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Abstract
The paper proposes an adaptive expectations model to jointly project the main macroeconomic aggregates

of Argentina. The model is essentially an autoregressive vector with exogenous variables (VARX) with the
novelty that its parameters are not estimated by OLS but by linear programming in order to incorporate
equality and inequality constraints and prior information as well. These constraints are intended to bound
the estimated parameters within the parametric space suggested by the economic theory, while previous
estimates are introduced to minimize the discrepancies between projections made with homologous series
from different base years. The study concludes that projections obtained from the adaptive expectations
model fit well to macro aggregates of Argentina’s National Accounts System, although they do not always
outperform those made with specific ARIMA models for each aggregate.

Key Words: adaptive expectations, autoregressive vector, linear programming, GDP, macroeconomic ag-
gregates, National Accounts.

1. Introduction

The projection of macroeconomic aggregates of the System of National Accounts (SNA) such as
gross domestic product (GDP), consumption, investment, exports and imports, is complex and is
carried out in general through specific econometric models for each aggregate.1 However, when
projecting any of these aggregates separately, that is when projecting each component indepen-
dently of the others, it is not possible to guarantee that the resulting projections are consistent one
with each other, even though each of the models used is “correct” in the sense that it satisfies se-
lection criteria widespread in the econometric literature. In fact, by modeling each component of
SNA separately, the analyst decides (consciously or unconsciously) to exclude from the modeling
process any information other than that provided by the series itself, plus a reduced number of
exogenous variables that presumably influence the component, which implies a significant loss of
efficiency in the use of information.

The objective of this paper is to develop a general model to project the main macroeconomic
aggregates of the SNA of Argentina as a whole and to compare these projections with those that
arise from specific ARIMA models in order to detect possible estimation biases. It is not the
objective of the paper to develop an alternative econometric model to those already known (see

*Universidad de Buenos Aires, Av. San Martı́n 4453, C1417DSE Ciudad de Buenos Aires. Argentina.
1The author, for example, has proposed alternative SARIMA models [5, 6] to project Argentine exports.
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e.g. as [13], [14] or [8] just to name three) for Argentina, nor validate models developed for other
countries but with local data. Our objective is to develop a model that is simple but consistent with
economic theory, whose parameters also have a concrete economic meaning even outside of the
general model. The model to be developed is based on adaptive expectations.

2. The Theoretical Model

We depart from the fundamental macroeconomic identity interpreted in the context of a simplified
four-sector Keynesian model (see e.g. [3, cap. 14] or [16]) in which the aggregate demand is the
sum of consumption (C), public spending (G), investment (I) and net exports (X −M ), that is,

D = C +G+ I + (X −M). (1)

Since this is an open economy X,M ≥ 0. In the model (i) consumption is a function of the
available income Yd = Y −T (income minus taxes); (ii) public spending (alike taxes) is determined
exogenously; and (iii), exports and imports are also exogenous variables but are determined through
specific price functions.2 We also assume (iv) that investment depends on available income (as is
usually assumed in macro models) and on the real interest rate, which is exogenous to the model;
and that (v) aggregate demand equals income (Y = D).3 Formally,

C = f(Yd),
G is exogenous,
I = f(R, Yd),
X = f(PX), and M = f(PM , Y )
Y = D,

(2)

Under this specification, exports are a function of real export prices, as in a typical supply function,
while imports are a function of real import prices and income, as in a typical demand function. The
function f(.) that relates endogenous and exogenous variables is a linear function. For instance,

C = f(Yd) = µ+ αYd, (3)

where µ is a constant and α is the so called marginal propensity to consume. An equivalent form
of this function is

C

C0
=

(
µ

C0

)
+

(
α
Y d
0

C0

)
Y d

Y d
0

(4)

where consumption and available income are expressed as indexes scaled to unity in a certain pe-
riod, say at t = 0. This representation has two advantages. First, that the new marginal propensity

2Logically, if there is fiscal equilibrium, T = G, that is, taxes equal public spending.
3We exclude employment as an explanatory variable assuming that in the recent economic context of Argentina the

availability of workers is not limiting.
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to consume is the elasticity of C with respect to Yd at the base period. Second, the new expres-
sion enables us to equate Yd with Y as long as the tax rates remain constant (that is, as long as
T = θ Y ) since the tax rate θ cancels out. For these two reasons, from now on we will express all
equations in terms of indexes scaled to unity in the base year. This representation has, however,
one disadvantage: the new parameters (elasticities) are not bounded (except for the sign) even if
the original parameter is.4 For example, in the consumption function it would be expected that the
original marginal propensity to consume lies within the interval (0; 1]. Nevertheless, the bounds of
the elasticity of consumption with respect to income are not obvious even though the bounds of α
appear quite clear. In order not to confuse the original variables with their respective indexes, we
will replace uppercase with lowercase in all equations. Then, the complete system is

ct = λC
0 + λC

Y yt
it = λI

0 + λI
R rt + λI

Y yt
xt = λX

0 + λX
PX

pXt
mt = λM

0 + λM
PM

pMt + λM
Y yt

(5)

where c, i, x and m on the left hand side are consumption, investment, export and import indexes,
and y, r and p on the right hand side are indexes of production, interest rate and prices. Note that
the interest rates are introduced in the model as an index instead of simple rates. All indexes are
based on the National Accounts base year (currently 2004) so the parameters λ are elasticities at
the same year. This set of equations may be written in matrix form as


ct
it
xt
mt

yt

 =


λC
0 0 0 . . . . . . λC

Y
...

...
...

. . .
...

...
...

...
. . .

...
λM
0 0 0 . . . . . . λM

Y

λY
0
∗

λY
G λY

PX
. . . . . . 0





1
gt
pXt
pMt
rt
yt

 , (6)

or zt = Λxt. For t = 1, . . . , T periods, zt and xt may be written in single system as Z = ΛX.
This system, however, would be incomplete without a set of constraints that sets to zero the null
parameters. Moreover, another set of constraints ought to be introduced to guarantee that the non-
null parameters have the sign expected according to the economic theory. Then, the complete
economic model can be written

vec(Z) =
(
X′ ⊗ IK

)
vec(Λ) subject to RIvec(Λ) = rI, RIIvec(Λ) ≥ 0 (7)

where ⊗ means Kronecker product and vec(.) is an operator that vectorizes the matrix in the
argument. Note that in model (6) the transformation of exogenous into endogenous variables is
instantaneous, following the principle of market emptyness. This simultaneity is useful for reason-
ing in a context of macroeconomic equilibrium, although this equilibrium is not always reached in

4We speak of parameters in an econometric rather than an economic sense.
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practice. To support the simultaneity hypothesis, we will assume that the demand components are
a function of the expected or desired level of the exogenous variables and income. That is, we will
replace the variables on the right hand side of the model (6) by their expectations, also assuming
that these expectations are adaptive.

3. The Econometric Model

The econometric version of (6) arises immediately by transcribing the mathematical relationship
into a statistical relationship in which the K macro aggregates become random variables governed
by a set of exogenous variables and a first-order autoregressive process. Formally, the econometric
model is

zt = µ+ A1 zt−1 + B0 xt + C dt + ϵt, ϵt ∼ N
(
0K×1, σ

2IK
)
, (8)

where zt is a vector of K × 1 macro aggregate indixes, µ is a vector of K × 1 constants, A1 is
an array of K ×K parameters associated with the vector of lagged variables zt−1 , B0 is a matrix
of K ×M parameters associated to M exogenous variables contained in xt, and C is a matrix of
K ×N parameters associated with atypical events unrelated to the theoretical model. Then, model
(7) becomes (8) by replacing xt on the right side of (6) by its expectation x∗t and this latter vector by
a function of its past values. If model (8) is true, matrices A1 and [µ,B0] are equal to (1−π) IK and
πΛ1, respectively. This particular specification of A1 determines that the model parameters cannot
be estimated directly by ordinary least squares (OLS) as in any traditional VARX model since in
(8) the parameters are subject to inequality constraints that are infeasible with any closed analytic
solution as the OLS estimator. Instead, we propose a less conventional although feasible two-stage
estimator. In the first stage, we estimate π and a preliminary estimate of [µ,B0] minimizing the
sum of absolute deviations of errors (LAD estimate). In the second stage, we add a set of linear
constraints to fix the diagonal elements of A1 to (1 − π̂) and addsome more restrictions to ensure
that the elasticities of each equation add to unity. For the first estimation we propose the model

[
z2 . . . zT

]
=

[
µ A1 B0 C

] 
1 . . . 1
z1 . . . zT−1

x2 . . . xT
d2 . . . dT

+
[
ϵ2 . . . ϵT

]
. (9)

This model can be written more compactly as Y = B∗X∗ + E, where Y is an matrix of macro
aggregate series of dimension K × (T − 1), B∗ is a matrix of parameters of dimension K × (K +
M +N +1), and X∗ is a matrix of regressors of dimension (K+M +N +1)× (T −1). Note that
vector x1 of exogenous variables in (9) was lost when we introduced the first order autoregressive
term. Then, the vectorized form of (9) is

vec(Y) =
(
X∗′ ⊗ IK

)
vec(B∗) + vec(E) subject to R vec(B∗) ≥ 0. (10)
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To estimate vec(B∗) we use a two-stage procedure. In the first stage we solve the following linear
program to estimate π, while in the second stage we estimate the elasticities keeping the diagonal
elements of A1 equal to 1− π̂.

min
vec(E)

{
0′K(K+M+N+1)vec(B∗) + 1′K(T−1)vec(E)− + 1′K(T−1)vec(E)+

}
subject to [

(X∗′ ⊗ IK) −IK(T−1) IK(T−1)

RI 0 0

] vec(B∗)
vec(E)−
vec(E)+

 =
≥

[
vec(Y)

0

]
,

and [
vec(E)−
vec(E)+

]
≥ 0, (11)

where RI is a matrix of K(K +M +N +1) rows by K(T − 1) columns. The objetive function of
this linear program is the sum of errors in absolute values. The supra-index of vec(E) refers to the
sign of the slack variables associated to the observations of vec(Y). For further details about this
optimization criterium we refer the reader to the text of Williams [18, pp. 32-34]. The expansion
of the system RIvec(B∗) ≥ 0 is the following RI

µ 0 . . . 0

0 RI
A1

. . .
...

0 0 RI
B0

0

 vec(B∗)
≥
=
=

 0
...
0

 , (12)

where RI
µ = IK , to ensure the positivity of the values of µ, and the block RI

A1
is a matrix of

K2 ×K2 whose diagonal is vec(1K1′K − IK). The system RI
A1

= 0 restricts to 0 the off diagonal
elements of A1, but does not impose any restrictions on the elements of the diagonal. The block
RI

B0
is a diagonal matrix of KM ×KM whose K(j − 1) + i element (in the diagonal) is equal to

1 if λij = 0, or 0 otherwise. Logically, by λij we refer to the elasticities of matrix Λ excluding the
first column of constants, which we called before Λ1.

In the second stage, we extend the constraint system to equalize the elements of the diagonal of A1

to 1 − π̂, and the sum of elasticities of each aggregate, plus the constant, to unity. The extended
system is as follows 

RI
µ 0 . . . 0

0 RI
A1

. . .
...

...
. . . RI

B0
0

0 RII
A1

0
...

RII
µ 0 RII

B0
0


vec(B∗)

≥
=
=
=
=


0
...
0

rA1

1

 , (13)
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where RII
A1

is a diagonal matrix of K2×K2 whose diagonal elements correspond to those of vector
vec(IK) and rA1 = (1− π̂) vec(IK). Matrices RII

µ and RII
B0

are, respectively, IK and 1′M⊗IK . Note
that except for the addition of these restrictions, the linear program of the second stage is exactly
the same as that of the first one.

4. Information Sources and Parameter Estimation

4.1 The Data

In the previous section we described the theoretical model that underlies the macroeconomic aggre-
gates and the econometric model that enables the estimation of its parameters, which are essentially
the elasticities multiplied by π. In this section we estimate these elasticities with real data. They
are:

• Endogenous variables: annual indexes of C, I , X , M and Y at constant prices (2004-2020
period) calculated from the SNA and scaled to unity in 2012. We chose this base year
because it is an intermediate period in the series and because the gap between the financial
and commercial exchange rates was narrow.

• Exogenous variables: (i) annual index of public spending G calculated from from the SNA,
scaled to unity in 2012; (ii) import and export price indexes published by INDEC, multiplied
by the Central Bank’s multilateral real exchange rate (TCRM), and scaled to unity in 2012;
and (iii) sovereign risk index (EMBI+) on the same scale as the previous indices. The latter
was downloaded from the database of the financial newspaper Ámbito Financiero.5

• We also included a dummy variable for pandemic years (H1N1 pandemic in 2009 and
COVID-19 in 2020) to check for outliers.

4.2 Parameter estimation

To build the matrix system and solve the linear program (11) we wrote a code in Euler Math
Toolbox matrix language and used the simplex algorithm of the software.6 Table 1 shows the
the estimated parameters after fitting the current series of the SNA whose base year is 2004. For
comparative purposes, we also fitted the series of C, I , X , M and Y from the 1993 SNA and
series of public spending, foreign trade price and sovereign risk of the period 1993-2012.7 Then
we combined both samples into a single estimator that would presumably yield better estimate.

5The EMBI+ database is daily, so the annual series was calculated by averaging within months and among months.
See https://www.ambito.com/contenidos/riesgo-pais-historico.html

6Euler Math Toolbox is a free software downloadable from http://euler-math-toolbox.de/
7The sources of these series were the same of those of the 2004-2020 period except for the sovereign risk that had to

be completed between 1993 and 1996 with proxy figures from [2, p. 126].
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Table 1: Parameters estimated by LAD from the 2004 SNA series. Results of the second stage of
the estimation process, without prior information.

Aggregate ˆ̂µ ˆ̂aii
ˆ̂B0

ˆ̂c1 ˆ̂c2
gt pXt pMt rt yt

Consumption 0.1634 -0.3180 – – – – 1.1027 -0.0241 0.0521
Investment 0.2172 -0.3180 – – – -0.0996 1.1314 -0.0470 0.0443
Exports 0.1740 -0.3180 – 1.0887 – – – -0.0922 0.0644
Imports – -0.3180 – – -0.6451 – 1.9631 -0.0307 -0.0049
GDP 0.1511 -0.3180 0.8210 0.1939 0.1212 -0.0173 – -0.0341 0.0258

To do so we formulated a version of the linear program (11) with prior information. The prior
information was introduced as a a stochastic constraint in the following fashion

vec(B∗) + vec(E)− + vec(E)+ = vec(ˆ̂B∗
0) (14)

where ˆ̂B∗
0 is the matrix of estimated parameters with the SNA93 series and vec(E) are error vectors

analogous to those of the program (11).8 This set of equations is introduced into the program as
follows

min
vec(E)

{
0′K(K+M+N+1)vec(B∗) + 1′K(T−1)vec(E1)

− + 1′K(T−1)vec(E1)
+ + 1′KMvec(E2)

− + 1′KMvec(E2)
+
}

subject to

 (X∗′ ⊗ IK) −IK(T−1) IK(T−1) 0 0
R 0 0 0 0
R∗ 0 0 −IKM IKM




vec(B∗)
vec(E1)

−

vec(E1)
+

vec(E2)
−

vec(E2)
+


=
≥
=

 vec(Y)
0

vec(ˆ̂B∗
0)

 ,

(15)

At this point the estimation procedure with prior information might appear somehow confusing.
To clarify it let us state the whole procedure as an algorithm, step by step:

(1) We solve the program (11) with the series of the SNA93 and compute the matrix of elastic-
ities λij dividing each element of b∗ij by π̂. Recall that estimating b∗ij involves a two stage
procedure, the first one to estimate π and the second one to estimate vec(B∗) with a proper
diagonal matrix A1.

8¡Caution! ˆ̂B∗
0 is not the parameter estimation that arises directly from solving the linear program with the SNA93

series, but an estimation in a different base year as will be explained later.
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Table 2: Parameters estimated by LAD from the SNA04 series. Results of the second stage of the
estimation process using the estimates of the SNA93 series as prior information.

Aggregate ˆ̂µ ˆ̂aii
ˆ̂B0

ˆ̂c1 ˆ̂c2
gt pXt pMt rt yt

Consumption 0.2845 -0.3180 – – – – 0.9431 -0.0028 0.0901
Investment 0.4721 -0.3180 – – – -0.0914 0.7873 -0.0048 0.0871
Exports 0.4219 -0.3180 – 0.7619 – – – 0.0038 0.1267
Imports 0.1121 -0.3180 – – -0.4053 – 1.5755 -0.0969 0.0381
GDP 0.1319 -0.3180 0.8929 0.1580 0.1052 -0.0120 – -0.0288 -0.0037

(2) We change the basis of the elasticities found in the previous step by multiplying each one by
the ratio of the indexes of its associated variables. for instance, to change the base of λC

Y we
multiply by the ratio (y2012/y2001)/(c2012/c2001). This relationship becomes evident when
we verify that the expression (4) is completely equivalent to

C

C1
=

µ

C1
+

[(
α
Y0
C0

)
Y1/Y0
C1/C0

]
Y

Y1
. (16)

where the coefficient in brackets is the elasticity expressed in the new base.

(3) Finally, we multiply the elasticities in the new base by the estimate of π with the series from

SNA04 and construct the matrix ˆ̂B∗
0. Note that we only use previous estimates of elasticities

to enrich the current estimates. We do not include in the prior information the constants, or
the parameter π.

In table 2 we present the estimated parameters using the elasticities of SNA93 (translated to base
2012) as prior information. To these parameters we imposed negativity restrictions on sovereign
risk and import price elasticities. Let us recall that we had omitted these restrictions for the com-
putation of table 1 to check the signs of these elasticities if they were not restricted.

4.3 Goodness of fit

The restricted LAD estimator is not a conventional estimator and therefore there is not a theoretical
development that enables testing the “significance” of the model coefficients. Instead, we focused
on evaluating the goodness of fit of the estimated to the observed series through two widely dissem-
inated metrics in econometric studies: the mean absolute percentage error or MAPE and Theil’s U
statistic [12, pp. 360-367]. The first is computed bu the formula

MAPE =
1

T − 1

T−1∑
j=1

100

∣∣∣∣zij − ẑij
zij

∣∣∣∣ (17)
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Table 3: Statistics of goodness of fit test, MAPE (mean absolute percetage error) and U of Theil
from the series of SCN04. Results of the second stage with and without prior information.

Macro aggregate MAPE s/prior ui s/prior MAPE c/prior ui c/prior
Consumption 5,3933 0,0738 5,8424 0,0810
Investment 5,7387 0,0828 6,5162 0,0998
Exports 8,2012 0,1306 9,6060 0,1309
Imports 7,0259 0,1188 8,9750 0,1262
GDP 2,8054 0,0481 3,4816 0,0518

while the second is computed

Ui =

√
1

T−1

∑T−1
j=1 (ẑij − zij)

2√
1

T−1

∑T−1
j=1 ẑ2ij +

√
1

T−1

∑T−1
j=1 z2ij

. (18)

The Theil statistic is scaled such that 0 ≤ U ≤ 1. Values close to 0 indicate perfect fit, while
values close to 1 indicate a practically null predictive capacity of the model.9 Although Theil did
not establish tolerance limits for U - but he showed that for small values of U , e.g. U < 0.3 - the
variance of the statistic is var(U) ≈ U2/(T − 1) (again we replace T by T − 1 for our particular
case) which would enable E(U) = 1 to be rejected if u < 1 − 2/

√
T − 1 approximately, as long

as T is large enough. In our case, the critical value of the Theil statistic would be u∗ = 0, 4836
although this value should be considered with caution since T = 16 cannot be considered a “large”
sample. On the other hand, let us remember that the X-13 ARIMA program [17, p. 138], through
the pickmdl function, considers acceptable specifications with MAPE less than 15 % in the last
three years of the series. Table 3 shows the statistics calculated for each series.

Figure 1 shows the series of private consumption, investment, exports and imports, estimated with
the model (9) and observed series. Figure 2 shows the series of GDP estimated directly through
(9) nd indirectly through a Laspyres index of its components, including public spending, and the
observed GDP as well.

5. Conclusion

The adaptive expectations model explains reasonably well the behavior of consumption, invest-
ment, exports and imports, as well as the GDP, all of them evaluated through the MAPE and
Theil’s U statistic, and also by simple graphic inspection. Of these aggregates, consumption is

9The above formulas assume the loss of an observation due to the lagged term of the endogenous variables.
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Figure 1: Estimated versus observed series of 2004 SNA, period 2005-2020. Indixes based on
2012 = 1. Estimation I, result of the second stage without prior information. Estimation II, result
of the second stage with prior information.
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Figure 2: Estimated versus observed income series (GDP) of SNA04, period 2005-2020. Indices
based on 2012 = 1. Estimation I, result of the second stage without a priori information. Estimation
II, result of the second stage with a priori information.
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the one that best fits the data while exports is the worst, although the fit of the five aggregates is
statistically “significant”. A detailed inspection of figure 1 suggests that the mismatch between
the estimated and the observed exports is mainly due to deviations in years 2015 and 2016. In
those years a number of overlaping events that justify the lack of fit: (i) an abrupt devaluation of
the local currency from the end of 2015 to mid-2016 as a result of the abolition of the exchange
rates control of the Central Bank; (ii) the elimination of taxes on exports of wheat, corn, meat, and
regional products, and the reduction of 5 points in soybean exportation taxes; and (iii) the recession
in Brazil (Argentina’s main trading partner) which recorded in 2015 the worst drop in decades in its
GDP.10 Possibly, we should consider these events as atypical and incorporate them into the model
as dummy variables. However, due to the small size of the sample we omitted these variables to
avoid the risk of overfitting.

By construction, the matrix X∗′ ⊗ IK has multiple collinearity relationships. In fact, the condition
number of this matrix is in the order of κ(X) ≈ 2×103, exceeding by far the tolerance levels given
by [9] for reliable matrix inversion in the context of least squares estimation. In linear program-
ming, such colinear relationships produce an effect known as “quasi-optimal alternative solutions”
[15]. In the extreme case of perfect collinearity relationships among the columns of the left hand
side matrix of the constraint systtem, it can be proved [4] that the linear program will have infinite
solutions. Then, by introducing a priori information, we reduce this possibility and therefore the
solution of table 2 should be more reliable than that of table 1. Note e.g. that when comparing
tables 1 and 2 we see that the estimates of the parameters associated with export and import prices
vary markedly, contrary to the estimated parameters of public consumption and country risk. The
result should not be surprising since the prices of imports and exports are related to each other
through the so-called terms of trade. As long as the terms of trade remain stable, the export and im-
port price series will be highly collinear, leading to the numerical instabilities already mentioned.
The advantages of incorporating prior information to estimate the model parameters without the
complications derived from high levels of collinearity in X, however, are not reflected in a better
predictive capacity of the macro aggregates. In table 3 it canbe seen that the model with prior
information shows slightly worse adjustments than that without previous information, suggesting
that in the adaptive expectations model there would be a kind of trade-off between precision in the
parameter estimation and predictive capacity.

Finally, when comparing the adjustments achieved with the adaptive expectations model (table 3) to
those of traditional seasonal ARIMA models (table 4), we see that the latter outperform the adaptive
expectations model only in private consumption but not in the rest of the macro aggregates. These
conclusions, however, should be taken with caution because in the table we compare MAPEs of an
annual model with those of quarterly models.

10Let us remember that the price indixes prepared by the DNESE consider FOB prices, so that our estimated elasticity
does not capture the exporter’s response to foreign trade tax changes.
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Table 4: MAPE of seasonal ARIMA models used to project macroeconomic aggregates for Ar-
gentina (see models proposed in [7]), period I-2004 to I-2021

Macro aggregate MAPE
Private Consumption 3.81
Public Consumption 1.14
Investment 8.38
Exports 9.53
Imports 10.90
GDP 7.11
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A. The Adaptive Expectations Model

We deduce Koyck’s adaptive expectations model for a generic function zt = f(xt). In general,
econometric texts present this deduction for the simple case of a function with a single exogenous
variable. Here we extend the deduction to vector and matrix format following the notation of the
macroeconomic model described above in order to facilitate the reader the reinterpretation of the
Koyck model in the context of the macro model. We depart from the function

zt = λZ ′x∗t + ϵt, ϵt ∼ N(0, σ2)

where x∗t represents the vector of expected levels for the exogenous variables, which are unobserv-
able. Koyck’s model is based on the following hypothesis

x∗t − x∗t−1 = Π (xt − x∗t−1) ⇐⇒ x∗t = Π xt + (I −Π) x∗t−1

where Π is a diagonal matrix such that πij = π, for all i = j, y π ∈ (0; 1]. This relation-
ship suggests that expectations regarding exogenous variables change or are updated based on the
discrepancy between the value that these variables actually take and their expected value in the
previous period. The adjustment rate π is constant and is the same for all exogenous variables.
Continuing with the development, if we replace x∗t for this last expression in ct

zt = λZ ′ [
Π xt + (I −Π) x∗t−1

]
+ ϵt.

If we propose an analogous expression for ct−1 pre-multiplied on both sides of the equality by
(1− π)

(1− π) zt−1 = (1− π)λZ ′x∗t−1 + (1− π) ϵt−1.

and we subtract it term by term from ct, we get

zt − (1− π) zt−1 = λZ ′ [
Π xt + (I −Π) x∗t−1

]
− (1− π)λZ ′x∗t−1 + ϵt − (1− π) ϵt−1

= π λZ ′ xt + ϵt − (1− π) ϵt−1

which implies that

zt = π λZ ′ xt + (1− π) zt−1 + νt, νt ∼ N
(
0,
[
1 + (1− π)2

]
σ2

)
which is Koyck’s adaptive expectations model. The extension of the expectations model to the set
of endogenous variables is immediate as long as the matrix Π is scalar.

zt − (I −Π0) zt−1 = Λ
[
Π1 xt + (I −Π1) x∗t−1

]
− (I −Π0)Λx∗t−1 + ϵt − (I −Π0) ϵt−1

= πΛ xt + ϵt − (I − πI) ϵt−1

The final expression is

zt = (πΛ) xt + (1− π) zt−1 + νt, νt ∼ N
(
0,
[
1 + (1− π)2

]
σ2I

)
.
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fundamentales. Facultad de Ciencias Económicas. UCES. 34 p.
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