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Abstract
A basket trial evaluates one or more treatments for efficacy among more than one cancer type

in a single clinical trial. Though the treatment targets the common genetic aberration that causes
different cancer types, the possible heterogeneity in the treatment effects poses challenge in mod-
eling. Compared to traditional designs, basket trials can reduce the time required for testing and,
by pooling across cancer types, they also allow the drugs to be tested for rare cancers. Basket tri-
als are gaining increasing importance with advancements in precision medicine. Using covariate
information has shown merit for improving efficacy in classification of the baskets. We incorporate
subject-level biomarker information to aid identification of responsive and non-responsive baskets.
We model subjects’ responses using a two-component Bayesian mixture model where the mixture
weights depend on a measure of similarly among subjects’ biomarker values. We demonstrate the
performance of this model using simulation.

Key Words: Basket trials, Bayesian mixture model, Biomarker data, Covariate information, clas-
sification

1. Introduction

Different cancer types have commonly been identified based on tumor locations (his-
tologies). However, with increasing knowledge about cancer biology, it has been possible
to understand that different cancer types can be caused by a common gene aberration which
can be addressed using targeted therapies and immunotherapies. Traditional phase 2 trials
evaluate a treatment independently for each cancer type. Basket trials allow us to test the
treatment for related tumor types in a single trial. The term basket trial broadly refers to the
set-up where one or more treatments are tested for efficacy among multiple cancer types
(baskets) in a single clinical trial. These trials offer several advantages compared to the
traditional set up, and thus they are gaining increasing importance with advancements in
precision medicine. Combining different cancer types together in one trial may prove to be
more efficient, as it uses the common gene aberration to strengthen inference for each type,
and thus allows study of rare cancer types while maintaining desirable statistical proper-
ties. Heterogeneity of treatment effects, however, may pose a challenge, as seen in previous
trials like the Vemurafenib trial (Hyman et al., 2015).

2. Literature Review

A variety of methods for design and analysis of basket trials have been proposed. A tra-
ditional independent analysis applies a design of choice independently within each tumor
type. This approach does not allow any information to be shared across the tumor types and
hence leads to estimates with no shrinkage and higher sample size requirements compared
to other approaches that allow information sharing. At the opposite extreme is pooling all
the tumor types together and analyzing them as one group. Although capitalizing on the
common etiology, this approach fails to recognize heterogeneity in the treatment effects

*Department of Statistics, Florida State University
†Department of Statistics, Florida State University

 
561



among the tumor types. The hierarchical Bayesian model suggested by Thall et al. (2003)
governs the information borrowing across tumors through type-specific exchangeable treat-
ment effects. The basket-specific estimates that result are shrunk toward the pooled mean,
which efficiently incorporates an anticipated common behavior, but can mask heterogene-
ity, making it difficult to detect a responsive basket if there is only one. Many designs that
use the hierarchical modeling approach have been proposed, including the Bayesian adap-
tive design with frequent interim analysis of Berry et al. (2013), the calibrated hierarchical
Bayesian model approach by Chu and Yuan (2018a), which models a variance parameter
to control the shrinkage, and the exchangeability-nonexchangeability (EXNEX) design by
Neuenschwander et al. (2016) that uses a robust mixture extension of an exchangeabil-
ity model allowing each stratum specific parameter to be exchangeable with other similar
strata parameters or nonexchangeable with all of them. Chu and Yuan (2018b) propose
using joint modeling of treatment response and longitudinal biomarker covariate data to
control information borrowing in their Bayesian latent subgroup design for basket trials
(BLAST). Zhou and Ji (2020) suggest the Robust Bayesian Hypothesis Testing (RoBoT)
method that also assumes a latent subgroup structure. Ventz et al. (2017) propose a general
class of Bayesian response adaptive designs for multi-arm trials with biomarker defined
subgroups and multiple malignancies using hierarchical models. Hobbs and Landin (2018)
propose a novel methodology for sequential basket trial design formulated with Bayesian
monitoring rules based on a novel hierarchical modeling strategy for sharing information
among a collection of discrete potentially nonexchangeable subtypes. Liu et al. (2017) pro-
pose a two stage design where homogeneity is assessed at the first stage and information is
borrowed accordingly in the second stage.

We present more detailed descriptions of selected approaches below. LetB be the num-
ber of tumor types (baskets), with nb subjects in the bth basket. Let yb = (y1b, y2b, . . . , ynbb)
be the vector of subject-level responses and αb be the basket-specific parameter associated
with the distribution of yb in basket b, where b = 1, 2, . . . , B. Also let f(·) denote a pdf
associated with the random variable indicated by its argument.

Independent Approach: A clinical trial design is applied independently in each of the
B baskets so that the parameters {αb} are modeled independently; see (1). The independent
modeling approach was used in the Vemurafenib trial by Hyman et al. (2015) with Simon’s
two stage design (Simon, 1989) applied independently in every basket. Under the Bayesian
framework, the basket specific parameters are assigned independent prior distributions and
are estimated using the posterior distributions given observed response data.

yib | αb ∼ f(yib|αb) iid, i = 1, 2, . . . , nb,

αb ∼ fb(αb) b = 1, 2, . . . , B. (1)

This approach does not take advantage of the commonality among the baskets, which
means no information is borrowed and estimates α̂b are not subject to shrinkage. A go/no-
go decision is made independently for each basket.

Bayesian Hierarchical Model (BHM): A common formulation of the BHM is shown
in (2). The individuals’ responses within basket b are again modeled as independent con-
ditional on the basket-specific parameter αb, but the αbs are assumed to arise from a com-
mon distribution, typically parameterized with mean µ and precision τ , which are further
assigned a prior distribution. Inference for µ, τ and {αb} proceeds from the posterior
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distribution.

yib | αb ∼ f(yib|αb), iid, i = 1, 2, . . . , nb,

αb | µ, τ ∼ f(αb|µ, τ), iid, b = 1, 2, . . . , B,

(µ, τ) ∼ f(ψ). (2)

The model assumes exchangeability of basket specific parameters. This assumption may
fail to hold when the treatment effects are heterogeneous. The amount of borrowing and
thus the degree of shrinkage is controlled by the precision parameter of the distribution
of basket specific parameters. Therefore, this parameter is also called a shrinkage parame-
ter. The greater the precision (i.e., smaller the variance), the higher the degree of shrinkage.

Bayesian Hierarchical Model with Covariates: This modification of the BHM in (2)
incorporates a basket-level covariate, xb, b = 1, 2, . . . , B, and the response parameters
αb are modeled as a function of xb. An example formulation is given in (3), where the
covariate xb influences the basket parameter αb through the link function g(·). The basket-
level errors {δb} would commonly be modeled as having mean zero and, in the Bayesian
setting, a prior distribution is specified for the regression parameters β0 and β1.

yib | αb ∼ f(yib|αb), iid, i = 1, 2, . . . , nb,

θb = g(αb) = β0 + β1xb + δb

δb ∼ f(δb), iid, b = 1, 2, . . . B

(β0, β1) ∼ f(ψ). (3)

Product Partition Model: A product partition model (PPM) (Barry and Hartigan,
1992) has been used to model data with nonexchangeability. Barry and Hartigan (1992)
proposed the PPM for change point problems where the sequence of observations observed
at consecutive points in time is partitioned into clusters. A different probability model is
assumed to hold within each of the clusters. Part of the inference problem is discovery
of the partition. Let ρ = (S1, S2, . . . , Skn) denote a partition of n experimental units
into kn subsets, y = (y1, y2, . . . , yn) denote the response vector with yj denoting the
response for unit j, yk = (yj , j ∈ Sk) denote the response data arranged by clusters,
e = (e1, e2, . . . , en) denote the cluster membership indicator with ej = k if j ∈ Sk, where
k = 1, 2, . . . , kn and j = 1, 2, . . . , n. The values of (kn, e1, . . . , en) describe a partition
up to permutation of the cluster labels. The number of clusters kn is unknown. A prior
probability model on the partition, f(ρ), implies a prior on the number of clusters, kn, in
the partition. The PPM constructs f(ρ) by introducing a cohesion function c(A) ≥ 0 for
A ⊆ {1, 2, . . . , n} that measures how tightly grouped the elements in A are thought to be.
The choice of c(A) depends on the prior belief about the partitions. The PPM then has the
form

f(ρ) ∝
kn∏
k=1

c(Sk) and f(y, η|ρ) =

kn∏
k=1

fk(y
k | ηk)f(ηk), (4)

where fk(· | ηk) is the model specific for cluster k and depends on parameters ηk. All
inference concerning ρ is made from the posterior distribution f(ρ | y) (Dahl, 2009).
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3. Bayesian Partition Model with Covariates

The goal for our model is to account for possible non-exchangeability when analyzing
the data from basket trials. We seek to incorporate subject-level covariate information
that informs classification of the baskets into latent clusters that aid basket-wise go/no-go
decisions.

As earlier, let yb = (y1b, y2b, . . . , ynbb) be the vector of responses for the nb individuals
in basket b, and, additionally, let xb = (x1b, x2b, . . . , xnbb) be the corresponding covariate
values for these individuals, b = 1, 2, . . . , B. The covariate could be a determination of the
subject’s prognosis or a measurement of a biological indicator of the subject’s propensity
for response to the treatment, for example. Here we assume that the covariate value is
informative about treatment efficacy and will exhibit a cluster structure similar to that of the
response. Let y = (y1, y2, . . . , yB) and x = (x1, x2, . . . , xB) be the complete vectors of
response values and covariate values, respectively, for all subjects. To account for possible
heterogeneity in treatment effects, we assume that each of the B baskets comes from a
mixture of two distributions corresponding to two latent clusters of, respectively, responsive
baskets and non-responsive baskets. A goal is to classify the B baskets into two clusters
(one of which may be empty) such that baskets that have similar subject-level covariate
values will be in the same cluster. Let eb denote the cluster membership indicator for
basket b, with eb = j if the cancer type b belongs to cluster j, where j = 1, 2. Let
e = (e1, e2, . . . , eB) be the vector of cluster membership indicators, and let ρ denote a
partition of B baskets into two clusters. The vector e of cluster membership indicators
can be used to identify a corresponding partition (a partition ρ corresponds to two cluster
membership vectors that differ only in the labeling of the clusters).

Let α = (α1, α2, . . . , αB) be the basket-specific parameters, θ = (θ1, θ2) be cluster-
specific parameters and define ψ = (α, θ). Conditional on the covariates x, we model the
distribution of subject responses y as

f(y | ψ, x) =
∑
ρ

f(y, ρ | ψ, x)

=
∑
ρ

f(y | ψ, ρ)f(ρ | x)

=
∑
ρ

{ B∏
b=1

f(yb | αb, ρ, θ)
}
× f(ρ | x). (5)

The second equality in (5) indicates that the distribution of the response y depends on the
covariate values only through the probability model for partitions. We propose to model
the effect of x on the partition of the baskets ρ through a non-negative similarity function
in the form of an auxiliary probability density function for x as suggested by Müller et al.
(2011). Thus we have f(ρ | x) ∝ f(x | ρ)f(ρ), where we introduce f(x | ρ) to quantify
the combined similarity among x within the components of the partition ρ and f(ρ) is the
prior distribution on partitions in (4) that is uninformed by x. We require that this auxiliary
distribution f(x | ρ) incorporate within-cluster and within-basket dependence.

Let xj denote the covariate values from cluster j, j = 1, 2, i.e., the covariate values
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from the subjects in baskets in cluster j. Then our model for the partition becomes

f(ρ | x) ∝ f(x | ρ)f(ρ)

= f(x1 | ρ)f(x2 | ρ)f(ρ)

=
2∏
j=1

∫
f(xj | ρ, ηj)f(ηj)dηjf(ρ)

=

2∏
j=1

∫ [ ∏
{b:eb=j}

f(xb|ηj)
]
f(ηj)dηjf(ρ)

=

2∏
j=1

∫ [ ∏
{b:eb=j}

∫
f(xb|ξb, ηj)f(ξb|ηj)dξb

]
f(ρ)× f(ηj)dηjf(ρ)

=

2∏
j=1

∫ [ ∏
{b|eb=j}

∫ { nb∏
i=1

f(xib|ξb, ηj)
}
× f(ξb|ηj)dξb

]
f(ηj)dηjf(ρ). (6)

Here {ηj} are cluster-specific parameters and {ξb} are basket-specific parameters that gov-
ern the distribution of x. Equations (5) and (6) together specify the proposed model that
we call the Bayesian Partition Model with Covariates (BPMx).

The particular formulation of the BPMx that we consider is for binary response yib and
continuous covariate xib. As shown in (7), we model yib as arising from a Bernoulli dis-
tribution with basket-specific mean αb, and αb as arising from a beta distribution governed
by the cluster assignment of basket b. The covariate values inform the distribution of the
partition of the baskets into two clusters (responsive and non-responsive). In the absence
of the covariate information, we assume all partitions are equally likely, i.e., f(ρ) in (6) is
constant.

yib | αb, eb = j ∼ Bernoulli(yib | αb), iid, i = 1, 2, . . . , nb

αb | eb = j, θj = (µj , Vj) ∼ Beta(αb | mean = µj , Vj)

f(ρ | x) ∝
2∏
j=1

∫ [ ∏
{b|eb=j}

∫ { nb∏
i=1

φ(xib | ξb, σ2x)
}
× φ(ξb | ηj , σ2ξ )dξb

]
φ(ηj | µη, σ2η)dηj .

(7)

Here Vj is a precision parameter of the beta distribution given by the sum of the usual shape
parameters, and φ(x | µ, σ2) denotes the probability density function for the Gaussian
distribution with mean µ and variance σ2.

The Bayesian formulation of the BPMx in (7) is completed with a prior distribution
for (µ1, µ2, σ

2
x, σ

2
ξ , σ

2
η); the precisions V1 and V2 are specified for identifiability. Each beta

mean µj arises from an equal mixture of two beta distributions, one corresponding to low
and the other to high response probability. The inverse of the variance parameters are taken
to be uniformly distributed.

4. Inference and Computations

Examining (5) and (6) reveals a significant advantage of incorporating the information
from x about the partition in the form of an auxiliary probability distribution, f(x | ρ).
The model for the response y with the covariate-dependent prior for the partition is equiv-
alent, for computational purposes, to a model for the augmented response (y, x) using the
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auxiliary model for x and a prior for the partition that no longer depends on the covari-
ate. Removing the dependence on x from the probability distribution for the partition aids
computation substantially. Furthermore, we take f(ρ) ∝ 1.

Because of the normality assumption in (7), f(x | ρ) is a multivariate normal distribu-
tion of dimension N =

∑
b nb. This auxiliary distribution can be expressed using random

effects as follows:

xib = µη + δj + εb + γi

δj ∼ Normal(0, σ2η), j = 1, 2

εb ∼ Normal(0, σ2ξ ), b = 1, 2, . . . , B

γi ∼ Normal(0, σ2x), i = 1, 2, . . . , nb (8)

where γi is the subject effect, εb is the basket effect and δj is the cluster effect. It follows
from (8) that E(xib) = µη and var(xib) = σ2η+σ2ξ +σ2x.Moreover, the covariance structure
for x is given by

Σx[i, j] =



σ2η + σ2ξ + σ2x if i = j;

σ2η + σ2ξ if subjects i and j are in the same basket;

σ2η
if subjects i and j are from different baskets from the same
cluster;

0 if subjects i and j are from different clusters.

Inference is performed using Markov chain Monte Carlo; we use Stan (Stan Devel-
opment Team, 2021) in our simulations in Section 5 and assess convergence using the
Gelman-Rubin diagnostic (Gelman and Rubin, 1992). The basket-specific mean responses
αb, b = 1, 2, . . . , B, cluster-specific mean responses µj , j = 1, 2 and variance parame-
ters for the auxiliary covariate model σ2x, σ

2
ξ and σ2η can be estimated using summary of

posterior samples.
Recall that a partition ρ corresponds to two cluster membership vectors that differ only

in the labeling of the clusters. For example, in case of B = 4, e = (1, 1, 1, 2) and e =
(2, 2, 2, 1) indicate the same partition for our purpose, with baskets 1, 2 and 3 in one cluster
and basket 4 in the other cluster. To avoid this duplication of partitions, we fix the cluster
assignment for the first basket to cluster 1 without loss of generality and classify the other
baskets accordingly. This gives us 2B−1 cluster membership vectors, each identifying a
unique partition. We estimate the cluster partition using the maximum a posteriori (MAP)
value, which can be used to predict the cluster membership and aid the go/no-go decision.
We also estimate the cluster membership probabilities Pbj = Pr(eb = j | y, x) that a
basket b comes from cluster j as follows:

P̂bj =
∑
ρ:eb=j

Pr(ρ | x, y). (9)

5. Simulation

We fit the binary response formulation of BPMx in (7) to simulated data to evaluate the
model performance in diverse scenarios and compare with three other approaches: basket-
wise independent analysis as in (1), a Bayesian hierarchical model (2) with the basket
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Table 1: Description of the five scenarios for the simulation study. The {αb} and {ξb} are
the basket-level means for y and x, respectively.

Basket
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
αb ξb αb ξb αb ξb αb ξb αb ξb

1 0.1 10 0.1 10 0.05 10 0.1 10 0.1 10
2 0.1 10 0.1 10 0.05 10 0.1 10 0.1 10
3 0.1 10 0.1 10 0.2 15 0.1 10 0.1 10
4 0.3 18 0.3 10 0.2 15 0.1 18 0.1 10
5 0.3 18 0.3 10 0.35 20 0.1 18 0.1 10
6 0.3 18 0.3 10 0.35 20 0.1 18 0.1 10

Figure 1: The estimated basket-specific mean response probabilities for scenario 1. The
four comparison methods are the Bayesian hierarchical model (BHM), the Bayesian hierar-
chical model with covariate (CovBHM), the independence model (IND), and the proposed
BPMx. The horizontal lines are at the true mean response rates, 0.10 for baskets 1-3 and
0.30 for baskets 4-6.

parameters {αb} arising from a common beta distribution, and a Bayesian hierarchical
model with covariates (3) where the average covariate value for the basket, x̄b, linearly
influences αb on a logit scale. Priors on the model parameters were chosen so as to inject
comparable prior information in these models. We assessed this by drawing samples from
prior distributions and comparing them using empirical density curves.

We use the Stan language (Stan Development Team, 2021) to fit each of these models
to obtain posterior samples using a Markov chain Monte Carlo sampling algorithm. We
perform 50 replications for each scenario, with 5 chains of 1000 burn-in and 2000 infer-
ential iterations. Data were generated for five scenarios, each with six baskets. The list
of scenarios with true response probabilities and covariate means for every basket is in
Table 1. Scenarios 1, 3 and 5 assume the same latent cluster structure for both response
and covariate variables, with scenario 1 conforming to the two clusters anticipated by our
model (7), and scenarios 3 and 5 having, respectively, three clusters and just one. Scenarios
2 and 4 violate the assumption of an informative covariate with same cluster structure as
the response.

We estimate the basket-specific response rates, {αb}, using the posterior mean and
estimate the precision of these estimates using the average root mean squared error.

Figure 1 shows the estimates of αb, b = 1, 2, . . . , 6 in scenario 1 where the model
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Figure 2: The average absolute bias in the estimation of the response means averaged
across all baskets for simulation scenarios 1 and 4. The four comparison methods are
the Bayesian hierarchical model (BHM), the Bayesian hierarchical model with covariate
(CovBHM), the independence model (IND), and the proposed BPMx.

Figure 3: Average lengths of the response means averaged across all baskets for sim-
ulation scenario 1 and 4. The four comparison methods are the Bayesian hierarchical
model (BHM), the Bayesian hierarchical model with covariate (CovBHM), the indepen-
dence model (IND), and the proposed BPMx.

assumptions hold and in scenario 4 where the model assumptions regarding informative
covariate and cluster structure are violated. BPMx was able to estimate the response proba-
bility well in all scenarios, including those where the assumptions regarding the underlying
clusters are violated. BPMx also has the least overall absolute bias (see Figure 2) and root
mean squared error (RMSE) (results not shown) across all scenarios. BPMx produced the
shortest 95% credible intervals for response probabilities across most of the baskets for all
the scenarios (see Figure 3).

We computed the efficacy and futility rates for all the baskets. In basket b, the treatment
is concluded to be futile if P (αb > 0.2 | data) < 0.05, and effective if P (αb > 0.1 |
data) > 0.9. The rates of efficacy and futility for every basket in scenarios 1 and 4 are
in Figure 4. The BPMx was able to distinguish between responsive and non-responsive
baskets well even when the underlying assumptions do not hold. Additionally, we also
calculated the type 1 error rate as the percentage of times the treatment was concluded to
be effective in a basket when it was in fact futile, and power as the percentage of times the
treatment was correctly concluded to be effective in a basket. Using the same decision rules
for all four models, Type 1 error rates were comparable, and the BPMx exhibited slightly
higher power across all the scenarios (see Table 2 for results for scenarios 1 and 4).

There is an underlying cluster structure in the BPMx that is not present in the compari-
son models. The interpretation of the clusters as responsive and non-responsive may assist
in making go/no-go decisions. Table 3 reports the MAP estimators of the partition among
the 50 replications for each scenario, together with their relative frequency. In scenarios 1
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Table 2: Type 1 error (T1E) and power for simulation scenarios 1 and 4. The four compar-
ison methods are the Bayesian hierarchical model (BHM), the Bayesian hierarchical model
with covariate (CovBHM), the independence model (IND), and the proposed BPMx.

Scenario Basket b True αb
Proposed IND BHM covBHM

T1E Power T1E Power T1E Power T1E Power
1 0.10 0.06 - 0.06 - 0.06 - 0.06 -
2 0.10 0.06 - 0.06 - 0.06 - 0.06 -

1 3 0.10 0.04 - 0.04 - 0.06 - 0.04 -
4 0.30 - 0.68 - 0.66 - 0.66 - 0.66
5 0.30 - 0.68 - 0.66 - 0.66 - 0.66
6 0.30 - 0.58 - 0.52 - 0.52 - 0.52
1 0.10 0.08 - 0.08 - 0.08 - 0.08 -
2 0.10 0.08 - 0.08 - 0.08 - 0.08 -

4 3 0.10 0.08 - 0.08 - 0.08 - 0.08 -
4 0.10 0.12 - 0.12 - 0.12 - 0.12 -
5 0.10 0.1 - 0.1 - 0.1 - 0.1 -
6 0.10 0.02 - 0.02 - 0.02 - 0.02 -

Figure 4: Efficacy and futility rates for simulation scenarios 1 and 4. The four comparison
methods are the Bayesian hierarchical model (BHM), the Bayesian hierarchical model with
covariate (CovBHM), the independence model (IND), and the proposed BPMx.
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Table 3: MAP estimators of the partition among the 50 replications for each scenario,
together with their relative frequency.

Scenario True Partition Estimated Partition Rel. Frequency
1 (1, 1, 1, 2, 2, 2) (1, 1, 1, 2, 2, 2) 1
2 (1, 1, 1, 2, 2, 2) (1, 1, 1, 1, 1, 1) 1

(1, 1, 1, 1, 1, 1) 0.14
3 (1, 1, 1, 1, 2, 2) (1, 1, 1, 1, 2, 2) 0.54

(1, 1, 1, 2, 2, 2) 0.02
(1, 1, 2, 2, 2, 2) 0.30

4 (1, 1, 1, 1, 1, 1) (1, 1, 1, 2, 2, 2) 1
5 (1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1) 1

and 5 when the response and covariate have the same cluster structure, the correct parti-
tion was estimated with probability 1, meaning that BPMx identified the true partition in
all replications. In scenario 3, when there are three underlying clusters in the data, the true
partition was estimated with highest probability. However, BPMx failed to estimate the true
partition in 46% of the replications. This could be due to the fact that the response proba-
bilities in the three clusters are relatively close, which makes it more difficult to distinguish
the three clusters. In scenarios 2 and 4 when the covariate is not truly informative of the
treatment response, BPMx failed to identify the true partition. The estimated partition in
this case was informed by the covariate.

We also estimate the cluster membership probability for each basket, Pbj , b = 1, 2, .., B,
j = 1, 2. As stated earlier, in order to uniquely identify partitions, the first basket is always
assigned to cluster 1, and the other cluster is called cluster 2. Hence a cluster is inter-
preted as baskets that have similar treatment response as opposed to strictly “responsive”
and “non-responsive” baskets, keeping in mind that the first basket is always assigned to
the first cluster. The cluster membership probabilities can be helpful in understanding the
degree of similarity among the baskets.

Table 4 gives the estimated cluster membership probabilities. These probabilities in-
dicate that BPMx was correctly able to identify the underlying number of latent clusters.
As the cluster membership of basket 1 is fixed in the first cluster, the posterior probability
estimate P̂11 is always estimated to be 1, making P̂12 = 1 − P̂11 = 0. The baskets with
mean response similar to basket 1 were classified in the first cluster with high probability,
whereas other baskets were classified to cluster 2 with high probability. In scenarios 1 and
5 where the response and covariate convey the same information, the baskets with similar
response probabilities were identified correctly. In scenario 3 the covariate is informative
of the response, but the number of clusters is more than 2. The baskets with intermedi-
ate response probabilities are assigned to both the clusters with probabilities close to 0.5.
Thus, the estimated cluster membership probabilities are evident of the three clusters in
the data. In scenarios 2 and 4 where the covariate is non-informative, the estimated clus-
ter membership probabilities fail to identify the baskets with similar response probabilities
correctly. This could be due to the possibility that these estimates are heavily influenced by
the covariate information, as was the estimated partition for these scenarios.

6. Conclusion

BPMx can account for non-exchangeability through the assumption of latent clusters
and the use of individual covariate information in partition models to estimate this latent
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Table 4: Estimated cluster membership probabilities for each of the six baskets in each
simulation scenario.

Scenario Basket (b) P̂b1 P̂b2
1 1 0
2 0.98 0.02

1 3 0.98 0.02
4 0.04 0.96
5 0.04 0.96
6 0.04 0.96
1 1 0
2 0.91 0.09

2 3 0.91 0.09
4 0.89 0.11
5 0.89 0.11
6 0.89 0.11
1 1 0
2 0.94 0.06

3 3 0.54 0.46
4 0.54 0.46
5 0.25 0.75
6 0.25 0.75
1 1 0
2 0.98 0.02

4 3 0.98 0.02
4 0.06 0.94
5 0.06 0.94
6 0.06 0.94
1 1 0
2 0.9 0.1

5 3 0.9 0.1
4 0.9 0.1
5 0.9 0.1
6 0.9 0.1
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cluster structure in the data and the treatment response. The simulation demonstrates that
BPMx can estimate the mean treatment response with higher precision than the compar-
ison models and these estimates are not degraded even when the underlying assumptions
regarding the latent cluster structure are violated. However, in such a case, BPMx is unable
to correctly estimate the partitions and cluster membership probabilities. When an infor-
mative covariate is used in the model, BPMx offers additional insights in terms of estimates
of latent clusters and cluster membership probabilities for every basket.

Our belief that the covariate provides information about a subject’s response to treat-
ment underlies the assumption of the BPMx of the same latent cluster structure for both
the response and covariate. The inability of BPMx to detect the true cluster structure under
failure of this assumption may be due to the higher amount of information in the con-
tinuous covariate as compared to the binary response. More simulations, including for a
formulation of the BPMx for a continuous response and continuous covariate, may help in
understanding this further. Fixing the number of latent clusters to two, although restrictive,
offers advantage in terms of interpretation. Increasing this number is a straight forward
extension of the approach presented here, but it can pose more computational challenge.
An informative prior specification on the partitions is another possible extension. Use of
multiple covariates is also worth exploring further, with careful consideration towards the
choice of similarity function.
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