
A Bayesian Hierarchical Model of Violent Criminal Threat

F.O Bunnin∗ J.Q. Smith†

Abstract
Violent criminals will often need to go through a sequence of preparatory steps before

they can execute their plans. During this escalation process police have the opportunity to
evaluate the threat posed by such people through what they know, observe and learn from
intelligence reports about their activities. We customise a Bayesian hierarchical model to
describe this process. This is able to propagate both routine and unexpected evidence in
real time. The model structure comprises the latent threat state of an individual person
of interest; the activities that person carries out relevant to an attack; and observable data
produced by those activities. The model aims to support real-time decision making by
security analysts. Specifically it aims to focus attention and allocate constrained resources
on the cases that pose the greatest imminent danger.

Key Words: Bayesian hierarchical models, graphical models, semi-Markov processes,
latent variable processes, statistical criminology

1. Problem Statement and Motivation

The prediction and prevention of terrorist attacks is a major focus of UK police and
the domestic Security Service. The characteristics of recent attacks can frustrate
traditional methods of policing. Lone or small groups of attackers [1] have used
easily accessible every-day items, such as knives, vehicles or improvised explosive
devices. Targets are often “soft”: civilians on the streets, public transport or in
public arenas. Attackers are often not directly affiliated with any organisation.
The nature of such attacks and the use of electronic communications permit fast
advancement from planning to execution, to the extent of near opportunism [2, 3].
Conversely, the use of electronic media affords opportunities for the authorities
to discover, intercept, and foil such plots[4]. However in a free and democratic
society the resources, powers and remit of the police are constrained by the legal
system and proportionality[5]. The problem faced by the authorities is how to
make efficient and effective use of appropriately constrained= resources to focus
on the most dangerous threats within a population of persons of interest (POI);
to minimise casualties and maintain National Security[6]. These objectives must
be achieved using methods and rationales that are publicly scrutinised; justifiable
to parliament and legal reviews; and accountable to the general public [7]. The
model presented here is designed to support counter-terrorism security analysts.
In order to be effective it must be accurate, computationally feasible in real time,
transparent and justifiable. It was developed through elicitation and dialogues with
counter-terrorism authorities.

∗NatWest Markets plc UK. Email: oliver.bunnin@natwestmarkets.com
†Department of Statistics, University of Warwick, The Alan Turing Institute, UK. Email:

j.q.smith@warwick.ac.uk

 
547



2. The Hierarchical Model

The hierarchical model to support criminal investigations was introduced in [8].
Hereafter we call it the Radicalisation and Violent Extremism (RVE) model. The
paper[8] detailed the iterative process of elicitation and feedback between practition-
ers and modellers that aimed to translate expert knowledge into a faithful structural
model. The main focus was on building a model that accurately represented experts’
perspectives and judgements, and through justifiable conditional independence as-
sumptions permitted appropriate Markov assumptions regarding data, tasks and
states. This paper takes those elements as given. Here the probabilistic aspects and
importance of the semi-Markov nature of the threat process take focus.

The model comprises three conceptual levels. At the deepest level is a Graphi-
cal known as a Reduced Dynamic Chain Event Graph [9]. In this application the
RDCEG models the latent stochastic process of a POI’s threat position. The in-
termediate level is the Task level. These tasks are the activities of a POI that are
necessary to attempt an attack and may be observable or more often hidden. The
final, surface, level is the data that is legally and technically available to Security
analysts [4]. Causality flows from the deep threat layer through to tangible activ-
ities. These activities produce potentially observable electronic or physical data:
the surface layer. Statistical inference flows in the opposite direction: from the ob-
served data, through inference on activities, to inference on the variable of interest;
namely the threat state.

2.1 Reduced Dynamic Chain Event Graph of Threat Position

2.1.1 Event Trees and Chain Event Graphs

Chain Event Graphs (CEG) are a family of graphical probabilistic models. Akin
to Bayes Nets, they facilitate dialogue between modellers and practitioners though
a concise graphical representation of a formal probability model. In contrast to
Bayes Nets, CEG facilitate context specific conditional independence relations and
clearly disambiguate structural and sampling zeros1. CEG are constructed from
Event Trees (ET) which are graphical representations of composite events, with
the constituent event taking values in a discrete state space[12]. The constituent
events are represented as vertices in the ET and the composite events are paths,
including root to leaf paths. To construct a CEG the vertices in an ET are coloured
based on symmetry2 of their emanating distributions. Vertices of the ET with the
same colouring are collapsed into stages which form the vertices of the CEG. This
transforms an ET into a CEG[10]. The CEG is a compact representation of a
possibly infinite ET and thus simplifies reasoning and computation.

Reduced Dynamic Chain Event Graphs (RDCEG) are an extension of Dynamic
CEG (DCEG), i.e. CEG that model events through times[13]. RDCEG combine
the leaf vertices an ET into a single absorbing vertex[14, 15]. An RDCEG is thus a
finite directed graph that permits cycles, since a vertex can be reached more than
once during the evolution of events. An RDCEG can, in some circumstances, be

1Structural zeros are events, or combinations of events or outcomes, that are logically impossible;
in contrast to sampling zeros where the observed occurrence is zero but in theory may be non-zero;
see [10, 11] for details.

2Taking a given vertex as the root of an induced subtree, the emanating distribution of the
vertex is the set the paths from that vertex to root vertices and the probabilities assigned to these
paths. If two vertices’ emanating distributions are identical they are said to be symmetrical and
are assigned the same colour.
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represented as a semi-Markov process [9, 15][16] with exactly one absorbing state
and the remaining states transient.

2.1.2 Semi-Markov Process Representation

In this paper we focus on the semi-Markov representation of the RDCEG and do
not detail the construction from an ET. The Graph represents the composite event
of a potential violent criminal attack, with the single absorbing state the conclusion,
either a successful attack, a foiled plot or the individual renouncing violence. The
transient states represent preattack threat levels. Directed edges represent transi-
tions between threat states that occur during the course of a potential attack. We
present the formal model as follows.

Let Xt be a stochastic process representing the dynamic threat state of a POI.
Xt is defined on the filtered probability space:

{Ω,F ,F,P}

where Ω is the sample space, F a σ-field over Ω, F = {Ft}t∈R+ a filtration of non-
decreasing subsets of F , and P a probability measure over the measurable space
{Ω,F}. As per usual, the sample space contains states of the world, mapping
to outcomes which are the POI’s threat state, the attack and related variables.
F contains all relevant events in Ω; F the increasing information, gained from
incoming data, revealed through time. P is a subjective measure representing the
analysts’ rational judgement on the probability of the POI’s threat state, and of
the dependency relations between the threat states, activities and observable data.
Note that F0 is not the trivial σ-field {∅,Ω} as there is at least the information
that justifies the interest of the authorities towards the POI.

Xt : Ω× R+ → X
Xt ∈ X = {x0, x1 . . . , xm−1}

The generative dynamics of Xt are determined by the semi-Markov kernel de-
scribed in Section 2.1.3. The space X represents the possible threat states of a POI;
x0 is labelled as the neutral state and is the single absorbing state described in Sec-
tion 2.1.1. The non-neutral states x1, . . . , xm−1 are transient and known, in CEG
terminology, as positions. The threat space and possible transitions between the
distinct states are represented graphically by an RDCEG as illustrated in Figure
(1).

The Mobilised position represents mobilisation to an attack. In the ET of the
plot, a successful attack and a foiled attack are two distinct leaf vertices. As there
are no edges emanating from these two vertices their emanating distributions are
trivially identical. Following the graph construction described in Section 2.1.1 these
two ET leaves are collapsed into the single absorbing state. And therefore there
is only a single edge from the Mobilised position to the Neutral state, despite
there being more than one way that X may make that transition. If X transitions
from Mobilised position they either i) transition back to the Preparing position,
or ii) transition to the Neutral state. The transition to the Neutral could occur
in several circumstances: a successful attack would end this particular plot, the
individual could be arrested before execution of the planned attack, or the POI
could abruptly reject violence.
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(b) Topology of RDCEG with named
states

p(A) = 0.6

p(T) = 0.2 p(P) = 0.1

p(N) = 0.05
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(c) RDCEG with prior state probabilities as-
signed by analyst

p(A)= 0.02

p(T) = 0.01 p(P) = 0.34

p(N) = 0.01

p(M) = 0.62

(d) RDCEG with posterior state probabilities
generated from sequential updates using Equa-
tion 5

Figure 1: RDCEG for threat state of potential attacker. x1 = Active radical extremist; x2 =
Training for attack purposes; x3 = Preparing for an attack; x4 = Mobilised for an attack; x0

= Neutral i.e not involved in RVE. The non-neutral states, known as positions, are labelled with
descriptions of the stage of a possible attack. The existence and direction of edges indicate possible
state transitions. The grey dotted edges are final transitions to the absorbing Neutral state that
end the plot. Prior probabilities are assigned to each state in accordance with analysts’ judgement
and are revised with incoming data and probability propagation based on Bayes Theorem and model
structure and parametrisation. The index number on a state, and the colour of its circle, correspond
to the level of threat of the POI. The colour here has nothing to do with the colouring mentioned
in Section 2.1.1

.
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2.1.3 Initial Probability Vector and Transition Kernel

A finite state semi-Markov process is described by a triple

(m,P(Xt0),M)

where m is the number of states, P(Xt0) is a vector of the state probabilities at time
t = 0, and M is the semi-Markov transition kernel: a family of distributions[16, 17]
over both the actual transitions between states of Xt and the random sojourn times
between state transition events:

M = {M(i, j, u, v);xi, xj ∈ X , 0 ≤ u < v < ∞}.

We take a Bayesian approach: The distribution P(Xt0) is based on the analysts’
prior information regarding the particular POI whose threat state the RDCEG is
representing. Likewise the particular M ∈ M is chosen based on expert judgement
regarding the transition probabilities and sojourn times between states. This can
be based on empirical data on previous plots, or any specific information regarding
a particular POI. This evidence is noisy, partial, and often Missing-Not-At-Random
(MNAR)[18]. Hence translating data into mathematical probabilities requires ex-
perience and expert judgement.

Once P(Xt0) and a specific M ∈ M are chosen, realisations of the generative
process can be obtained. We set

M = M0 ◦M1 (1)
M0 = [ξi,j ]{0<qi,j≤m−1}

M1 = [ζi,j(u, v)]{0≤i,j≤m−1;0≤u<v<∞}

so that M is an m ×m matrix formed from the element wise product of M0 and
M1; where M0 is the transition probability matrix of the embedded Markov chain
of Xt, and M1 is the matrix of sojourn time distributions. That is: the elements
of M0, ξi,j are the transition probabilities between states and the elements of M1

are the individual sojourn time distributions3 ζi,j(u, v) for transitions from state xi
to state xj in the RDCEG. In the absence of an edge between states xi and xj ,
ξi,j = ζi,j(u, v) = 0. The probability distribution of Xt at any given time t, without
any observations of data, is given by equation 2, where P(Xt|F0) and P(Xt0) are
m-dimensional real vectors and M(t) is an m ×m matrix of real valued functions
that ensures that P(Xt|F0) are properly defined probabilities.

P(Xt|F0) = M(0, t) P(Xt0 |F0) (2)
P(Xs|Ft) = M(t, s) P(Xt|Ft) (3)

For two arbitrary times t < s, the probability distribution of Xs given information
up to time t is given by equation 3. See Table 1 for the structure of the semi-Markov
transition matrix used for the RDCEG in Figure 1.

3Given a transition from xi to xj , ζi,j(u, v) is the distribution of the random time v − u, that
X stay in xi before transitioning to xj given it has spent time u in xi.
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M0 Neutral Active Training Preparing Mobilised

N 1 0 0 0 0
A ξa,n 0 ξa,t ξa,p 0
T ξt,n 0 0 ξt,p 0
P ξp,n 0 0 0 ξp,m
M ξm,n 0 0 ξm,p 0
M1 Neutral Active Training Preparing Mobilised

N 1 0 0 0 0
A ζa,n(u, v) 0 ζa,t(u, v) ζa,p(u, v) 0
T ζt,n(u, v) 0 0 ζt,p(u, v) 0
P ζp,n(u, v) 0 0 0 ζp,m(u, v)
M ζm,n(u, v) 0 0 ζm,p(u, v) 0
M Neutral Active Training Preparing Mobilised

N 1 0 0 0 0
A ζa,n(u, v)ξa,n 0 ζa,t(u, v)ξa,t ζa,p(u, v)ξa,p 0
T ζt,n(u, v)ξt,n 0 0 ζt,p(u, v)ξt,p 0
P ζp,n(u, v)ξp,n 0 0 0 ζp,m(u, v)ξp,m
M ζm,n(u, v)ξm,n 0 0 ζm,p(u, v)ξm,p 0

Table 1: Semi-Markov Transition Matrix. ξi,j is the probability of transition from state xi to xj

given that a transition from xi has occurred; ζi,j(u, v) is the distribution of the sojourn time, i.e.
the distribution of the random time v− u that X continues to stay in state xi, having been in state
xi for the time u, before transition to state xj, given such a transition will occur. The numbers
ξi,j and functions ζi,j(u, v) are such that ∀i, j,

∑m−1
j=0 ξi,j = 1 and

∫
R+

dζi,j(0, s) = 1 if ξi,j > 0,
ζi,j(0, s) = 0 otherwise.

2.2 Intermediate Level: Tasks

The variables of the intermediate level in the model are the activities the POI may
be engaged in. We define tasks as the activities that progress an individual towards
a goal. For example raising funds, acquiring weapons, and reconnaissance of target
locations, are tasks that progress a POI towards an attack. Table 2 show the list of
tasks chosen for the initial model. Note that some of these tasks, such as obtaining
financial resources and learning to drive are, in of and themselves, quite innocent.

Of interest are combinations of tasks that may be suspicious; hence mathemati-
cally formulated it is the joint distribution of the tasks and the threat states that is
pertinent. The key is to elicit domain knowledge of which combinations of tasks are
typical of terrorist plots at various stages and translate this knowledge into math-
ematical distributions of sets of tasks conditional on threat state, including the
distribution of the relevant tasks conditional on the neutral state i.e. conditional on
the POI actually not being a potential attacker. Moreover, such translation must
be systematic and justifiable so that it will withstand legal and public scrutiny. The
initial attempts to achieve this have been through an iterative process of discussions,
function building, model evaluation on synthetic data, and feedback from further
discussions.

We turn now to the mathematical formulation of this intermediate level; Tasks,
denoted θt, are modelled as binary variables. These indicate, at any given time,
whether the POI has completed the specified task. For concreteness we set the
number of relevant tasks as the positive integer d; so the set of tasks, {θj}, j = 1 . . . d
takes values in {0, 1}d. Denoting the set of tasks as T and its state space T we
have:

T := {θj}1≤d ∈ T := {0, 1}d
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We model the tasks as informative of threat state: For each state xi there is a subset
of the tasks

Ti ⊂ {θj}{j=1...d}

that is directly informative of whether the POI is in that particular state. See Table
4 for concrete examples of such subsets of tasks that are taken to be informative on
a particular threat state.

The relations between task sets and threat states are given by the joint distribu-
tion P(Xt, Tt) which determine the conditional distributions P(Tt|Xt), P(Xt|Tt) and
marginal distributions P(Tt), P(Xt). As an illustration of such relations, if none of
the tasks in the list have been done, then the probability that the POI is in any state
other than neutral should be low; and if the POI has been to a training camp, has
obtained a gun and a vehicle, and has reconnoitred some target locations, then the
probability that they are in the preparing or mobilised positions should be high.
However these illustrations are based on the assumption of certainty over whether
the tasks have been done. The complication is that the tasks themselves are rarely
known with certainty. Tasks can usually only be inferred through data such as
records of, for example, social media posts and communications, CCTV images or
physical sightings or observations; and thus can only be estimated with uncertainty.

2.3 Surface Level: Observable Data

The data on a POI that may be available in practise, and from which task infer-
ence may be performed, are primarily electronic records, physical observations of
movements and activity, and statements from police, public or informants; the lat-
ter statements being of varying levels of credibility. These data include bilateral
and multilateral communications, social media posts, mobile phone signal records,
CCTV images of physical location and movements, records of economic and financial
transactions, physical sightings, police and government records, and so on.

As examples of how such data can be informative of task activity, phone calls
to individuals with extremist views or physical observations of an individual at
locations known to be frequented by extremists would increase the probability that
the given individual had had motivated engagement with radical extremists; Several
website hits to van dealers or van rental firms, along with a large decrease in bank
account balances would increase the probability that a vehicle had been obtained.
And website hits both to military training methods and locations in Syria, along
with website searches for flights to countries close to Syria, would increase the
probability that the POI had the intention of covertly travelling to Syria for military
training; the later relations being based on domain knowledge [5].

We introduce such data formally into the model as a time indexed vector of real
numbers Yt ∈ Rm where m is the dimension of the data. For each task, say θj ,
we define a deterministic function of the data Zj : Rm → R to be a Markov filter
in that Zj(Yt) represents the intensity of signal from the data Yt that the task θj
has been done4. In general, at any given time t, past data from times s < t may
also be relevant as to the time t value of θj,t. To model this historical dependence,
while keeping the filter to be Markov, we can include functions of historic data, such

4Such a filter may be as simple as a linear combination over its inputs, or may introduce more
structure through non-linear terms, or, to the detriment of transparency, be a learned neural
network from actual observed records.
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as differentials and time summations of the raw data as additional elements of an
expanded time t data set Yt.

The filter Z is designed to respect the condition that each task θj is conditionally
independent of the data Y given the filter Z, i.e. ∀j, θj ⊥⊥ Y | Zj . With this
condition the relationship between the data Yt and a given task θj can be formulated
as the joint distribution of that task’s filter and the task itself P(Zj , θj) which is of
considerably lower dimension than P(Y, θj) as Zj ∈ R while Y ∈ Rm.

The introduction of the observable data, through the Markov task filters, permits
the Bayesian updating5 of the distribution of threat state:

P(Xs|Fs) = P(Xs|Ys) = P(Xs|Zs)

=
m−1∑
i=0

P(Xs|Zt)
∑
Ts∈T

P(Zs|Ts)P(Ts|Xs)

P(|Zs)

∝
m−1∑
i=0

P(Xs|Zt)
∑
Ts∈T

P(Zs|Ts)P(Ts|Xs)

=
m−1∑
i=0

P(Xt|Ft)
∑
Ts∈T

P(Zs|Ts)P(Ts|Xs) (4)

where t < s are times; P(Xs|Zt) = P(Xs|Ft) is the time s prior distribution of the
threat state, given the information known at time t < s; P(Xs|Zs) = P(Xs|Fs)
is the time s posterior distribution of threat state given information up to time s;
P(Zs|Ts) is the joint distribution of filters given the values of the task variables Ts
(which, since the filter Zs is observed and the values of the tasks are unknown, can
be viewed as the likelihood function of the tasks); and P(Ts|Xs) is the distribution
of the tasks conditional on the threat state.

Combining the generative dynamics given by the semi-Markov evolution equa-
tion 3, with the Bayesian update rule 4 we obtain:

P(Xs|Fs) ∝
m−1∑
i=0

M(t, s) P(Xt|Ft)
∑
T ∈T

P(Zs|Ts)P(Ts|Xs) (5)

The above model has been implemented in Python, with specific parameterised
choices on the functional forms of the various marginal and conditions distributions
involved. The concrete model and numerical examples under synthetic data scenar-
ios are presented in [8]. Parameter sensitivity and structural robustness analyses of
the model are also presented in [19].

3. Discussion

The RVE model has been developed through engagement with the potential end-
users. It is the synthesis of early dialogues, focused discussions, and iterative model
and software development through periodic feedback. The key idea is to faithfully
formalise domain expertise into a systematic statistical and software model that
gives real-time practical support. The mappings from inputs to outputs aim to be
transparent to users and permit manual overrides, such as setting task values and

5This is the standard Bayesian Filtering equation derived from iterative application of Bayes
Theorem.
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threat state probabilities at any point in time based on knowledge external to the
model.

One of the key goals of the model is to use combinations of weak data signals
sifted from large volumes of data to form a strong signal. The success will be deter-
mined by the fidelity of the practitioner guided conditional distribution construction
to reality. To achieve this goal we attempt to formalise and make systematic aspects
of expertise gained from years of policing experience. And in so to relieve some of
the work that can be automated and formalised from analysts, freeing up time to
spend on aspects that cannot be automated.

This work has been developed in various ways. These include using the model
to estimate the probability of an attack within a certain time frame[20]; modelling
the strength of communications between individual suspects within a group [21];
and resource allocation across cases using multi-attribute utility decision theory,
stochastic control and reinforcement learning approaches[22].
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States Tasks Observables

Neutral Motivated RVE Engagement Extremist Website Hits
Active Public Threats Physical Meeting With Radicals
Training Personal Threats E-Meeting eith Radicals
Preparing Attendance at RVE Events Public Pro RVE Statements
Mobilised Reduction in RVE Engagement Private Pro RVE Statements

Reduce Contact with Family MeetTrainedRadicals
Obtain Financial Resources MeetCellMembers
MilitaryTraining SeenAtRadicalDemonstrations
Reconnaissance ReductionInSightingsAtRadicalDemos
MovementToTarget ReductionContactsWithNonRadicals
Learn to drive PublicThreatsMade
Obtain vehicle PersonalThreatMade
Learn how to construct bomb SellAssets
Purchase bomb making materials IncreaseInFinances
Constuct bomb DecreaseInFinances
TestBomb E-VisitsToTargetLocations
Plant bomb VisitsToTargetLocations
Learn how to use gun LegacyStatements
Convert legal device to gun StatementOfIntent
Acquire Gun GeneralCarWebSearches
Acquire Ammunition ObtainLicence
Acquire knife Driving lessons

Purchase car
Rent car
CarDealerWebHits
CarDealerPhysicalVisits
E-messages about cars
LargeExpenditure
BombMakingWebSiteHits
BombManualsBought
TechnicalElectro/ChemicalWebsiteHits
TechnicalElectro/ChemicalManualsBought
VisitsToPotentialTestingSites
Purchase of flight tickets to training countries
GunWebSearches
ShootingTrainingCourses
VisitsToGunShops
VisitsToShootingRanges
Purchase of convertible device eg CS gas pisto...
Medium to large expenditure
Stolen gun known in location
Contacts with gun and ammunition dealers
KnifeWebSearches
SeenBuyingKnives
SeenwithKnife

Table 2: Space sheet input example

Prob Source Destination
State

Neutral 0.05 Active Training
Active 0.60 Active Preparing
Training 0.20 Training Preparing
Preparing 0.10 Preparing Mobilised
Mobilised 0.05 Mobilised Preparing

Table 3: Priors and Edges input examples
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Active Training Preparing Mobilised
State_Task_Index_Sets

EngageWithRadicalisers 1 0 0 0
EngageInPublicThreats 0 0 1 1
MakePersonalThreats 0 0 1 1
AttendanceAtRadicalEventsPublic 1 1 0 0
ReducePublicEngagementsInRadicalisation 0 0 0 1
ReduceContactWithFamilyFriends 0 1 1 1
Obtain Financial Resources 0 1 0 0
Travel to training camp 0 1 1 0
ReconnoitreTargets 0 0 1 1
MoveToTargetToAttack 0 0 0 1
Learn to drive 1 1 0 0
Obtain vehicle 0 1 0 0
Learn how to construct bomb 0 1 0 0
Purchase bomb making materials 0 0 1 0
Constuct bomb 0 0 1 0
TestBomb 0 0 1 0
Plant bomb 0 0 0 1
Learn how to use gun 0 1 0 0
Convert legal device to gun 0 0 1 0
Acquire Gun 0 0 1 0
Acquire Ammunition 0 0 1 0
Acquire knife 0 0 1 0
Cardinality 3 8 12 7

Table 4: Task State dependence input example. Rows are tasks; columns states. An entry of 1 for the element (i, j)
denotes that the analysts’ view that the task θi is informative of the state xj: that the jth state and the ith task are
dependent. Conversely a zero entry denotes a view of independence between xj and θi. The bottom row shows the size
of each task set; i.e., the number of tasks that are informative of the jth threat state.
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EngageWithRadicalisers EngageInPublicThreats MakePersonalThreats
Observables

RadWebVisits 1
PhysicalMeetsWithRadicals 1
E-MeetsWithradicals 1
RadicalStatementsPublic 1 1
RadicalStatementsPrivate 1
MeetTrainedRadicals 1
MeetCellMembers 1
SeenAtRadicalDemonstrations 1
ReductionInSightingsAtRadicalDemos
ReductionContactsWithNonRadicals 1
PublicThreatsMade 1
PersonalThreatMade 1
SellAssets
IncreaseInFinances
DecreaseInFinances
E-VisitsToTargetLocations
VisitsToTargetLocations
LegacyStatements
StatementOfIntent 1 1
GeneralCarWebSearches
ObtainLicence
Driving lessons
Purchase car
Rent car
CarDealerWebHits
CarDealerPhysicalVisits
E-messages about cars
LargeExpenditure
BombMakingWebSiteHits
BombManualsBought
TechnicalElectro/ChemicalWebsiteHits
TechnicalElectro/ChemicalManualsBought
VisitsToPotentialTestingSites
Purchase of flight tickets to training countries
GunWebSearches
ShootingTrainingCourses
VisitsToGunShops
VisitsToShootingRanges
Purchase of convertible device eg CS gas pistol...
Medium to large expenditure
Stolen gun known in location
Contacts with gun and ammunition dealers
KnifeWebSearches
SeenBuyingKnives
SeenwithKnife

Table 5: Dependency matrix (truncated for space reasons) for tasks θj (by column) and observable data series Yi (by
row). An entry of 1 for the element (i, j) denotes that the analysts’ view that the task θj and the data Yi are dependent
processes. Conversely a zero entry (shown as blank) denotes a view of independence between θj and Yi.
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