are within the pre-specified neighbour-
hood of 0, and if this is so, we discard the redundant columns. In the case when the number
of such columns is zero, we generate an additional column sampling parameters from the
prior distributions.

4. Infinite Factor Models with Cumulative Shrinkage Process Prior

One of the drawbacks of the MGP prior model of Bhattacharya and Dunson (2011) is
that the hyperparameters a1 and a2 control both the shrinkage rate and the prior for loadings
on active factors, which creates a trade off between the need to maintain rather diffuse priors
for the active terms and shrinkage for the redundant ones. This leads to a problem when the
efficient shrinkage conditions as in Durante (2017) imposed on hyperparameters provide
too strong shrinkage in bigger datasets (see Section 5 for more details). In addition, deletion
of redundant columns depends on yet another parameter, which sets a threshold for the
decision to discard the columns, and which has a substantial influence on the performance
of the model. With this in mind, Legramanti et al. (2020) proposed a cumulative shrinkage
process (CUSP) prior as an alternative, which largely corrects these drawbacks.

4.1 CUSP prior on factor loadings

The CUSP prior on the factor loadings induces shrinkage via a sequence of spike-and
slab distributions that assign growing mass to the spike as the model complexity grows.
The shrinkage prior on the factor loadings formalises as follows:

λih | θh ∼ N(0, θh), where i = 1, . . . , p and h = 1, . . . ,∞

θh |πh ∼ (1− πh)G−1(aθ, bθ) + πhδθ∞ , πh =
h∑
l=1

wl, wl = vl

l−1∏
m=1

(1− vm)

(5)

where πh ∈ (0, 1) and the vh are generated independently from B(1, α), following the
usual stick-breaking representation introduced in Sethuraman (1994). By integrating out
θh, each loading λih has the marginal prior1

λih ∼ (1− πh)t2aθ(0, bθ/aθ) + πhN(0, θ∞)

where t2aθ(0, bθ/aθ) denotes the Student-t distribution with 2aθ degrees of freedom, loca-
tion 0 and scale bθ/aθ. To facilitate effective shrinkage of redundant factors, θ∞ should
be set close to 0. The authors recommend a small value θ∞ > 0, following Ishwaran
and Rao (2005), as it induces a continuous shrinkage prior on every factor loading, thus
improving mixing and identification of inactive factors. The slab parameters aθ and bθ
should be specified so as to induce a moderately diffuse prior on active loadings. For the
implementation, the potentially infinite sequence is truncated at some conservative level H.

Prior for idiosyncratic variances remains the same as in the case of the MGP prior
for factor loadings, namely σ2i ∼ G−1(c0, C0). We apply the same procedure to find the

1In the equation (5) the inverse gamma distribution for the slab is chosen for the reasons of conjugacy. In
principle, this expression provides a general prior, where a sufficiently diffuse continuous distribution needs to
be chosen for the slab.
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estimator of the precision matrix to bound the prior away from 0 as in Section 3.1.2. For
the factors, we assume either Laplace prior, as in Section 2.3, or a Gaussian prior ft ∼
NH(0, IH).

4.2 Adaptive Gibbs sampler

The adaptive Gibbs sampler of Legramanti et al. (2020) is easily adjusted to a factor
model, where the common factors follow a Laplace distribution. As before, these mod-
ifications exploit the scale mixture representation (3) of the Laplace distribution and the
conditional posterior of the latent scales given in (4).

Step 1. Sample λi for i in (1, . . . , p) from

λi|− ∼ NH

(
(Ψ−1 + σ−2i FF

T )−1Fσ−2i y
T
i , (Ψ

−1 + σ−2i FF
T )−1

)
where Ψ = diag(θ1, . . . , θH).

Step 2. Sample σ−2i for i in (1, . . . , p) from

σ−2i |− ∼ G

(
c0 +

T

2
, C0 +

1

2

T∑
t=1

(yit −Λ′ift)
2

)
.

Step 3. Sample ft for t in (1, . . . , T ) from

ft|− ∼ NH

(
(ΦH + ΛT

HΣ−1ΛH)−1ΛT
HΣ−1yt, (ΦH + ΛT

HΣ−1ΛH)−1
)

where Σ = diag(σ21, . . . , σ
2
p) and ΦH = diag(w̃1t, . . . , w̃Ht) in case of a Laplace prior on

factors.
Sample w̃ht for t in (1, . . . , T ) and h in (1, . . . ,H) from

p(w̃ht|fht) ∼ InvGau

(
1

|fht| ch
,

1

c2h

)
.

In case of a Gaussian prior on the factors as in Legramanti et al. (2020), ΦH is equal to the
identity matrix and sampling of the w̃hts is skipped.

Step 4. Sampling θh requires a data augmentation step. Thus, (5) can be obtained by
marginalising out independent latent indicators zh, with probabilities p(zh = l |wl) = wl
for l = 1, . . . ,H , from the equation

θh | zh ∼ {1− 1(zh ≤ h)}G−1(aθ, bθ) + 1(zh ≤ h)δθ∞ .

Sample zh for h in (1, . . . ,H) from a categorical distribution with probabilities as below

p(zh = l | −) ∼

{
wlNp(λh; 0, θ∞Ip), l = 1, . . . , h,

wlt2aθ (λh; 0, (bθ/aθ)Ip) , l = h+ 1, . . . ,H.

Step 5. Sample vl for l in (1, . . . ,H − 1) from

vl | − ∼ B

(
1 +

H∑
h=1

1(zh = l), α+

H∑
h=1

1(zh > l)

)
.

Set vH = 1 and update w1, . . . , wH from wl = vl
∏l−1
m=1(1− vm).

Step 6. For h in (1, . . . ,H):
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if zh ≤ h set θh = θ∞, otherwise sample θh from G−1
(
aθ + 1

2p, bθ + 1
2

∑p
j=1 λ

2
ih

)
.

Step 7. Adaptation of the number of factors H . With the factor model truncated at H and
the Hth factor modelled by a spike at θ∞ by construction, this leaves at most H − 1 active
factors. As there cannot be more than p factors in the model, this imposes a conservative
upper limit of p+ 1 upon H .

After some burn-in period g̃ required for the stabilization of the chain (usually set
around 10% of the number of iterations), the truncation indexH(g) and the number of active
factors H∗(g) =

∑H(g)

h=1 1(z
(g)
h > h) are adapted with probability p(g) = exp(α0 + α1g)2

as follows:

– if H∗(g) < H(g−1) − 1:

set H(g) = H∗(g) + 1, drop inactive columns in Λ(g) along with the associated
parameters in F (g), θ(g) and w(g), and add the final component sampled from
the spike to Λ(g), together with the associated parameters in F (g), θ(g) and
w(g) sampled from the corresponding priors

– otherwise:

set H(g) = H(g−1) + 1 and add the final column sampled from the spike to
Λ(g), together with the associated parameters in F (g), θ(g) and w(g) sampled
from the corresponding priors.

5. Simulation results

5.1 Model with the MGP prior on factor loadings and its parameter dependence

5.1.1 Gaussian prior on factors

At first, simulations were made for a model with Gaussian factors to provide some
benchmark. Following Bhattacharya and Dunson (2011), a synthetic data set was simulated
with T = 100 and idiosyncratic variances sampled from G−1(1, 0.25). The number of non-
zero elements in each column of Λ were chosen between 2k and k+1, with zeros allocated
randomly and non-zero elements sampled independently from N(0, 9). We generated yt
from Np(0,Ω), where Ω = ΛΛ′ + Σ.

We chose six (p, k) combinations, namely (6, 2), (10, 3), (30, 5), (50, 8), (100, 15)
and (150, 25) with a conservative initial upper bound of k0 = min(p, 5 log(p)), and
k0 = 10 log(p) for the case when p > T . For each pair we considered between 5 and
10 simulation replicates. The simulation was run for 25 000 iterations with a burn-in of
10 000.3 Thinning, such as collecting every 5th sample, provided only very slight im-
provement, if at all, and has not significantly changed the results. After some tuning, we
settled at the following tuning parameters: ν1 and ν2 both equal 3, s1 = 1 for the scale
the of the Metropolis-Hastings step for a1 and the scale s2 between 2 and 4 for a2. For
the case p < T , α0 and α1 in the adaptation probability expression were set as −0.5 and
−3 × (10)−4, and the threshold for monitoring the columns to discard as 0.15 with the
proportion of elements required to be below the threshold at 80 % of p. For the case p ≥ T ,
α0 and α1 in the adaptation probability expression were set as −1 and −5 × (10)−4, and
the threshold for monitoring the columns to discard as 0.0001.4

2The coefficients α0 and α1 are chosen according to the criteria described in Section 3.2
3For the case p > T we ran the Gibbs sampler for 30 000 iterations due to slower convergence.
4Setting the threshold for monitoring the redundant columns at 0.0001 in case p < T leads to a significant
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Table 2: Simulated data with T = 100. Performance of the adaptive Gibbs sampler based on the
MGP prior for various combinations of p and k (Gaussian prior on factors).

(p, k) mean k∗ mode k∗ â1 â2
(6, 2) 3.78 3.8 1.29 4.18
(10, 3) 4.23 4.7 1.35 3.91
(30, 5) 5.37 5.7 2.66 2.43
(50, 8) 8.60 9.1 2.31 2.13

(100, 15) 15.43 16.0 2.21 2.04
(150, 25) 12.01 12.2 4.17 5.24

The simulation results in Table 2 show that the model tends to somewhat overestimate
the number of factors, however, remains rather close to truth for the first 5 combinations,
especially those where k � p. In the case with p > T the model severely underestimated
the number of the common factors.

The last two columns in Table 2 show the posterior mean of a1 and a2. The first efficient
shrinkage condition of Durante (2017), a2 > b2 + 1, holds for all (p, k) combinations
considered. For the first two combinations of p and k and the last one with p > T , the
column shrinkage parameters a1 and a2, estimated from the data, are in accordance with
the second efficient shrinkage condition of Durante (2017) a2 > a1. However, with higher
p and p < T , the condition a2 > a1 seems to cease holding with p ≥ 30. This result is of
some interest especially in view of the simulation study in Durante (2017), which suggests
that as the dimension of the dataset increases, the induced MGP shrinkage prior satisfying
a2 > a1 might provide too strong shrinkage.

5.1.2 Laplace prior on factors

We used the same (p, k) combinations as in Section 5.1.1 to check the performance of
the model with the Laplace prior on the factors. The same dataset was generated with the
difference that the factors were generated from L(0, 1/

√
2). The same parameters and the

number of iterations were used as in the previous section.

Table 3: Simulated data with T = 100. Performance of the adaptive Gibbs sampler based on the
MGP prior for various combinations of p and k (Laplace prior on factors).

(p, k) mean k∗ mode k∗ â1 â2
(6, 2) 3.32 3.3 1.65 3.99
(10, 3) 3.97 3.9 1.91 3.68
(30, 5) 5.17 5.0 6.98 6.73
(50, 8) 7.40 7.5 7.86 7.03

(100, 15) 13.35 13.9 5.63 5.33
(150, 25) 18.84 20.0 3.04 3.51

The simulation results in Table 3 exhibit slightly stronger shrinkage, especially as the
dimension of the data set grows. This can be explained by the additional shrinkage coming
from the Laplace prior on the factors. The threshold for discarding additional columns
in the factor loading matrix had to be set slightly higher to ensure a similar degree of

overestimation of the number of factors, However, tuning the threshold parameters can be tricky working with
the real data sets when the true number of factors is not known.
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shrinkage as in case of Gaussian factors. In the case with p > T , the model with Laplace
factors performed better than the Gaussian factor model, which severely underestimated
the number of factors.

The data driven values of the column shrinkage parameters a1 and a2 in Table 3 demon-
strate similar pattern as in the case with the Gaussian prior on factors, namely a1 becomes
higher than a2 when p increases.

5.2 CUSP prior on factor loadings

We once again simulated data sets the same way as for testing the model with the MGP
prior on factor loadings (see Section 5.1.1, using the same (p, k) combinations. The stick
breaking parameter α, which represents a prior expectation of the number of active factors
in the dataset, was set to 5 (although varying it did not result in any significant difference in
the performance of the model). We choose the same parameters of the slab distribution as
in Legramanti et al. (2020), namely αθ = βθ = 2 and θ∞ = 0.05 in case of the Gaussian
prior on the factors and θ∞ = 0.005 in case of the Laplace prior on factors. The parameters
of the adaptation probability of the sampler α0 and α1 were set as −0.5 and −3 × (10)−4

for the cases when p was relatively small compared to T , and as −1 and −5 × (10)−4

otherwise. The simulations were run for 15,000 iterations, with 5,000 discarded as burn-in.
Both models, with Gaussian and Laplace prior on factors, discover the correct number

of latent factors (see Table 4 and 5) . The model with Laplace prior requires a somewhat
smaller spike parameter due to the additional shrinkage imposed by choosing the Laplace
distribution. In addition, similar to the simulations with the MGP prior model, the param-
eters of the adaptation probabilities had to be adjusted for the case with p relatively small
compared to T so that to allow for a slightly higher adaptation probability. However, the
number of parameters for tuning is less, and the sampler is more robust than in the case
with the MGP prior on factor loadings, which seems to be working best for the models
with k � p and with p ≤ T .

Table 4: Simulated data with T = 100. Performance of the adaptive Gibbs sampler based on the
CUSP prior for various combinations of p and k (Gaussian prior on factors).

(p, k) mean H∗ mode H∗

(6, 2) 2.17 2.0
(10, 3) 3.0 3.0
(30, 5) 5.0 5.0
(50, 8) 8.0 8.0

(100, 15) 15.00 15.0

Table 5: Simulated data with T = 100. Performance of the adaptive Gibbs sampler based on the
CUSP prior for various combinations of p and k (Laplace prior on factors).

(p, k) mean H∗ mode H∗

(6, 2) 2.23 2.0
(10, 3) 3.0 3.0
(30, 5) 5.0 5.0
(50, 8) 8.0 8.0

(100, 15) 15.0 15.0
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6. Real data applications

6.1 Application to the Italian olive oil data set

We also tested the models with the CUSP prior on the factor loadings on the benchmark
Italian olive oils dataset (see, e.g. Murphy et al. (2020)), available in the R package FlexDir.
The data describe the composition of 8 fatty acids in 572 Italian olive oils, which originate
from three areas: southern and northern Italy and Sardinia. Each area breaks down to
several regions: southern Italy comprises north Apulia, Calabria, south Apulia, and Sicily;
Sardinia is divided into inland and coastal Sardinia; and northern Italy comprises Umbria
and east and west Liguria. Hence, the true number of factors should correspond to either 3
areas or 9 regions.

The results of the two models, with the Gaussian and with the Laplace prior on factors
are presented in Table 6. The sampler was run for 10,000 iteration with a burn-in of 5,000.

Table 6: Italian olive oil data set. Performance of the CUSP model with Gaussian and Laplace
priors on the factors.

Prior on factors mean H∗ mode H∗ sd H∗

Gaussian 3.14 3 0.35
Laplace 3 3 0

Both models recovered 3 latent factors, thus satisfying the variance identification con-
dition k ≤ p−1

2 . The three factors correspond to the three areas described above, namely,
southern Italy, northern Italy and Sardinia. The trivial rotation problem is addressed by
ordering the columns of the loading matrices in the following way. Columns are sorted so
that the first column has the least number of near zero elements, the second the next small-
est number of near zero elements, and so on. If two columns have the same number of near
zero elements, then the one with the higher sum of its elements comes in front in order. To
avoid sign switching, the signs of the elements λ1,1, λ2,2 and λ3,3 were fixed, since their
posterior distributions seem to be bounded away from 0.

The recovered identified factor loading matrices are presented in Table 7. The models
have rather similar performance, while the model with the Laplace factors has the advan-
tage, that it does not require dealing with the rotational invariance in the identification of
the factor loading matrix.

Table 7: Italian olive oil data set. Factor loadings matrix estimated by the CUSP model with,
respectively, a Gaussian (left-hand side) and a Laplace (right-hand side) prior on the factors.

factor 1 factor 2 factor 3
1 0.74 0.05 0.08
2 0.75 0.39 0.02
3 -0.21 -0.16 0.09
4 -0.74 -0.28 0.10
5 0.51 0.31 -0.17
6 0.36 -0.33 0.40
7 0.36 -0.24 0.33
8 0.50 -0.10 0.19

factor 1 factor 2 factor 3
1 0.35 -0.56 0.03
2 0.20 -0.63 0.14
3 -0.20 0.07 -0.50
4 -0.31 0.50 -0.06
5 0.15 -0.34 0.21
6 0.69 -0.09 -0.37
7 0.69 0.02 -0.16
8 0.41 -0.47 -0.42
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6.2 Application to Eurozone inflation data

6.2.1 MGP prior on factor loadings

To check and compare the Gaussian and Laplace factor models performance on the in-
flation data, we chose those time series for countries, which densities look unimodal. Thus,
9 countries were chosen, namely France, Austria, Germany, Luxembourg, Italy, Cyprus,
Ireland, Belgium and Malta.

Although in this case T � p with T = 273 and p = 9, taking into account that this is
an adaptive MCMC algorithm, we ran both models for 20,000 iterations to ensure that the
sampler runs long enough for the adaptation frequency to reach 0 according to the dimin-
ishing adaptation condition (Roberts and Rosenthal (2007)). This was enough to achieve
convergence and 6,000 initial iterations were discarded as burn-in. The variance parame-
ters in the Metropolis-Hastings step for sampling a1 and a2 were 1 and 1.8 respectively.
The parameters of the adaptation probability of the sampler were chosen at α0 = −1 and
α1 = −5× (10)−4.

Table 8: Eurozone inflation data set. Performance of the MGP model with a Gaussian and Laplace
prior on factors.

Prior on factors mean k∗ mode k∗ sd k∗ â1 â2
Gaussian 4.20 4 0.63 2.19 5.94
Laplace 2.50 2 0.90 2.33 4.17

The results for the estimated number of factors are presented in Table 8. The estimated
covariance and factor loadings matrices from each of the models are presented in Table 9 to
12. In both models, the number of factors parameter stabilised after approximately 15,000
iterations. As expected, the model with the Laplace prior on factors produced a stronger
shrinkage having stabilised at 2 factors, while the model with the Gaussian prior on factors
stabilised at 4 factors. However, the near 0 factor loadings in the last 2 columns of the
loading matrix in the Gaussian model, reported in Table 9, indicate that 2 is effectively the
true number of factors discovered by the model.

Table 9: Eurozone inflation data set. Factor loadings matrix estimated by the MGP model with
Gaussian factors.

factor 1 factor 2 factor 3 factor 4
FR 0.91 0.03 0.00 0.00
AT 0.82 0.34 -0.00 -0.00
DE 0.84 0.29 0.00 0.00
LU 0.88 0.06 -0.02 0.00
IT 0.84 -0.28 0.01 -0.00

CY 0.74 -0.40 0.00 -0.00
IE 0.55 -0.38 -0.02 -0.00

BE 0.83 0.19 0.03 0.00
MA 0.50 -0.36 0.09 0.00

In both cases, the number of factors 4 and 2 satisfy the identifiability condition k ≤
p−1
2 . The rotation problem is addressed in the way described in Section 6.1. To avoid

sign switching, the signs of the elements λ1,1 and λ2,2 were fixed, since their posterior
distributions seem to be bounded away from 0.
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Table 10: Eurozone inflation data set. Covariance matrix estimated by the MGP model with Gaus-
sian factors.

FR AT DE LU IT CY IE BE MA
FR 1.07 0.77 0.79 0.83 0.79 0.69 0.52 0.78 0.46
AT 0.77 1.05 0.82 0.76 0.59 0.47 0.32 0.76 0.26
DE 0.79 0.82 1.06 0.78 0.63 0.51 0.36 0.77 0.31
LU 0.83 0.76 0.78 1.06 0.75 0.66 0.50 0.75 0.39
IT 0.79 0.59 0.63 0.75 1.06 0.80 0.62 0.66 0.58

CY 0.69 0.47 0.51 0.66 0.80 1.04 0.62 0.55 0.57
IE 0.52 0.32 0.36 0.50 0.62 0.62 1.01 0.39 0.43

BE 0.78 0.76 0.77 0.75 0.66 0.55 0.39 1.04 0.41
MA 0.46 0.26 0.31 0.39 0.58 0.57 0.43 0.41 1.01

Table 11: Eurozone inflation data set. Factor loadings matrix estimated by the MGP model with
Laplace factors.

factor 1 factor 2
FR 0.94 0.11
AT 0.88 -0.16
DE 0.90 -0.12
LU 0.91 0.09
IT 0.84 0.37

CY 0.73 0.48
IE 0.53 0.47

BE 0.88 -0.02
MA 0.49 0.42

Table 12: Eurozone inflation data set. Covariance matrix estimated by the MGP model with Laplace
factors.

FR AT DE LU IT CY IE BE MA
FR 0.65 0.13 0.13 0.14 0.13 0.12 0.09 0.13 0.08
AT 0.13 0.68 0.13 0.12 0.11 0.09 0.06 0.12 0.06
DE 0.13 0.13 0.67 0.13 0.11 0.10 0.07 0.13 0.06
LU 0.14 0.12 0.13 0.69 0.13 0.11 0.08 0.13 0.08
IT 0.13 0.11 0.11 0.13 0.74 0.12 0.10 0.12 0.09

CY 0.12 0.09 0.10 0.11 0.12 0.63 0.10 0.10 0.09
IE 0.09 0.06 0.07 0.08 0.10 0.10 0.72 0.07 0.07

BE 0.13 0.12 0.13 0.13 0.12 0.10 0.07 0.67 0.07
MA 0.08 0.06 0.06 0.08 0.09 0.09 0.07 0.07 0.77

6.2.2 CUSP prior on factor loadings

As an alternative to the MGP shrinkage prior, we have also applied the CUSP prior. As
real data can be relatively noisy, we decided to use the inverse gamma parameters aθ = 1
and bθ = 0.1 to achieve a sufficiently diffuse prior in the slab part. In case of the Laplace
prior on the factors, the parameter θ∞ was chosen to be smaller than in the Gaussian case,
at 0.005. The stick-breaking parameter is chosen at α = 5 as in Legramanti et al. (2020).
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The parameters of the adaptation probability of the sampler we chosen at α0 = −1 and
α1 = −5× (10)−4, same as for the sampler with the MGP prior.

We ran the sampler for 15,000 iterations with 5,000 of them discarded as burn-in, which
was sufficient for the adaptation frequency to reach 0, according to the diminishing adap-
tation condition. The results are presented in Table 13. The corresponding covariance and
factor loading matrices are presented in Table 14 to 17. Identification of factor loadings
was performed as described in Section 6.2.1. Columns were sorted so that the first column
has the least number of near zero elements, and the signs of the elements λ1,1 and λ2,2 were
fixed.

Both models discovered 2 factors, which seems to be the ”truth” for this data set, with
the model with Laplace prior on factors having stabilised at 2 factors after the burn-in pe-
riod. The CUSP model thus performed clearly better that the MGP model on the inflation
rates data set. The values of factor loadings are, in fact, very similar for all 4 considered
models. The first factor could be interpreted as related to a common monetary policy, as
it has rather high loadings for all countries. The second factor has significant loadings for
Malta, Ireland, Cyprus, and Italy, and loadings with the opposite sign for Austria and Ger-
many. A possible interpretation could be structural productivity issues in these countries,
which have a negative impact upon inflation rates.

Table 13: Eurozone inflation data set. Performance of the CUSP model with Gaussian and Laplace
priors on factors applied to the Eurozone inflation dataset.

Prior on factors mean H∗ mode H∗ sd H∗

Gaussian 2.23 2 0.42
Laplace 2 2 0

Table 14: Eurozone inflation data set. Factor loadings matrix estimated by the CUSP model with
Gaussian factors.

factor 1 factor 2
FR 0.92 0.03
AT 0.83 0.34
DE 0.84 0.27
LU 0.90 0.05
IT 0.86 -0.27

CY 0.76 -0.38
IE 0.57 -0.37

BE 0.84 0.17
MA 0.52 -0.34

Both factor loading matrices as well as covariance matrices seem to be very similar for
the MGP and CUSP models, however, somewhat differ in absolute values for the Gaussian
and Laplace prior on factors. The relative values remain very similar, i.e. the covariances
which are higher in the case of the Gaussian prior, are also higher in the case of the Laplace
prior. Correspondingly, the significant and insignificant factor loadings are the same in
the models with both types of prior on factors, although their absolute values may slightly
differ.
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Table 15: Eurozone inflation data set. Covariance matrix estimated by the CUSP model with
Gaussian factors.

FR AT DE LU IT CY IE BE MA
FR 1.11 0.77 0.78 0.82 0.78 0.69 0.52 0.77 0.46
AT 0.77 1.08 0.80 0.76 0.60 0.47 0.32 0.75 0.27
DE 0.78 0.80 1.08 0.77 0.63 0.52 0.37 0.77 0.32
LU 0.82 0.76 0.77 1.08 0.75 0.66 0.50 0.75 0.40
IT 0.78 0.60 0.63 0.75 1.09 0.78 0.62 0.66 0.57

CY 0.69 0.47 0.52 0.66 0.78 1.06 0.61 0.56 0.56
IE 0.52 0.32 0.37 0.50 0.62 0.61 1.03 0.39 0.42

BE 0.77 0.75 0.77 0.75 0.66 0.56 0.39 1.06 0.40
MA 0.46 0.27 0.32 0.40 0.57 0.56 0.42 0.40 1.02

Table 16: Eurozone inflation data set. Factor loadings matrix estimated by the CUSP model with
Laplace factors.

factor 1 factor 2
FR 0.93 -0.05
AT 0.88 0.16
DE 0.90 0.12
LU 0.90 -0.03
IT 0.82 -0.24

CY 0.71 -0.32
IE 0.52 -0.33

BE 0.88 0.05
MA 0.48 -0.29

Table 17: Eurozone inflation data set. Covariance matrix estimated by the CUSP model with
Laplace factors.

FR AT DE LU IT CY IE BE MA
FR 0.66 0.13 0.13 0.13 0.13 0.12 0.09 0.13 0.08
AT 0.13 0.69 0.13 0.12 0.11 0.09 0.07 0.12 0.06
DE 0.13 0.13 0.68 0.13 0.11 0.10 0.07 0.13 0.06
LU 0.13 0.12 0.13 0.70 0.13 0.11 0.09 0.13 0.08
IT 0.13 0.11 0.11 0.13 0.76 0.12 0.10 0.12 0.09

CY 0.12 0.09 0.10 0.11 0.12 0.63 0.10 0.10 0.09
IE 0.09 0.07 0.07 0.09 0.10 0.10 0.73 0.08 0.07

BE 0.13 0.12 0.13 0.13 0.12 0.10 0.08 0.68 0.07
MA 0.08 0.06 0.06 0.08 0.09 0.09 0.07 0.07 0.78

7. Conclusion

We have extended two existing models with nonparametric priors on the factor loadings
and automatic inference on the number of factors to the case, which allows non-Gaussian
factors. More specifically, we have adjusted the proposed adaptive sampling algorithm with
the Laplace prior on latent factors and suggested the respective estimator of the precision
matrix for the prior on idiosyncratic variances. Apart from the obvious case when the data
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exhibits non-Gaussian features, allowing factors to have non-Gaussian distribution has the
advantage of solving the problem of rotational invariance of the factor loading matrix.
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