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Abstract
This investigation explores the energy transportation occurring in nuclear star

matter, as it undergoes the “topological” transition to the “pasta” regime. We
measured the nucleonic thermal conductivity by sampling the energy of nucleons
along a well-established heat flux. Our results show that a dramatic change in the
conductivity accompanies the “pasta” breakdown. A decoupling phenomenon is
also observed for the nucleonic conductivity, depending on the “pasta” topology.
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1. Introduction

The thermal conductivity across the “inner crust” of a neutron star is expected
to be sensitive to temperature and the fraction of species [1, 2]. Although it
was first accepted for the protons and neutrons conductivity (κp and κn, re-
spectively) to be negligible with respect to that of electrons [3], researchers
pointed out that κp and κn can actually influence the thermal relaxation of a
neutron star [4, 5, 1, 6, 2].

The effect of nucleon thermal conductivity on the late-time cooling of neu-
tron stars is somewhat controversial throughout the literature. The observed
late-time cooling of neutron stars was shown to be consistent with low ther-
mal conductivities [7]. However, the existence of “impurities” in the pasta
environment had to be postulated in order to match the right cooling curve
[2]. Also, the finding of “spiral defects” within this context was considered as
an additional source of electron scattering [7, 8].

Regardless of the existence of defects in the pasta environment, the true
“effective” conductivity remains rather uncertain. Variations of an order of
magnitude may be expected due to the alignment of the pasta structures with
respect to the radial axis of the star [2]. Randomly oriented “pasta slabs” may
reduce the conductivity by 37%, according to molecular dynamics simulations
reported in Ref. [2].
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Our concern is placed on the “inner” crust situation at low to moder-
ate temperatures. The pasta phase is expected to dominate the topological
scene at the sub-saturation densities [9, 10]. This topological regime has al-
ready been studied in the context of the equation of state (EoS) [11, 10, 9].
But research on the thermal conductivity still focuses on the energy carried
by electrons, disregarding the energy flux due to collisions between nuclear
species [1, 2, 12]. Other research areas have insisted on the role of the non-
electronic heat carriers in lattice-like or liquid-like systems [13, 14].

We will focus on the heat conduction due to nucleons in the pasta regime.
We presume that topological structures may enhance or hinder the energy
transport due to nuclear carriers, as first observed in Ref. [15]. We will con-
sider, however, that nucleons are embedded in an electron gas environment,
in order to accomplish a charge-neutral system of nucleons and electrons. The
term “thermal conductivity” in this context means the “phononic” or “lattice”
contribution to the thermal conductivity. No further mention to the electron
contribution will be done.

The investigation is organized as follows. Section 2 summarizes the theo-
retical background for the thermal conductivity κ in the context of the molec-
ular dynamics model (MD). Section 3 explains the preparations for measuring
κ within the pasta scenario. The corresponding results are exhibited in Sec-
tion 4. For clarity reasons, we separated the analysis into symmetric and
non-symmetric matter. Our conclusions are presented in Section 5.

2. Background

We use classical molecular dynamics (CMD) to characterize the thermal trans-
port of nuclear star matter. This approach naturally drives the system to its
free energy minima within a very complex energy landscape given by the
inter-particle interactions and boundary conditions. Literature results on the
validity of this approach can be found in Refs. [10, 9, 16, 17, 18].

2.1 The potentials

Nuclear matter is considered as a three particle system composed of protons,
neutrons and electrons. The latter, however, is envisaged as a gas that actually
introduces a screening effect on the Coulomb potential between protons. The
potentials for neutron-proton (np), neutron-neutron (nn) and proton-proton
(pp) interactions were first set by Pandharipande to attain a binding energy
at the saturation density of E(ρ0) = −16 MeV/nucleon and a compressibil-
ity of 250 MeV. The electrons screening effect was later introduced through a
Thomas-Fermi potential with an “effective” screening length λ of 20 fm [19].
The whole set reads as follows
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Parameter Value Units
Vr 3097.0 MeV
Va 2696.0 MeV
V0 379.5 MeV
µr 1.648 fm−1

µa 1.528 fm−1

µ0 1.628 fm−1

λ 10 fm
rc 5.4 fm
r′c 20 fm

Table 1: Parameter set for the CMD computations (New Medium model).
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where q is the electron charge and rc, r
′
c are the cutoff distances for the Pand-

haripande an Thomas-Fermi potentials, respectively. The value for the pa-
rameters appearing in Eq. 1 can be seen in Table 1.

2.2 The thermal conductivity

The thermal conductivity κ corresponds to the set of transport coefficients
relating the heat flux (i.e. energy flux J) to the temperature gradient ∇T ,
through the (phenomenological) Fourier law

J(t) = −κ∇T (2)

where κ corresponds to a second rank 3 × 3 tensor for non-isotropic matter.
Notice that the constitutive relation (2) is intended as a “macroscopic” one,
whenever matter is considered as a continuum. The energy flux J represents a
somewhat “mean” flux density 〈j〉 transported across a small volume V (that
is, J = 〈j〉.V). The calculation of thermal transport properties from atomistic
simulations is well established.[20, 21, 22, 23]

We will only consider those situations where J and ∇T are collinear (say,
for example, along the ẑ axis) and use a non-equilibrium method for computing
the thermal conductivity κz is proposed by Müller-Plathe (see Ref. [20]) from
the average heat flux and temperature gradient.

κz = − lim
t→∞

〈Jz〉
〈∂T/∂z〉

(3)
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If the medium is isotropic, common practice sets the mean thermal con-
ductivity as (kx + ky + kz)/3.

Notice that the linear nature of Eqs. (2) and (3) requires relatively small
temperature gradients.

In a nutshell, the Müller-Plathe procedure [20] generates a heat flux of
known magnitude and the temperature gradient is obtained as local averages
of the kinetic energy. The system is divided in thin bins along the the heat
flux direction (see Fig. 1 for details); the first slab is labeled as the “cold” slab,
while the slab in the middle is labeled as “hot”. A heat flux is generated by
exchanging the velocities of two particles (with the same mass), the hottest
particle in the “cold” bin and the coldest one in the “hot” bin (see Fig. 1).
Thus, the system is (artificially) driven out of equilibrium, and a heat flux
J develops through the system of interest in the opposite direction for the
equilibrium restoration. This flux is expected to reach the stationary state if
the exchanging rate is held regularly for a long time.

Figure 1: (On-line color only) Schematic representation of the Müller-Plathe
procedure. The blue and red bins correspond the the “cold” and “hot” slabs,
respectively. The horizontal flat arrows stand for the particles velocity. The
curved arrows (green and yellow, respectively) represent the velocity exchange
process.

In order to generate an external heat flux, particle velocity exchanges are
performed periodically during the MD simulation. Recall that the species
themselves are not exchanged, but only the velocities. Thus, the “pumping”
process only transports kinetic energy (for particles with the same mass). This
procedure conserves total energy and linear momentum.

The heat flux introduced by the velocity exchange is hard to compute from
dynamical magnitudes. The computation from the net transported (kinetic)
energy is somewhat easier since
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〈Jz〉+
1

2Axy

[
1

τ

T∑
n=1

1

2
m(v2h − v2c )

]
= 0 (4)

where the expression between the square brackets represents the mean (ki-
netic) energy exchanged during the time period τ . vh and vc refers to the
velocities of the hot particle and cold particle, respectively. The factor 2Axy
corresponds to the cross section of the slabs (two faces).

The temperature profile is obtained by computing the local (kinetic) tem-
perature for each slab. Once steady state is reached, the temperature profile
is expected to be linear away from the cold and hot bins where velocities are
exchanged, provided the heat flux remains small. Further details can be found
in Ref. [20].

We stress the fact that the balance condition (4) links the heat flux J to
the (artificial) kinetic energy transportation introduced by the Müller-Plathe
procedure. The velocity exchange is not restricted to pairs of similar parti-
cles, but also across species (with the same mass). Therefore, the procedure
enables the computation of the thermal conductivity for the set of all the
nucleons, or for the set of protons and neutrons separately. The meaning of
either coefficients, though, will be quite different.

3. Simulations

At a first instance, the system was cooled from T = 4 MeV down to the solid
(pasta) state (say, T = 0.1 MeV). The density ρ ranged from 0.03 fm−3 to
0.05 fm−3. Nice lasagnas or spaghettis resulted after the cooling, although
not completely aligned to the canonical axes (see below). In order to im-
prove the alignment, we softened the pasta by raising the bath temperature
to 0.8− 1.2 MeV, and then, we performed the corresponding transformations.
The pasta was finally cooled back to 0.1 MeV.

At a second instance, the bath temperature was increases from 0.1 MeV to
2.1 MeV, while the nucleons’ positions and velocities were recorded at regular
time intervals. The recorded configurations were set as the initial conditions
for the thermal conductivity measurements.

The thermal conductivities reported in Section 4 correspond to those ob-
tained following the Müller-Plathe procedure (see Ref. [20]). Data was col-
lected after a steady state was reached from each initial condition (within the
fluctuations typical of small systems). Recall that the Müller-Plathe proce-
dure is known to attain a precision of 10% (on a system of 2600 Lennard-Jones
particles [20]).
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The Müller-Plathe procedure requires the binning of the primary cell, in
order to compute the temperature gradient across the bins (that is, along the
heating flux direction). This is why we demanded a proper alignment of the
pasta with respect to the canonical axes. We set the number of bins to 20.

For each pasta topology we computed two values of the thermal conduc-
tivity: “parallel” and “transverse”. The former corresponds to the heat flux
along the pasta. The latter corresponds to the heat flux running across the
pasta. Each measurement were computed separately.

Whatever the heat flux direction, we computed the thermal conductivity
by either flipping the protons’ and neutrons’ velocity separately, and all the
nucleons regardless of their nature. The former means that only one specie
contributes to the velocity exchange in Eq. (4). This distinction became very
useful when analyzing non-symmetric matter (see Section 4.2).

4. Results

4.1 The thermal conductivity κ of symmetric matter

We first computed the thermal conductivity for symmetric neutron star matter
(x = 0.5) as a function of temperature in the 0.1 − 2.1 MeV range. This in-
cludes the solid-liquid transition (T ∼ 0.5 MeV) and the topological transition
(T ∼ 1 MeV). The computation was carried out in two ways: by considering
the heat flux due to all the nucleons, or, considering only one kind on nucleons
(say, the protons; see Section 3 for details). Fig. 2a shows the proton thermal
conductivity for a wide temperature range. Fig. 2b shows the details of the
smoothed data computations obtained for either protons and all the nucleons.

Two regimes can be distinguished immediately according to Fig. 2. The
thermal conductivity exhibits a smooth slope above T ' 1.25 MeV, while a
dramatic change occurs below this threshold. The later appears as a “decou-
pling” between the thermal conductivity parallel to the lasagna (κz) and the
one orthogonal to this direction (κx). The “decoupling” pattern is essentially
the same whether all the nucleons are considered or only the protons (for
x = 0.5).

It can be noticed in Fig. 2 that the conductivity for all the nucleons ap-
pears somewhat shifted up with respect to the protons’ conductivity. The
large fluctuations in the data do not allow a definite conclusion on this phe-
nomenon. However, a small bias seems reasonable due the (local) density of
the considered specie (say, nucleons or protons only). An insight to this issue
is given at the end of this Section.

The vanishing values of the thermal conductivity across a well established
lasagna (say, for T < 1 MeV) can be easily explained because of the existence
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Figure 2: (On-line color only) Thermal conductivity κ vs. temperature dur-
ing the heating evolution after the lasagna was established. The system den-
sity was ρ = 0.05 (x = 0.5). The smoothening was done following a moving
average procedure of ±10 points. The rounded gray points correspond to the
raw data obtained over all the nucleons. The triangular gray points corre-
spond to the raw data obtained over protons only.
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of voids between the slabs (see Fig. 3). The negative slope for the parallel κ
(i.e. along the lasagna) means that the “solid pasta” presents an enhanced
conductivity with respect to the “liquid pasta”. This behavior is common to
other materials.

The slab structure of the lasagnas undergoes openings for decreasing den-
sities in the simulation cell. Fig. 3 shows how these openings spread over the
slabs until the lasagna is no longer sustainable, moving to the spaghetti -like
structure (see Fig. 3a). Fig. 4 exhibits the corresponding proton thermal con-
ductivity (after the data smoothening).

The “decoupling” pattern goes through the explored densities (see Fig. 4),
including either spaghettis or lasagnas. The “decoupling threshold” (say,
T ' 1.25 MeV) remains unchanged (within the current measurement errors).
The (parallel) thermal conductivity, however, exhibits a density dependency
on either side of this threshold. According to Fig. 4, the parallel κ (protons
only) increases for increasing densities all along the explored temperatures.
The orthogonal κ (protons only) meet this behavior above the “decoupling
threshold”, that is, after the pasta breakdown occurs.

Notice that the solid-like state also attains some kind of density depen-
dence for κ (protons only). The current fluctuations of our measurements
does not allow to distinguish clearly between the corresponding thermal con-
ductivity values at ρ = 0.03 (spaghettis) and ρ = 0.04 (washed out lasagna).
But Fig. 4 shows fairly different values between ρ = 0.03 and ρ = 0.05.

We may summarize our results as follows. The pasta breakdown process
(during a heating evolution) accomplishes a dramatic change in the thermal
conductivity of symmetric neutron star matter. For “cold” pastas, the ther-
mal conductivity is only possible along the pasta structure, attaining a “de-
coupling” between orthogonal directions. The solid state of “cold” pastas
even enhances the conductivity. But warming the pastas above the threshold
T ' 1.25 MeV, breaks down its topological structure, connecting regions that
were once separated by voids. This situation allows heating on any direction,
and thus, the thermal conductivity switches to an homogeneous (isotropic)
value, that may depend on the system density.

4.2 The thermal conductivity κ of non-symmetric matter

The next step in the investigation focused on the thermal conductivity be-
havior for proton ratios varying from x = 0.5 down to x = 0.3. The nucle-
ons’ potentials remained unchanged, as expressed in Section 1. Fig. 5 shows
the corresponding profiles (up-to the cut-off distance) in comparison with a
lasagna-like background. Notice that the slabs widths do no exceed the cut-
off distance, although they look more irregular than in the case of symmetric
matter.
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(a) ρ = 0.03 (b) ρ = 0.04

(c) ρ = 0.045 (d) ρ = 0.05

Figure 3: Surface plots for protons at T = 0.1 MeV (x = 0.5). The nucleon
densities are indicated below each snapshot.
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Figure 4: (On-line color only) Proton thermal conductivity κ vs. tempera-
ture for densities in the range 0.03 to 0.05 fm−3 and x = 0.5 (see insert for
details). The smoothening was done following a moving average procedure of
±10 points. The dashed lines correspond to the thermal conductivity values
along (parallel) the pasta structure. The continuous lines correspond to the
thermal conductivity across the pasta structure.
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Figure 5: (On-line color only) Potentials as a function of distance (fm).
The red curve corresponds to Vnn(r), the orange curve corresponds to Vnp(r)
and the green one to Vpp(r) (includes the Coulomb contribution. The semi-
transparent image in the background represents a lasagna-like structure for
ρ = 0.05 and x = 0.3 (only protons are represented).

The thermal conductivity for non-symmetric neutron star matter was com-
puted in the same way as in Section 4.1. Fig. 6 shows the proton thermal
conductivity behavior for the x = 0.3 situation, evolving from “cold” (solid)
temperatures to “warm” ones. The corresponding snapshots (protons only)
are also exhibited.

Notice that the (qualitative) patterns appearing in Fig. 6 resemble those
exhibited in Fig. 2 for the symmetric situation (and for similar density). The
proton conductivity across the slabs vanishes. Besides, the conductivity “de-
coupling” is present on either symmetric and non-symmetric matter, in corre-
spondence with the topological transformations. The “decoupling threshold”
at this instance, however, appears somewhat biased with respect to the sym-
metric situation.

Fig. 7 brings out the complete picture for the proton thermal conductiv-
ity κ. Although the profiles are qualitatively similar, the asymmetric proton
conductivity values scale down with respect to the symmetric proton conduc-
tivity. Say, the parallel conductivity for x = 0.3 (see Fig. 7) never surpasses
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Figure 6: (On-line color only) Proton thermal conductivity κ vs. temperature
for ρ = 0.05 and proton ratio x = 0.3. The smoothening was done following a
moving average procedure of ±10 points. The rounded gray points correspond
to data obtained along the lasagna direction. The triangular gray points
correspond to data across the lasagna structure.
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0.01 c/fm2, while the corresponding values for x = 0.5 appear always above.
Furthermore, the later reports a maximum at the solid state (“cold” temper-
atures), while the former does not.
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Figure 7: (On-line color only) Proton thermal conductivity κ vs. temperature
for ρ = 0.05 and proton ratios in the range x = 0.3 to 0.5 (see insert for
details). The smoothening was done following a moving average procedure of
±10 points. The dashed lines correspond to the thermal conductivity values
along (parallel) the pasta structure. The continuous lines correspond to the
thermal conductivity across the pasta structure.

The overall thermal conductivity (that is, considering all the nucleons) ap-
pears to be very similar for symmetric and non-symmetric matter, at “warm”
temperatures. The corresponding profile for x = 0.3 is shown in Fig. 8. The
neutron thermal conductivity is also included. Both profiles are remarkably
similar, meaning that the thermal conduction for x = 0.3 is mostly achieved
by neutrons.

The above observations indicate that the thermal conductivity for non-
symmetric matter shares the same qualitative behavior as the symmetric mat-
ter, despite that pastas are now embedded in a cloud of neutrons. The neutron
thermal conductivity, though, resembles better the overall conductivity than
the proton conductivity.
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Figure 8: (On-line color only) Thermal conductivity κ vs. temperature for
ρ = 0.05 and proton ratio x = 0.3. The blue lines correspond to the neutron
conductivity, while the orange lines consider all the nucleons (see insert for
details). The dashed lines (regardless for the color) correspond to the conduc-
tivity along (parallel) the spaghetti structure. The continuous lines, instead,
correspond to any direction across the spaghetti structure. The smoothening
was done following a moving average procedure of ±10 points.
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5. Conclusions

The thermal conductivity of pastas raises as a complex magnitude that is far
from attaining a well established behavior. Researchers admit that variations
of κ of (at least) an order of magnitude can be expected at sub-saturation
densities, and temperatures below 2 MeV. The proton fraction is also a sig-
nificant source of variations and a challenging field of investigation.

Since the pasta structures may become too complex for an increasing num-
ber of nucleons, we focused on simple structures (say, lasagnas and spaghet-
tis) housing 4000 nucleons. We arrived to the main conclusion that the pasta
breakdown process accomplishes a dramatic change of the phononic thermal
conductivity. Neutron star matter switches from a strong non-isotropic regime
(at the well-formed pastas regime) to an isotropic one, as temperature in-
creases. This occurs sharply around T ' 1 MeV for symmetric matter, and
somewhat below this threshold for non-symmetric matter.

The above conclusion is a compelling reason for associating the pasta topo-
logical transition to low (or high) phononic thermal conductivities, although
an estimate of the “effective” κ across the neutron star crust is not yet avail-
able. The pasta breakdown threshold, though, appears as a key issue for this
estimate.
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asymmetric nuclear matter. Phys. Rev. C, 89:024611, Feb 2014.
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