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Abstract
Cluster analysis is a powerful, versatile tool used in several fields to classify objects according to

a set of observed characteristics. This analysis commonly involves some critical decisions, such
as choosing the number of clusters to consider. To help practitioners undertake this specific chal-
lenge, we propose a permutation-based approach which makes it possible to compute a ranking of
C different partitions into Kc, c = 1, . . . , C clusters. In particular, this procedure avoids choos-
ing a single clustering quality index for the choice of optimal number of clusters, and bases the
decision on multiple indices. A case study presenting an example of successful application of the
aforementioned approach is considered.
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1. Introduction

Cluster analysis refers to the use of a large set of statistical techniques to appropriately
group units in an available sample. In particular, Tuena et al. (2020) [1] define cluster
analysis as ”the task of grouping a set of objects in such a way that objects in the same
group (called a cluster) are more similar (in some sense) to each other than to those in other
groups (clusters)”. The key is therefore to assign units in a data set to different clusters so
that the similarity within groups and the dissimilarity between groups are maximized.

Cluster analysis has gained popularity in many different research fields, such as medicine,
social sciences and engineering (see Figure 1), and many different clustering techniques
have been introduced in the literature [2]. These are traditionally divided into hierarchical
(e.g. single link [3]) and partitional algorithms (e.g. k-means[4,5]).

Jain (2010) [2] stresses that when performing a cluster analysis, the practitioner is faced
with several different challenges, such as choice of clustering algorithm and number of
clusters. For the latter, several different clustering quality indices have been introduced,
such as the Dunn index [6], the Davies-Bouldin index [7] and the Calinski-Harabasz index
[8], but this requires a further choice to be made, i.e. which quality index to use.

In this paper, we propose an approach which avoids having to make this decision by
considering multiple indices at the same time and combining indications provided by each
of them using the nonparametric combination (NPC) methodology [9]. Section 2 is devoted
to the description of this approach. In section 3 we present a case study in which the
procedure is applied, and in section 4 we provide our conclusions.

2. Method

Let us suppose we need to choose between two possible numbers of clusters, namely K1

and K2, using the k-means algorithm. The first part of the proposed approach requires us
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Figure 1: Documents distribution by subject area. Source: Scopus. Query: ”cluster analy-
sis” AND ”clustering”
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to:

1. For k = K1,K2:

(a) For l = 1, . . . , N :

i. Randomly choose the k initial cluster centers.

ii. Apply the k-means algorithm and identify the optimal partition Pk into k
clusters.

iii. Compute J different clustering quality indices to evaluate the partition.

Let X1 and X2 be the data sets, made up of N rows and J columns, containing the
obtained values of the clustering quality indices considering K1 and K2 clusters, respec-

tively. For each j = 1, . . . , J we now need to test if X1j
d
> (

d
<) X2j , where the direction

of the comparison is determined by the nature of the index (i.e. if it needs to be maximized
or minimized), and combine the indications provided by each individual test. To this end,
the nonparametric combination methodology [9] can be applied.

Given that X1 and X2 are paired samples, according to this methodology we need to:

1. Compute the matrix of differences Y = X1 −X2.

2. Compute the test statistics Tj =
∑N

i=1 Yij , j = 1, . . . , J .

3. For b = 1, . . . , B:

(a) Consider a random permutation of the N rows of Y by randomly generating
N signs Si. The permuted data set Y∗ is achieved where Y ∗ij = Yij × Si.

(b) Compute the test statistics T ∗j =
∑N

i=1 Y
∗
ij , j = 1, . . . , J .

4. Compute a partial p-value and its simulated permutation distribution for each test
statistic Tj , j = 1, . . . , J .

5. Combine p-values by means of an appropriate combining function (e.g. Fisher’s om-
nibus combining function [10]). A second order combined test is therefore achieved.

6. Compute the global p-value for the second order combined test to combine indica-
tions provided by each clustering quality index.

Further details about the algorithm used in the nonparametric combination methodol-
ogy and the calculation of the p-values and their permutation distributions are provided by
Pesarin and Salmaso (2010) [9].

The global p-value achieved using this procedure can be used to choose between the
partition PK1 and PK2 into K1 and K2 clusters, respectively.

However, we commonly wish to consider more than two possible numbers of clusters,
let us say for example C. In this case, it is possible to integrate the nomparametric com-
bination methodology with the ranking procedure by Arboretti et al. (2014) [11]. NPC is
initially used to perform all possible pairwise comparisons between partitions PKc into Kc

clusters in terms of J indices. Then, appropriate computations are performed to achieve
a ranking of the partitions according to the adjusted (for multiplicity) p-values obtained
through the C×(C−1)

2 comparisons. The partition PK∗ into K∗ clusters to which the first
ranking position is assigned should therefore be selected.
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Figure 2: Illustration of a permutation of the pooled sample.

3. Case study

This study considers an industrial problem involving 30 detergents which needed to be
grouped in terms of their performances measured by 8 different variables.

After standardization, we decided to use the k-means algorithm and apply the afore-
mentioned procedure to choose the optimal number of clusters from the sequence (2, . . . , 10)
while considering three different clustering quality indices, namely the Dunn index [6], the
Davies-Bouldin index [7] and the Calinski-Harabasz index [8]. The number of permuta-
tions was set at 2000, Fisher’s combining function was adopted to combine p-values, and
the Bonferroni-Holm-Shaffer multiplicity correction [12] was applied to p-values before
computing rankings.

The results of this analysis are presented in Tables 1 and 2. As can be seen, a number of
clusters equal to 2 appears to be the best choice given that it provided the highest values for
the Dunn and Calinski-Harabasz indices and the third lowest value for the Davies-Bouldin
index. Indeed, the NPC-based approach proposed in this paper showed that overall, parti-
tion into 2 clusters appears to significantly outperform the others, and assigned a ranking
position of 1 to said partition.

To sum up, adoption of the proposed approach allowed us to successfully select the op-
timal number of clusters by combining indications provided by multiple clustering quality
indices.

4. Conclusions

Carrying out a cluster analysis means practitioners have to address several different chal-
lenges, such as the choice of number of clusters. This paper proposed a permutation-based
procedure that takes advantage of the nonparametric combination methodology [9] and the
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Table 1: Clustering quality indices - average values.

No. of clusters Dunn Davies-Bouldin Calinski-Harabasz
2 0.23 0.78 38.78
3 0.16 0.88 32.20
4 0.14 0.93 30.04
5 0.15 0.90 28.75
6 0.15 0.87 28.70
7 0.17 0.83 29.94
8 0.18 0.79 31.41
9 0.18 0.75 32.04
10 0.18 0.71 32.68

Table 2: Ranking.

No. of clusters 2 3 4 5 6 7 8 9 10
Ranking 1 5 7 9 7 5 4 3 2

ranking procedure by Arboretti et al. (2014) [11] to help make this specific choice. In
particular, this approach allows practitioners to base their decision on multiple clustering
quality indices and combine indications provided by each of them. Ranking is provided
and the top rank is assigned to the optimal number of clusters (i.e. to the partition into K∗

which significantly outperforms the other partitions in terms of the considered clustering
quality indices).

A case study was considered which allowed us to show successful application of such a
procedure, and it appears to be a promising method to support practitioners in overcoming
one of the main challenges posed by cluster analysis.
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