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Abstract 
There has been a rise in interest for the seasonal adjustment of weekly data over the last 
few years. However, standard seasonal adjustment programs, such as X-13ARIMA-
SEATS, assume constant periodicity, but weekly data can have either 52 or 53 weeks in a 
year. Weekly data are also difficult to seasonally adjust for multiple reasons. The week in 
which official holidays occur varies from year to year; some holiday effects do not occur 
every year; and even if the number of weeks in a year were a constant integer, the seasonal 
patterns would still change from year to year since the structure of the days in a month 
shift. The Bureau of Labor Statistics currently adjusts two weekly unemployment insurance 
claims series using a regression approach developed in the early 1990s, but other 
innovative programs are now in various stages of development. This paper will discuss 
various attributes of the programs, including ease of use, available diagnostics, and any 
technical support. 
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1. Introduction 
 
Only a few papers have ventured into the realm of seasonal adjustment for weekly time 
series data. One of the reasons for this is that modeling weekly series is generally harder 
than for monthly and quarterly series. While there are well-developed and well-supported 
free software programs for seasonally adjusting monthly and quarterly data (e.g., see 
Census Bureau, 2020, and Grudkowska, S., 2017), weekly programs tend to be more 
complicated to use and generally less developed. 
 
Few government agencies publish seasonally adjusted weekly time series despite their 
timely periodicity. The Employment and Training Administration in the U.S. Department 
of Labor have seasonally adjusted weekly Unemployment insurance (UI) claims series that 
go back to 1967. The Federal Reserve seasonally adjusts weekly raw steel production but 
recently stopped the adjustment of the weekly money supply series. Other agencies, such 
as the U.S. Census Bureau, the UK Office of National Statistics, the Australian Bureau of 
Statistics, and Statistics New Zealand, are all working on or interested in producing weekly 
adjustments. 
  

 
1 Views expressed are those of the authors and do not necessarily reflect the views or policies of 
the U.S. Bureau of Labor Statistics. 
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Weekly data do not have constant periodicity since there can be either 52 or 53 weeks in a 
year. A simple regression model for a differenced series y can consist of a seasonal 
component plus error: 
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The seasonal component can be specified as: 
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where Ny and Nm are the number of days in the year and the current month, Yt and Mt are 
the day of the year and day of the month where week t ends, and l and k are the number of 
terms. For day-of-year effects, Ny will be equal to 365 or 366 while day-of- month effects 
(Nm) are 28, 29, 30, or 31. Note that if monthly effects are the same for all months, adding 
the within-month effects will allow fewer parameters. Another way to handle leap years 
could be to set the periodic effect for February 29th the same as that for February 28th. 
Otherwise, the leap-year effect is spread throughout the year. Whether the within-month 
terms are needed depends on the series. If the monthly effects are the same for all months, 
adding within-month effects will allow using fewer sine and cosine pairs to model the 
yearly effects. 
 
Another way to model weekly seasonality is with splines. Harvey, Koopman, and Riani 
(1997) describes this in detail. An argument for using splines is that it can be easier to 
employ a more parsimonious seasonal component, but not all frequencies need to be 
modeled with trig seasonals to adequately capture the seasonal effects. Even if the number 
of weeks in a year were a constant integer, there is still a phase shift that will affect the 
seasonal pattern (see figure 1 in Pierce, Grupe, and Cleveland (1984) for a visual example). 
Thus, a weekly seasonal component cannot be modeled with dummy variables. Using 
periodic splines can be advantageous in certain cases but are more complex to implement 
and has other disadvantages. See Laidray, et al. (2018) for more details. 
 
Holidays can be difficult in weekly modeling. They can be thought of as special seasonals 
since they move across weeks as holidays like Easter and Ramadan move across months. 
While the U.S. Thanksgiving holiday is always in the month of November, it can be in 
week 47 or week 48 (BLS uses Saturday as the reference day). Easter can be in either 
March or April but will also vary across weeks 12-18. Thanksgiving can be in either week 
47 or 48, but if it falls “late” in the month, the effect can be different. Thus, removing the 
holiday effects from the seasonally adjusted series might be wise. 
 
The first publicly available software program specifically designed for the seasonal 
adjustment of weekly data is probably the CATS (Calendar and Times Series) program 
(Cleveland 1986) written by William P. Cleveland based on work by Pierce, Grupe, and 
Cleveland (1984). The program is written in Fortran and was used by the Bureau of Labor 
Statistics (BLS) to seasonally adjust UI data for many years. The program has many 
capabilities for seasonal adjustment but only produces deterministic seasonal factors. It can 
also handle monthly and quarterly data. Different weighting patterns are built into the 
program for holidays. In addition, ARIMA models can be fit to the residuals, and forecasts 
can be made for the original series and the seasonal factors. 
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The current program used by BLS to officially seasonally adjust the UI claims series was 
developed by Cleveland during the early 1990s at the Federal Reserve (See Cleveland, 
Evans, and Scott 2018). Changes were made to the original Fortran code by BLS staff, and 
the program is called MoveReg for “moving regressions.” While this program has served 
BLS well, we are looking to move to another program that is more flexible and that 
explicitly models the time series components. As interest in seasonally adjusting weekly 
data has increased recently, other programs are now available or in development. The 
purpose of this paper is to briefly introduce, review, and compare different programs. 
 
Andrew Harvey popularized the used of structural time series (STS) models to analyze and 
seasonally adjust economic time series data (see Harvey 1989). A base structural model 
(BSM) consists of trend, seasonal, and irregular components. However, as STS models are 
highly flexible, a BSM model can also easily be extended to include calendar, sampling 
error, and outlier components as needed. STS models can also handle high-frequency data 
(see Harvey, Koopman, and Riani (1997) and Harvey and Koopman (1993)). It is 
effectively a regression model with time-varying coefficients with smoothing capabilities. 
Rajesh Selukar developed ways to implement STS models in Proc SSM (SAS 2020) and 
Proc UCM in the SAS statistical software package. Many of SSM’s and UCM’s algorithms 
are based on work by De Jong (e.g., De Jong 1989). For this paper, we choose to use SSM 
although UCM is also appropriate (see Selukar 2011). Note that an STS model can be 
extended to higher frequencies such as daily or hourly (Harvey and Koopman 1993). 
 
Recently, there is new work on modeling seasonality with ARIMA models. Jean Palate of 
the National Bank of Belgium is developing an R implementation of a fractional airline 
model (FAM) in state-space form where the seasonal periodicity is 52.17 for weekly series 
with the usual canonical decomposition of SEATS. This model can also be extended to 
higher periodicities and is briefly explained in Section 2.2. 
 
Other programs that could be considered for weekly seasonal adjustment are STL 
(Cleveland, et al. 1990), and the KFAS routine in the R software package. STL is a filtering 
procedure that is based on the loess smoother and produces trend, seasonal, and remainder 
components. STL never really caught on across statistical agencies so we do not evaluate 
it here. The Office of National Statistics in the UK is looking at FAM and will likely report 
on their experiences. KFAS has many similarities to Proc SSM and is likely a suitable 
approach. Another possibility is Ecce Signum (Sigex) which is under development by 
Tucker McElroy and James Livsey of the U.S. Census Bureau (McElroy and Livsey 2020). 
This package is available in R and can handle various multivariate models. A download is 
available online on GitHub. 
 
The remaining layout of this paper is as follows. Section 2 reviews the weekly seasonal 
adjustment programs that are either currently available or in development: Sections 2.1-2.3 
describe our three programs selected to review; Section 3.1 discusses our data; and Section 
3.2 compares output from MoveReg, SSM, and FAM for UI data. Section 4 offers a 
summary. 
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2. Weekly Programs 
 
2.1 MoveReg 
The advantage of the MoveReg program over the earlier CATS program is that it uses 
locally-weighted regressions to allow stochastic seasonal factors. Separate regressions are 
used for each year with the same seasonal model but different weights. The program 
works well but is more difficult to set up and run than, e.g., X-13ARIMA-SEATS. Many 
changes were made to the original Fortran code by BLS staff, and the program was 
named as MoveReg for “moving regressions.” A detailed description of the program and 
its optional SAS interface is in Cleveland, Evans, and Scott (2018). MoveReg has been 
used by BLS since 2002 to seasonally adjust the weekly UI claims series.2 The current 
version is now 6.0. Twelve holidays are built into the program with choices of weighting 
schemes. User-supplied holidays can also be used. Outliers can be included by adding in 
the year and week. Running a series is very quick. Since MoveReg uses locally-weighted 
regressions for stochastic seasonal factors, the program likes data to be input in full years. 
 
The series are always differenced in MoveReg, but the program has been recently updated 
to use either additive or multiplicative models, level shifts (traditional 0s and 1s or the X-
13 style with -1s and 0s), and temporary change outliers (see Monsell 2021). Note that BLS 
uses trig seasonals as shown in Equation 1.1 (but without within-month effects). 
 
With the IC data, every week from the onset of the pandemic through 2020 is an additive 
outlier (AO). One way to utilize parsimonious outlier effects during the Covid-19 
pandemic, is to consider using all three of the usual outlier types: AOs, temporary changes 
(TC), and level shifts (LS). Otherwise the process will be equivalent to the projected factor 
seasonal adjustment method for the whole pandemic period. 
 
The basic steps are: 

1) Fit a fixed global regression without weights to estimate holiday and outlier 
effects 

2) Remove the trend, calendar, and outlier effects to make y* 
3) Use separate regressions for y* for each year with the same seasonal model but 

different weights 
4) Restore trend, outlier, and holiday effects 
5) Compute the projected seasonal forecast factors 
6) Return values to original scale 

 
A few settings need to be determined in advance: 

1) AR coefficient 
2) Variance ratio 
3) Number of terms in the trig seasonals 
4) Holidays and their weights 
5) Outliers (AOs, LSs, and TCs) 
6) TC decay factor (if TC outliers are specified) 

 
Cleveland, Evans, and Scott (2018) assist in how to determine some of the settings. Also 
see Monsell (2020) for more information on program updates. As holidays and outliers are 

 
2 See https://www.bls.gov/lau/seasonal-adjustment-for-weekly-unemployment-insurance-
claims.htm for details. 
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in their own components, the user can decide what to include in the final seasonally 
adjusted series. 
 
Given the model 
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The AR coefficient and the variance ratio affect the smoothness of the seasonal factors. For 
example, setting 0.5   and 16   is somewhere between the X-11 3x5 and 3x9 seasonal 
filters. 
 
A typical additive model can be: 
 

t t t t tY S H O e      
 
where ∇𝑌௧ is the differenced observed series (at time t), S is the seasonal component, H is 
the holiday component, O is the outlier component, and e is an error term. In practice, the 
series is first differenced (and sometimes logged), and the trend component is not explicitly 
modeled. 
 
A few diagnostics are provided including Box-Ljung statistics, a table of ANOVA 
statistics, and t-values/p-values for outlier, holiday, and seasonal coefficients. The optional 
SAS interface adds nine plots including the spectra, revisions, sub-plots by trig coefficients, 
and seasonal sub-plots by week. 
 
An example of the input control file is here: 
52 0 0 
3 17 1 13  2 2 1   nout nls ntc hol nfilt mxtype lsx13 
0.92               tc decay factor 
0.4  16            phi sigratio 
60                 number of trig coefficients 
2003 01 30 2021 01 30 7 
49 2008  47 2019  28 2020 
13 2020 
0 0 0 3  10  8  1   4   7   2  12  11   9 
8  1  0 0 0 0 0 0 1. 1.      New Year 
1  1  1.                     M. L. King Birthday 
1  1  1.                     Presidents Day 
8  8  1.  0 0 0 0 0 0 0      Easter 
1  1  1.                     Memorial Day 
1  1  1.                     July 4th 
2  2  0. 1.                  Labor Day 
1  1  1.                     Columbus Day 
1  1  1.                     Veterans Day 
1  1  1.                     Thanksgiving 
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Outliers are listed in order by type (AOs first, LSs, TCs). More details are in Cleveland, 
Evans, and Scott (2018) and Monsell (2020). 
 
Variances for week-to-week changes were researched in Evans and Sverchkov (2016). A 
parametric bootstrap is employed. The procedure is straightforward and likely to be 
helpful. 
 
2.2 Fractional Airline Model 
The fractional airline model is an implementation developed by the Bank of Belgium as 
part of an R package that accesses a Java library under development for the JDemetra+ 
program (see Grudkowska 2017). JDemetra+ is a tool for seasonal adjustment developed 
by the National Bank of Belgium in cooperation with the Deutsche Bundesbank and 
Eurostat in accordance with the Guidelines of the European Statistical System (ESS). 
 
The rjdhighfreq package contains routines for the modelling and seasonal adjustment of 
high-frequency series (see Palate 2020). One of those methods is the fractional airline 
decomposition examined in this paper. A fractional airline model can be viewed as first-
order Taylor expansion of an "airline model" (ARIMA (0 1 1) (0 1 1)s, where s is the 
seasonal period) with non-integer periodicity (in the weekly case, s = 365.25/7 = 52.1726). 
In the case of a weekly model, the autoregressive polynomial of the model is 
 

(1 − 𝐵)((1 − 0.82𝐵ହଶ) − (0.18𝐵ହଷ)) 
 
and the moving average polynomial is 
 

(1 − 𝜃ଵ𝐵)൫(1 − 0.82𝜃ହଶ𝐵
ହଶ)(1 − 0.18𝜃ହଷ𝐵

ହଷ)൯. 
 
A canonical decomposition is performed as in Burman (1980) and the different components 
are estimated by means of the Kalman smoother (with exact diffuse initialization). These 
adjustments are analogous to those of the SEATS software developed by Gómez and 
Maravall (see Gómez and Maravall 1997 and Gómez and Maravall 2001). 
 
This version of the high dimensional modeling R package includes several useful 
innovations, including: 
 

 Automatic outlier identification for level shift and point outliers, with the ability 
to specify a critical level for the outlier t-statistic 

 Fixed regression terms, which can be used to incorporate holiday and other outlier 
effects 

 An optional standard error term for the signal extraction components 
 The ability to generate forecasts and backcasts 
 R routines that can be used to generate moving holiday regressors to include in the 

joint model 

More options and output enhancements are expected in newer versions. Currently, FAM 
gives you AICs, model coefficients and their T-values. 
 
To facilitate comparison with the other methods, we used holiday regressors as defined in 
the MoveReg Fortran program. These holiday regressors were generated from R functions 
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developed at BLS. Other R functions allow for the generation of holiday and outlier effects, 
FAM model summaries, and the assignment of outlier effects to different components of 
the signal extraction (AOs to the irregular component, LSs to the trend component), and 
are available in an R package developed by Brian Monsell. Some of these features may be 
included in future FAM updates. An example of R code for running FAM is included in 
the appendix. 
 
2.3 SSM 
A base structural model (BSM) consists of trend, seasonal, and irregular components. 
However, as STS models are highly flexible, a BSM model can also easily be extended to 
include calendar, sampling error, and outlier components as needed. STS models can also 
handle high-frequency data (see Harvey, Koopman, and Riani (1997) and Harvey and 
Koopman (1993)). It is effectively a regression model with time-varying coefficients with 
smoothing capabilities. Two ways to implement an STS model are with SSM or UCM in 
the SAS statistical software package. For this paper, we chose to use SSM although UCM 
is also appropriate. 
 
SSM is a powerful modeling procedure and has many options for time series data. For 
example, SSM can be easily adapted to perform ARIMA modeling, account for sampling 
error, forecasting, and can model the trend component in several different ways. Also, 
outlier and holiday components can be specified as needed in the model to handle many 
different effects. Missing values are also not a problem. Six different optimizers for 
maximum likelihood estimation give the user choices depending on the problem. 
Automatic detection is available for level shifts and additive outliers. Speed is not a big 
problem and SSM works well in both the Linux and PC environments. Scaling can be very 
important with SSM. A suggestion is to scale the observed series between 1 and 100. Fixing 
the hyperparameters during official production can increase execution speed. 
 
Some disadvantages for SSM are obvious for those who are used to using a seasonal 
adjustment program such as X13ARIMA-SEATS. SSM does not choose between additive 
and multiplicative models, automatically detect temporary change outliers, test for trading 
day effects, etc. It is also missing some key diagnostics for seasonal adjustment, but they 
can be easily programmed in SAS. A key disadvantage is that SSM does not automatically 
produce forward-filter estimates that many of us expect with Kalman filter programs. 
However, the one-step-ahead prediction errors that are needed for diagnostics can be 
produced by iterating through the series and this takes much less time that one might 
expect. Graphical diagnostics can easily be produced with SAS/Graph or Proc SGPLOT or 
from many other statistical packages. 
 
The seasonal component can be structured for weekly data with trigonometric seasonals as 
shown in Equation 1.1, dummy variables, or time-varying periodic splines. We choose to 
use the same trig seasonal model here as for MoveReg (the default seasonal component 
does not account for leap years). Using periodic splines can be advantageous in certain 
cases but is more complex to implement and has some disadvantages. See Laidray, et al. 
(2018) for more details. 
 
Holidays are handled similarly to those in MoveReg, but we center them. The New Year 
holiday’s weight is split between the first two weeks as in MoveReg. Since they are all 
“moving,” we delete the holiday effects from the final seasonally adjusted series. 
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An additive decomposition model for SSM in our case is: 
 

t t t t t tY T S I H O      

 
where 𝑌௧ is the observed series (at time t), T is a trend component, S is a seasonal 
component, I is an irregular component, H is a holiday component, and O is an outlier 
component. The trend component consists of a local linear trend with a level and slope to 
form an integrated random walk. 
 
An example of Proc SSM code for weekly seasonal adjustment is below. The trig 
regressors are defined outside the proc since the periodicity is not constant. The holidays 
and outliers are defined in macro variables to simplify any changes. 
 

3. Results from MoveReg, FAM, and SSM 
 
3.1 Data 
The data used in this paper are initial claims (IC) as collected by states for the UI program 
and produced by the Employment and Training Administration in the U.S. Department of 
Labor. The states are required to submit their data by the close of business each Monday 
for the number of the initial claims to receive benefits from the UI program. The number 
of initial claims naturally rise sharply during recessions but rose to unseen levels during 
the current pandemic and remains high well into 2021. The IC series has also recently been 
affected by extended benefits and extra benefits from the Pandemic Unemployment 
Assistance program. 
 
Pandemic effects began for IC in the second week of March 2021. By April 2021, the 
unadjusted IC exceeded 6,000,000. Until the pandemic, the only time IC reached 1 million 
was during a recession in the second week of January 1982 (seasonality is always strongest 
in the second week). Since the beginning of the pandemic, twenty weeks have claims that 
exceed a million. Before 2020, IC averaged less than 400,000 per week, but averaged over 
1.6 million during the pandemic in 2020. It is clear from Figure 1 as to how much effect 
the pandemic has on IC. As of July 2021, IC still has not returned to “normal” levels, but 
we expect that may happen soon due to the elimination of pandemic payments and the 
overall improvement of the U.S. economy. 
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Figure 1: Historical Initial Claims, Unadjusted 
 
Figure 2 shows the average multiplicative seasonal factors by week before the pandemic 
period as produced by MoveReg. The strongest periods for seasonality start in November 
and continue through early January. Seasonality is also relatively strong around the July 4th 
holiday. 
 

 
 
Figure 2: Average Seasonal Factors by Week of Year, 1991- 2020 
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Figure 3: Initial Claims, Pre-Pandemic 
 
3.2 Results 
Figure 3 shows the seasonally adjusted series from the three programs from 2009 through 
2019 with the unadjusted IC. It is hard to tell the difference between the adjusted series 
throughout most of the period. Some of the larger differences can be due to outlier sets. 
One area that might be helpful to research is to whether the holiday variables should be 
estimated stochastically. This is easy to do in SSM. 
 
To see more detail, Figure 4 shows the same series for 2018. There are some differences, 
but the adjustments are similar overall. 
 
The pandemic period in 2020 is shown in Figure 5. Note the abrupt rise starting in March 
and the rapid decline just afterwards. A TC outlier (or possibly multiple TCs) looks 
obvious, but we found that combinations of AOs and LSs work better. We use 0.92 for the 
TC decay rate with weekly data since it is equivalent to using 0.7 for monthly data. Figure 
6 displays the pandemic in 2020 starting in June to be able to see differences more clearly. 
One noticeable difference is in the second week of July, which is treated as an AO. This is 
probably due to July 4th falling on a Saturday that likely caused many claims to be delayed 
until the next week. 
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Figure 4: Initial Claims, 2018 
 

 
 
Figure 5: Initial Claims, 2020 Pandemic Period 
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Figure 6: Initial Claims, June – December 2020 Pandemic Period 
 

 
 
Figure 7: Initial Claims, Pre-Pandemic FAM and SSM Trends 
 
Trends from FAM and SSM are plotted in Figure 7. Again, they are similar over most of 
the period. (MoveReg does not explicitly estimate a trend component.) It could be useful 
to publish trends along with the seasonally adjusted series. 
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4. Summary 
 
A natural question arises now: “Which program should you use”? All three appear to work 
well for our weekly data series, but MoveReg has some shortcomings as mentioned earlier. 
 
Below are some points to consider: 
 

 FAM is still in development, but many will find it helpful that it is designed to 
perform seasonal adjustment. SSM is a powerful general time series procedure but 
will require the user to create some seasonal adjustment diagnostics separately. 

 FAM uses an ARIMA model and SSM an STS model. Some users might feel more 
comfortable with one approach over another. Regardless, based on Maravall 
(1985), we would expect a base structural model and an airline model to be similar. 

 While one might be tempted to choose between FAM and SSM based on one’s 
comfort level with R or SAS, being an expert in either language is not required. A 
solid knowledge in time series and seasonal adjustment methods is likely more 
important. 
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Appendix A 
 

Example of R code for FAM: 
 
setwd("X:/code/weeklyAdjustment") 
 
ic_df <- openxlsx::read.xlsx("uihis_new.xlsx", sheet=1) 
uihis_start <- c(1988, 1) 
 
ic_tis <- tis::tis(ic_df$ic, start = uihis_start, tif = 
"wsaturday") 
 
ic_week_tis <- tis::tis(ic_df$week, start = uihis_start, tif = 
"wsaturday") 
ic_year_tis <- tis::tis(ic_df$year, start = uihis_start, tif = 
"wsaturday") 
 
ic_series_end <- end(ic_tis) 
ic_forecast_end <- ic_series_end + 104 
 
 
# set starting date to the last January in 2003 
this_start <- c(2003, 4) 
 
# set ending date to last January in 2021 
this_end   <- c(2021, 5) 
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# create series, week and year variables with this starting and 
ending date 
 
ic_tis_final        <-  
   window(ic_tis, start=this_start, end=this_end) 
ic_week_tis_final   <-  
   window(ic_week_tis, start=this_start, end=this_end) 
ic_year_tis_final   <-  
   window(ic_year_tis, start=this_start, end=this_end) 
 
ic_this_start <- this_start 
 
ic_obs         <- ic_tis_final 
ic_length      <- length(ic_tis_final)  
 
ic_ti <- tis::ti(ic_tis_final) 
ic_end <- end(ic_tis_final) 
 
# generate holiday, outlier regressors for fractional airline  
# model using gen_movereg_holiday function from airutilities  
# package developed by Brian C. Monsell 
 
ic_ny  <-  
  airutilities::gen_movereg_holiday(hol_n = 8,  
                      hol_index = 1,  
                      hol_wt = c(0, 0, 0, 0, 0, 0, 1, 1),  
                      hol_type = "newyear",  
                      this_week = ic_week_tis_final,  
                      this_year = ic_year_tis_final) 
 
ic_mlk <-  
  airutilities::gen_movereg_holiday(hol_n = 1,  
                      hol_index = 1,  
                      hol_wt = array(1, dim=1),  
                      hol_type = "mlk",  
                      this_week = ic_week_tis_final,  
                      this_year = ic_year_tis_final)  
 
ic_president <-  
  airutilities::gen_movereg_holiday(hol_n = 1,  
                      hol_index = 1,  
                      hol_wt = array(1, dim=1),  
                      hol_type = "president",  
                      this_week = ic_week_tis_final,  
                      this_year = ic_year_tis_final)  
 
ic_easter  <-  
  airutilities::gen_movereg_holiday(hol_n = 8,  
                      hol_index = 8,  
                      hol_wt = c(1, 0, 0, 0, 0, 0, 0, 0),  
                      hol_type = "easter",  
                      this_week = ic_week_tis_final,  
                      this_year = ic_year_tis_final) 
 
ic_memorial <-  
  airutilities::gen_movereg_holiday(hol_n = 1,  
                      hol_index = 1,  
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                      hol_wt = array(1, dim=1),  
                      hol_type = "memorial",  
                      this_week = ic_week_tis_final,  
                      this_year = ic_year_tis_final)  
 
ic_july4 <-  
  airutilities::gen_movereg_holiday(hol_n = 1,  
                      hol_index = 1,  
                      hol_wt = array(1, dim=1),  
                      hol_type = "july4",  
                      this_week = ic_week_tis_final,  
                      this_year = ic_year_tis_final)  
 
ic_labor  <-  
  airutilities::gen_movereg_holiday(hol_n = 2,  
                      hol_index = 2,  
                      hol_wt = c(0, 1),  
                      hol_type = "labor",  
                      this_week = ic_week_tis_final,  
                      this_year = ic_year_tis_final) 
 
ic_columbus <-  
  airutilities::gen_movereg_holiday(hol_n = 1,  
                      hol_index = 1,  
                      hol_wt = array(1, dim=1),  
                      hol_type = "columbus",  
                      this_week = ic_week_tis_final,  
                      this_year = ic_year_tis_final)  
 
ic_veteran <-  
  airutilities::gen_movereg_holiday(hol_n = 1,  
                      hol_index = 1,  
                      hol_wt = array(1, dim=1),  
                      hol_type = "veteran",  
                      this_week = ic_week_tis_final,  
                      this_year = ic_year_tis_final)  
 
ic_thanksgiving <-  
  airutilities::gen_movereg_holiday(hol_n = 1,  
                      hol_index = 1,  
                      hol_wt = array(1, dim=1),  
                      hol_type = "thanksgiving",  
                      this_week = ic_week_tis_final,  
                      this_year = ic_year_tis_final)  
 
# Generate “special” holiday regressors using various routines  
# from the airutilities package 
 
ic_july4_wed <-  
   airutilities::match_month_day(ic_week_tis_final, "0707") 
ic_xmas_w53  <-  
   airutilities::match_week(ic_week_tis_final, 53) 
ic_xmas_fri  <-  
   airutilities::match_month_day(ic_week_tis_final, "1226") 
 
# Create holiday regression matrix by binding individual holiday 
# regressors and set the column names 
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ic_holiday_matrix <-  
  cbind(ic_ny, ic_mlk, ic_president, ic_easter, ic_memorial,  
        ic_july4, ic_labor, ic_columbus, ic_veteran,  
        ic_thanksgiving, ic_july4_wed, ic_xmas_w53, 
        ic_xmas_fri) 
 
colnames(ic_holiday_matrix) <-  
      c("ny", "mlk", "president", "easter", "memorial", "july4", 
        "labor", "columbus", "veteran", "thanksgiving", 
        "july4_wed", "xmas_w53", "xmas_fri") 
 
# construct outliers for outlier set with TC by creating date  
# matrix and using gen_tc_outlier_matrix function from the 
# airutilities package 
 
ic_firstTC_date <-  
  matrix(c(13, 2020), ncol=2, byrow=TRUE) 
 
ic_firstTC_matrix <-  
  airutilities::gen_tc_outlier_matrix(ic_firstTC_date,  
                                      ic_week_tis_final,  
                                      ic_year_tis_final, 0) 
 
# bind holiday and TC matrix together to form final regression  
# matrix, setting the column names from the original parts 
 
ic_tc_auto_matrix <- cbind(ic_holiday_matrix, ic_firstTC_matrix) 
 
colnames(ic_tc_auto_matrix) <-  
  c(colnames(ic_holiday_matrix), colnames(ic_firstTC_matrix)) 
 
# Generate ljung-based critical value for outliers using the 
# set_critical_value function from the sautilties package  
# developed by Brian C. Monsell 
 
ljung_cv <-  
   sautilities::set_critical_value(length(ic_tis_final),  
                                   cv_alpha = 0.005) 
 
# fractional airline with holiday regressors,  
# alternate outlier set with TC, no log, using ljung_cv 
# Estimation and decomposition generated from the  
# fractionalAirlineEstimation and fractionalAirlineDecomposition 
# of the rjdhf package, developed by Jean Palate 
 
ic_tc_auto_ljung_nolog_est <-  
   rjdhf::fractionalAirlineEstimation(ic_tis_final,  
                                      periods=c(365.25/7),  
                                      x=ic_tc_auto_matrix, 
                                      outliers=c("ao", "ls"),  
                                      criticalValue = ljung_cv) 
ic_tc_auto_ljung_nolog_decomp <- 
   rjdhf::fractionalAirlineDecomposition( 
      ic_tc_auto_ljung_nolog_est$model$linearized, 365.25/7, 
      stde = TRUE) 
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# generate a matrix containing a summary of the FAM fit to the  
# series with regressors with the gen_air_model_matrix function 
# from the airutilities package 
 
ic_tc_auto_ljung_nolog_model <-  
  airutilities::gen_air_model_matrix(ic_tc_auto_ljung_nolog_est, 
                       xreg_names = colnames(ic_tc_auto_matrix), 
                       this_week = ic_week_tis_final, 
                       this_year = ic_year_tis_final) 
 
# check model and set up codes for different types of regressors: 
# “ao” for point outliers, “ls” for level changes,  
# “tc” for temporary change outliers, and “hol” for holiday  
# regressors 
 
this_row_names <- rownames(ic_tc_auto_ljung_nolog_model) 
 
this_otl_index <-  
  sort(c(grep("ao", tolower(substr(this_row_names, 1, 2))), 
         grep("ls", tolower(substr(this_row_names, 1, 2))), 
         grep("tc", tolower(substr(this_row_names, 1, 2))))) 
 
this_xtype_otl <-  
  tolower(substr(this_row_names, 1, 2))[this_otl_index] 
 
this_xtype <-  
   c(rep("hol", ncol(ic_holiday_matrix)), this_xtype_otl) 
 
# generate a list object with the components of the fractional  
# airline decomposition with outliers assigned to the components 
# as they are in X-13ARIMA-SEATS with the gen_air_components  
# function of the airutilities package 
 
ic_tc_auto_ljung_nolog_comp <-  
  airutilities::gen_air_components(ic_tc_auto_ljung_nolog_est,  
                                   ic_tc_auto_ljung_nolog_decomp,  
                                   this_xtype = this_xtype,  
                                   this_log = FALSE,  
                                   this_stde = TRUE) 
 
# convert the components into a list of tis time series objects 
 
ic_tc_auto_ljung_nolog_comp_tis <- 
   lapply(ic_tc_auto_ljung_nolog_comp, function(x)  
      try(tis::tis(x, start = ic_this_start, tif = "wsaturday"))) 

 
Appendix B 

 
proc ssm data=weekly1 breakpeaks plots=ao(normal) plots=maxshock; 
* opt(tech=dbldog maxiter=200); 
id date interval=week align=end; 
*ods output ParameterEstimates=hyperparms 
InformationCriteria=aic; 
*** antilog disturbance variances; 
 %if &slope=y %then %do; 
  parms lvlevel lvslope lvseason lvirr; 
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 %end; 
 %else %do; 
  parms lvlevel lvseason lvirr; 
 %end; 
 vlevel  = exp(lvlevel); 
 %if &slope=y %then %do; 
  vslope  = exp(lvslope); 
 %end; 
  vseason = exp(lvseason); 
 %if wm=y %then %do; 
  vseasonm=exp(lvseasonm); 
 %end; 
  virr    = exp(lvirr); 
 
*** define time-varying trend, seasonal, and irr components; 
%if &slope=y %then %do; 
  state level(1) type=ll(slopecov(d)=(vslope)) cov(d)=(vlevel) 
   checkbreak; 
  comp trend = level[1]; 
%end; 
 %else %do; 
  state level(1) type=rw cov(d)=(vlevel) checkbreak; 
  comp trend = level[1]; 
 %end; 
 
 state sinPart(&nfreq) type=RW cov(I)=(vseason); 
 state cosPart(&nfreq) type=RW cov(I)=(vseason); 
 comp sin = sinPart*(sin1-sin&nfreq); 
 comp cos = cosPart*(cos1-cos&nfreq); 
 
 state noise(1) type=wn cov(d)=(virr); 
 comp irr = noise[1]; 
 
*** define model statement; 
%if &ao=y and &tc=y and &ls=y %then %do; 
 model &dv = trend sin cos irr  
             &hm &aom &tcm &lsm 
%end; 
 
%if &ao=y and &tc= and &ls=y %then %do; 
 model &dv = trend sin cos irr  
             &hm &aom &lsm; 
%end; 
 
%if &ao=y and &tc= and &ls= %then %do; 
 model &dv = trend sin cos irr &hm &aom; 
%end; 
 
*** use eval statements to sum up holiday and outlier components; 
%if &ao=y %then %do; 
 eval ao  = &aom_sum; 
%end; 
%if &tc=y %then %do; 
 eval tc  = &tcm_sum; 
%end; 
%if &ls=y %then %do; 
 eval ls  = &lsm_sum; 
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%end; 
 *eval j4w = jul4wed; 
* eval ltd = latethanks; 
 eval hol = &hm_sum; 
 eval sf  = sin+cos; 
 
output out=smore ao(maxnum=10) press pdv gcv maxshock; 
run; 
quit; 
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